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KYBERNET IKA — VOLUME 4 6 ( 2 0 1 0 ) , NUMBER 1 , PAGES 9 6 – 1 1 3

OPTIMAL QUANTIZATION FOR THE
ONE–DIMENSIONAL UNIFORM DISTRIBUTION
WITH RÉNYI-α-ENTROPY CONSTRAINTS

Wolfgang Kreitmeier

We establish the optimal quantization problem for probabilities under constrained Rényi-
α-entropy of the quantizers. We determine the optimal quantizers and the optimal quan-
tization error of one-dimensional uniform distributions including the known special cases
α = 0 (restricted codebook size) and α = 1 (restricted Shannon entropy).

Keywords: optimal quantization, uniform distribution, Rényi-α-entropy

Classification: 60Exx, 62H30, 94A17, 94A29

1. INTRODUCTION AND BASIC NOTATION

The quantization of probability distributions is mainly motivated from electrical en-
gineering in context of signal processing and data compression. A good survey about
the historical development of the theory has been provided by Gray and Neuhoff [9].
The reader is also referred to the book of Gersho and Gray [6] for more applied
aspects. Optimal quantization is the task of finding a best approximation of a given
probability by another probability with reduced complexity. Complexity constraints
used so far are restricted memory size resp. restricted Shannon entropy of the
approximation. The approximating probability is always induced by a quantizer,
which decomposes the space into codecells. The deviation of an optimal approxima-
tion from the original probability is described by the so-called optimal quantization
error. An exact determination of the optimal quantization error and the appropriate
optimal quantizers (if existing) subject to a given finite bound on the complexity of
the approximation is quite hard. Only for a few classes of – mainly one-dimensional
– distributions and restricted memory size exact results exist (cf. [5, 7, 8, 15, 16]).
If we deal with Shannon entropy as constraint, then only the optimal quantization
problem of the one-dimensional uniform distribution on [0, 1] was solved completely
so far (cf. [11]).

Although exact analytical results in optimal Shannon-entropy-constrained quan-
tization are rare, this quantization method normally outperforms quantization with
fixed memory size. Unfortunately, the optimal quantization error as a function of
the Shannon-entropy bound turns out to be non-convex (cf. [11, Corollary 2]), but
convexity would be an import property for applications (cf. [11] and the references
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therein). In this paper we will use Rényi-α-entropy as complexity constraint, which
comprises the known special cases α = 0 (restricted codebook size) and α = 1
(restricted Shannon entropy). The family of Rényi-α-entropies can be character-
ized axiomatically (cf. [4] chapter 1.2.1) and generalizes the Shannon entropy in a
canonical way. Insofar this fact motivates from a mathematical viewpoint to use
Rényi-α-entropy as a complexity constraint. Moreover, Grendar [10] introduced a
generalized support for discrete probabilities, which is in direct relationship to the
family of Rényi-α-entropies. Insofar, quantization with entropy parameter α > 0 is
a natural generalization of classical memory-size constrained quantization (α = 0).
In addition, Rényi-α-entropy-constrained quantization has already been motivated
– at least indirectly – by Harremoës and Topsøe [14, VII. B./F.]. We will completely
solve the problem of optimal quantization for the one-dimensional uniform distri-
bution on [0, 1] with Rényi-α-entropy as complexity constraint. Our main result
(cf. Theorem 3.1) contains the special cases α = 0 (restricted codebook size) and
α = 1 (restricted Shannon entropy). To this end we follow in our proofs the lines
of György and Linder [11]. For certain values of α this quantization technique even
outperforms Shannon-entropy-constrained quantization and leads to a strict convex
quantization error function (cf. Section 4 and Figure).

The paper is organized as follows. The remaining part of Section 1 introduces
the exact definitions and notations for optimal quantization with Rényi-α-entropy.
Section 2 contains fundamental properties of optimal scalar quantization, which
are needed in the sequel but also interesting in itself. In Section 3 the optimal
quantization problem for the one-dimensional uniform distribution on [0, 1] with
Rényi-α-entropy will be solved completely (cf. Theorem 3.1). Section 4 contains
some results about the analytical behavior of the optimal quantization error against
the bound on the complexity. The last section comprises an appendix with some
technical results.

Let N := {1, 2, . . .}. Let α ∈ [0,∞] and p = (p1, p2, . . .) ∈ [0, 1]N be a probability
vector, i. e.

∑∞
i=1 pi = 1. The Rényi-α-entropy H̃α(p) ∈ [0,∞] is defined as (see e. g.

[1, Definition 5.2.35] resp. [4, Chapter 1.2.1])

H̃α(p) =





−
∞∑

i=1

pi log(pi), if α = 1

− log (sup{pi : i ∈ N}), if α = ∞
1

1− α
log

( ∞∑

i=1

pαi

)
, if α ∈ [0,∞[\{1}.

We use the convention 0 · log(0) := 0 and 0x := 0 for all real x. The logarithm log
is based on e.

Remark 1.1. With these conventions we obtain for α = 0 that

H̃α(p) = log (card{pi : i ∈ N, pi > 0}) ,

if card denotes cardinality. Using de l’Hospital it is easy to see, that the case α = 1
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will be reached from α 6= 1 by taking the limit α → 1. (cf. [1, Remark 5.2.34]).
Moreover it is limα→∞ H̃α(·) = H̃∞(·).

Now let d ∈ N and µ be a Borel probability measure on Rd. Denote with Fd

the set of all Borel-measurable mappings f : Rd → Rd with card(f(Rd)) ≤ card(N).
A mapping f ∈ Fd is called quantizer and the image f(Rd) is called a codebook
consisting of codepoints. Every quantizer f induces a partition {f−1(z) : z ∈ f(Rd)}
of Rd. Every element of this partition is called a codecell. The image measure µ◦f−1

has a countable support and defines an approximation of µ, the so-called quantization
of µ by f . For any enumeration {z1, z2, . . .} of f(Rd) we define

Hα
µ (f) = H̃α(µ ◦ f−1(z1), µ ◦ f−1(z2), . . .)

as the Rényi-α-entropy of f w.r.t µ. Now we intend to quantify the distance between
µ and its approximation under f . To this end let ‖ · ‖ be any norm on Rd and
ρ : [0,∞[→ [0,∞[ a strict monotone increasing (and therefore Borel-measurable)
mapping. For f ∈ Fd we define as distance between µ and µ ◦ f−1 the quantization
error

Dµ(f) =

∫
ρ(‖ x− f(x) ‖) dµ(x).

For any R ≥ 0 we denote

Dα
µ(R) = inf{Dµ(f) : f ∈ Fd, H

α
µ (f) ≤ R} (1)

as the optimal quantization error of µ under Rényi-α-entropy bound R. We denote
with

Cα
µ (R) = {f ∈ Fd : Dµ(f) = Dα

µ(R)}
the set of all optimal quantizers of µ under Rényi-α-entropy bound R. Later we will
see (cf. Theorem 3.1) that Cα

µ (R) can be empty.
The problem of optimal quantization comprises the calculation of the optimal

quantization error Dα
µ(R) and the determination of the set of all optimal quantizers

Cα
µ (R). In general, this problem is rather hard to solve, even for the special cases α ∈

{0, 1}. In this paper we will solve this problem completely for the one-dimensional
uniform distribution on [0, 1] and ρ(x) = xr with r > 1. Motivated from the problem
of classification, another approach in quantization of a probability exists (cf. [17, 18])
and is based on the concept of f−divergence of probabilities. Although this approach
coincides with our quantization approach in some special cases (choose α = 0, r = 2
and f(t) = (t− 1)2) we do not use it in this paper.

2. FUNDAMENTAL PROPERTIES OF OPTIMAL SCALAR QUANTIZATION

We shortly write F = F1. For any measurable A ⊂ R with µ(A) > 0 we denote
with µ(·|A) the conditional probability of µ w.r.t. A. We first make the following
observation (cf. [12, Theorem 2]).

Proposition 2.1. Let α ∈ [0,∞] and r ≥ 1. Let µ be a non-atomic Borel probability
measure on R and R ≥ 0. Then for the calculation of the optimal quantization error
it suffices to consider only those quantizers
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(i) whose Rényi-α-entropy attains the bound R if α > 0,

(ii) whose codecells with positive µ−mass are intervals,

(iii) where every codepoint a of a codecell f−1(a) with positive µ-mass induces an
optimal quantizer fa for µ(·|f−1(a)), i. e.
fa ∈ Cα

µ(·|f−1(a))(0) with fa(x) = a for every x ∈ R.

P r o o f . If R = 0 there is nothing to prove. For α = 0 the assertion follows from

[8, Theorem 4.1]. Let R > 0 and α > 0. Let f ∈ F with Hα
µ (f) < R. György and

Linder have shown (cf. [12, Theorem 2]) that a quantizer g ∈ F can be constructed
with the same positive codecell probabilities as f . All codecells of g with positive µ-
mass are intervals and Dµ(g) ≤ Dµ(f). Hence, Hα

µ (f) = Hα
µ (g). As a consequence

we can assume w.l.o.g. that all codecells of f with positive µ-mass are intervals.
Now choose a ∈ f(R) with µ(f−1(a)) > 0. Let

ta = sup

{
t ∈ R : µ(]−∞, t]) ≤ 1

2
µ(f−1(a))

}
.

Because µ is non-atomic we have µ(]−∞, ta]) =
1
2µ(f

−1(a)). Let a1 be such that

∫

f−1(a)∩]−∞,ta]

|x− a1|r dµ(x) = inf

{∫

f−1(a)∩]−∞,ta]

|x− z|r dµ(x) : z ∈ R

}
,

resp. a2 such that

∫

f−1(a)∩]ta,∞[

|x− a2|r dµ(x) = inf

{∫

f−1(a)∩]ta,∞[

|x− z|r dµ(x) : z ∈ R

}
.

Such points a1, a2 exist (see e. g. [8, Lemma 2.2]) We define the quantizer

fa,ta(z) =





f(z), if z ∈ R\f−1(a)

a1, if z ∈ f−1(a) ∩ ]−∞, ta]

a2, if z ∈ f−1(a) ∩ ]ta,∞[.

Clearly, Dµ(fa,ta) ≤ Dµ(f). Moreover, Hα
µ (fa,ta) ≥ Hα

µ (f), where equality can only
appear in case of α = ∞. By dividing the codecells with positive µ-mass in above
manner (if necessary) we can assume w.l.o.g. that Hα

µ (f) < R and Hα
µ (fb,tb) ≥ R,

if b ∈ f(R) with
µ(f−1(b)) = max{µ(f−1(c)) : c ∈ f(R)}.

Because µ is non-atomic and α > 0, we can find a t ≤ tb with

µ(]−∞, t] ∩ f−1(b)) > 0

and Hα
µ (fb,t) = R. Again it is Dµ(fb,t) ≤ Dµ(f). Moreover, all codecells of fb,t

with positive µ-mass remain intervals and thus the assertions (i) and (ii) are proved.
Assertion (iii) is obvious. �
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Remark 2.2. The proof of Proposition 2.1 shows also, that only quantizers, whose
entropy attains the bound R can be optimal. If µ equals the uniform distribution
on a compact interval, then it is obvious, that only those quantizers can be optimal,
whose codecells with positive probability are consisting of intervals.

Lemma 2.3. Let R ∈ [0,∞[ and µ be a Borel probability on R. Then the mapping

[0,∞] ∋ α → Dα
µ(R)

is decreasing.

P r o o f . Let f ∈ F with Hα
µ (f) ≤ R. For arbitrary 0 < γ ≤ β < ∞ we have (cf.

[3, p. 53])

Hβ
µ (f) ≤ Hγ

µ(f). (2)

Together with Remark 1.1 we conclude that inequality (2) also holds for 0 ≤ γ ≤
β ≤ ∞. Then the assertion follows immediately from Definition (1) of the optimal
quantization error. �

Let T denote a similitude. The last result of this section determines how the
optimal quantization error changes if we replace µ by µ ◦T−1. For α = 0 the reader
is also referred to [8, Lemma 3.2].

Lemma 2.4. Let α ∈ [0,∞] and T : R → R be a similarity transformation with
scaling number c > 0. Then for any R ≥ 0 we have

Dα
µ◦T−1(R) = crDα

µ(R)

and

Cα
µ◦T−1(R) = {T−1 ◦ f ◦ T : f ∈ Cα

µ (R)}.

P r o o f . For arbitrary f ∈ F we have Hα
µ◦T−1(f) = Hα

µ (T
−1 ◦ f ◦ T ). Thus we get

Dα
µ◦T−1(R)

= inf{
∫

|x− f(x)|r dµ ◦ T−1(x) : f ∈ F , Hα
µ◦T−1(f) ≤ R}

= cr inf{
∫

|x− T−1 ◦ f ◦ T (x)|r dµ(x) : f ∈ F , Hα
µ (T

−1 ◦ f ◦ T ) ≤ R}

= crDα
µ(R).

�
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3. OPTIMAL QUANTIZATION OF THE UNIFORM DISTRIBUTION

Let −∞ < a < b < ∞ and denote with U([a, b]) the uniform distribution on [a, b].
To study the optimal quantization of this distribution, it suffices in view of Lemma
2.4 to consider only the special case a = 0, b = 1. For α = 1 the following result
is due to György and Linder [11]. In case of α = 0 the reader is referred to Graf
and Luschgy (cf. [8, Example 5.5]). We are following the approach for α = 1. Let
Q(r) = 1

(1+r)2r . For R ≥ 0 and α ∈ [0,∞]\{1} we define the set

A(α,R) =

{
p = (p1, p2, . . .) ∈ [0, 1]N :

∞∑

i=1

pi = 1, H̃α(p) = R

}
. (3)

For the rest of this paper we will assume w.l.o.g. that every codecell of a quantizer
for U([0, 1]) has positive U([0, 1])−mass. Finally we denote for any quantizer f ∈ F
and A ⊂ R with f |A the restriction of f to A.

Theorem 3.1. Let r > 1 and α ∈ [0,∞].
Let n ∈ N and R ∈ ] log(n), log(n + 1)]. If α ≤ r + 1, then an optimal quantizer
always exists. Every restriction f |]0,1[ of an optimal quantizer f ∈ Cα

U([0,1])(R) 6= ∅
consists of n + 1 interval cells, with one cell having length p ∈ ]0, 1/(n+ 1)] and n
cells having length (1− p)/n, where p satisfies

R =





1

1− α
log

(
pα + n

(
1− p

n

)α)
, if α ∈ [0, r + 1[\{1}

−p log(p)− (1 − p) log

(
1− p

n

)
, if α = 1.

For each codecell of f |]0,1[ the codepoint is the midpoint of the cell. Moreover with
p = p(R) we obtain the optimal quantization error

Dα
U([0,1])(R) = Q(r)

(
pr+1 + n

(
1− p

n

)r+1
)
. (4)

If α > r + 1, then no optimal quantizer exist, i. e. Cα
U([0,1])(R) = ∅. The optimal

quantization error turns into

Dα
U([0,1])(R) =

{
Q(r)e−(r+1)α−1

α R, if α ∈ ]r + 1,∞[

Q(r)e−(r+1)R, if α = ∞.
(5)

Remark 3.2. It is easy to check, that the representation (5) of the optimal quan-
tization error turns into (4), if α = r + 1. Figure illustrates Dα

U([0,1])(·) for different
values of α and r = 2.

P r o o f o f T h e o r em 3.1. For α = 1 the assertion was proved by György and
Linder [11]. The case α = 0 is treated by Graf and Luschgy [8, Example 5.5]. Thus
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1
12

log(2) log(3) log(4)

α = 0, 2

α = 0, 8

α = 1, 2

α = 1, 9

α = 3

α = 4

α = 10

α = ∞

Fig. Dα
U([0,1])(·) with r = 2.

we will assume that α /∈ {0, 1}. Let n ∈ N and R ∈ ] log(n), log(n + 1)]. Using
Proposition 2.1 (i) we obtain

Dα
U([0,1])(R) = inf

{
DU([0,1])(f) : f ∈ F , Hα

U([0,1])(f) = R
}
. (6)

From Proposition 2.1 (ii) we know, that it suffices to consider on the right hand
side of (6) only quantizers f ∈ F , where f consists of intervals. Due to Proposition
2.1 (iii) and with r > 1 we deduce from [8, Theorem 2.4] that the midpoint is
the codepoint of each codecell of f |]0,1[. According to Remark 2.2, every optimal
quantizer (if existing) must necessarily have all these properties. Thus we get

Dα
U([0,1])(R) = inf

{
2

∞∑

i=1

∫ pi/2

0

xr dx : (p1, p2, . . .) ∈ A(α,R)

}

= Q(r) · inf
{ ∞∑

i=1

pr+1
i : (p1, p2, . . .) ∈ A(α,R)

}
. (7)

1. α ∈ ]0, r + 1[\{1}.
In the special case R = log(n + 1) the assertion follows from Lemma A.5. Now
let R ∈ ] log(n), log(n + 1)[. Let k ∈ N and Ak(α,R) ⊂ A(α,R) be the set of all
(p1, p2, . . .) ∈ A(α,R) consisting of exactly k strictly positive components. Let us
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assume w.l.o.g. that pk+j = 0 for every j ≥ 1 and (p1, p2, . . .) ∈ Ak(α,R). First we
analyze if an (p1, p2, . . .) ∈ Ak(α,R) exists, where

Dα
U([0,1])(R) = Q(r)

k∑

i=1

pr+1
i . (8)

For any (p1, p2, . . .) ∈ Ak(α,R) we have

log(n) < R =
1

1− α
log

(
k∑

i=1

pαi

)
≤ log(k).

Here the last inequality follows from the maximality of the Rényi-α-entropies (cf.
[1, Remark 2, p.149]). Thus we have k ≥ n+ 1. Finding an (p1, p2, . . .) ∈ Ak(α,R),
which satisfies (8) is equivalent to determine a global minimum of the mapping

]0,∞[k∋ (p1, . . . , pk)
D→ Q(r)

k∑

i=1

pr+1
i (9)

subject to the constraints

g(p1, . . . , pk) =

k∑

i=1

pi − 1 = 0; h(p1, . . . , pk) =
1

1− α
log

(
k∑

i=1

pαi

)
−R = 0. (10)

Now let u = (u1, . . . , uk) ∈ ]0,∞[k and assume that u is a solution of this minimiza-
tion problem. We first note, that the gradients of h and g in u are linearly dependent
if and only if all ui are equal. But in this case we would get R = log(k) ≥ log(n+1)
which contradicts R ∈ ] log(n), log(n + 1)[. Thus it remains to deal with the case
that the gradients of h and g are linearly independent. In this situation the Kuhn-
Tucker conditions (cf. [2, Theorem 4.3.7]) have to be satisfied, yielding for every
j = 1, . . . , k

(uj/2)
r + λ1

α

(1− α)
∑k

i=1 u
α
i

uα−1
j + λ2 = 0 (11)

with λ1 ≥ 0 and λ2 ∈ R. Thus (11) is equivalent to

ur
j = Auα−1

j +B

with A = −λ1α2
r

(1−α)
P

k
i=1 uα

i

resp. B = −2rλ2. If α ∈ ]0, 1[, then A ≤ 0. The mapping

]0,∞[ ∋ x → Axα−1 is concave. Together with r > 1 this implies that (11) has
at most two distinct solutions. If α ∈ ]1, r + 1[, then A ≥ 0. In case of α ∈ ]1, 2[
the mapping ]0,∞[ ∋ x → Axα−1 is strictly concave. Thus (11) has at most two
distinct solutions. If α = 2, then r > 1 yields that (11) has at most two solutions.
If α ∈ ]2, r + 1[ then the strict convexity of ]0,∞[ ∋ x → Axα−1 implies that (11)
has at most two distinct solutions. Therefore we can assume that p, q ∈ ]0, 1[ and
k1 ∈ {1, . . . , k} exist, with k1q + (k − k1)p = 1 and pi = q if i = 1, . . . , k1 resp.
pi = p if i = k1 +1, . . . , k. Note that k1 = k would yield with (10) the contradiction
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R = log(k) ≥ log(n + 1). Hence we have k1 ∈ {1, . . . , k − 1}. Moreover we can
assume w.l.o.g. that q ≥ p, which yields q ≥ 1

k ≥ p. Again, q = p = 1/k would yield
the contradiction R ≥ log(n + 1). Hence, q > p. If q = 0, then p = 1/k1 = 1/k
would yield the contradiction R ≥ log(n+1). We have p = (1−k1q)/(k−k1). Using
(10) we define

h∗(k, k1, q, R) = h(p1(k, k1, q, R), . . . , pk(k, k1, q, R))

=
1

1− α
log
(
k1q

α + (k − k1)
1−α(1− k1q)

α
)
−R.

In view of (9) and with q = q(k, k1, R) we define

D∗(k, k1, R) = D(p1(k, k1, R), . . . , pk(k, k1, R))

= Q(r)(k1q
r+1 + (k − k1)

−r(1− k1q)
r+1)

and denote D̃(k1, q, k) = Q(r)(k1q
r+1+(k−k1)

−r(1−k1q)
r+1). Although D∗(k, ·, R)

has been defined only for integers, the defining formulas are allowing us to enlarge
the definition to any real k1 ∈ [1, k − 1]. We will show, that D∗(k, ·, R) is strictly
decreasing on [1, k− 1]. To this end we will show that ∂D∗

∂k1
(k, ·, R) < 0 on ]1, k− 1[.

First we observe that

∂h∗

∂k1
=

qα − pα − (q − p)αpα−1

(1− α)e(1−α)R
. (12)

Additionally we calculate

∂h∗

∂q
=

αk1
e(1−α)R

(
qα−1 − pα−1

1− α

)
. (13)

Next we compute

∂D̃

∂k1
= Q(r)

(
qr+1 +

∂

∂k1

(
(k − k1)p

r+1
))

= Q(r)

(
qr+1 − pr+1 + (k − k1)(r + 1)pr

∂p

∂k1

)

= Q(r)
(
qr+1 − pr+1 + (r + 1)pr(p− q)

)
, (14)

resp.

∂D̃

∂q
= k1

(q
2

)r
+ (k − k1)

(p
2

)r ∂p

∂q

= k1

((q
2

)r
−
(p
2

)r)
. (15)

From q > p we get ∂h∗

∂p 6= 0. Thus we can apply implicit differentiation and deduce

∂D∗

∂k1
=

∂D̃

∂k1
+

∂D̃

∂q

∂q

∂k1
=

∂D̃

∂k1
− ∂D̃

∂q

∂h∗

∂k1

(
∂h∗

∂q

)−1

.
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With (12), (13), (14) and (15) we compute

∂D∗

∂k1
=

qr+1 − pr+1

2r(r + 1)
+
(p
2

)r
(p− q)

−
((q

2

)r
−
(p
2

)r) qα − pα − (q − p)αpα−1

α (qα−1 − pα−1)
.

Now it is easy to see that ∂D∗

∂k1
< 0 if and only if

1

r + 1

qr+1 − pr+1 − (q − p)pr(r + 1)

qr − pr
<

1

α

qα − pα − (q − p)pα−1α

qα−1 − pα−1
. (16)

In view of Lemma A.3 we know that inequality (16) is true. Searching for a global
minimum of D∗ we have to restrict ourself to k1 = k − 1. Next we will show,
that D∗(·, 1, R) is strictly increasing on {n + 1, n + 2, . . .}. To this end we again
enlarge the definition of D∗(·, k − 1, R) to any real k ∈ [n + 1,∞[ and show that
∂D∗

∂k (·, k − 1, R) > 0 on ]n+ 1,∞[. We compute

∂D̃

∂k
= −rQ(r)pr+1.

Moreover we have
∂h∗

∂k
= e−(1−α)Rpα

Using implicit differentiation and (13) resp. (15) we obtain

∂D∗

∂k
=

∂D̃

∂k
+

∂D̃

∂q

∂q

∂k
=

∂D̃

∂k
− ∂D̃

∂q

∂h∗

∂k

(
∂h∗

∂q

)−1

= Q(r)

(
−rpr+1 +

(r + 1)(α− 1)pα (pr − qr)

α(pα−1 − qα−1)

)
.

Hence, ∂D∗

∂k > 0 if and only if

r
r+1p

r+1

pr − qr
>

α−1
α pα

pα−1 − qα−1
. (17)

Using Lemma A.4 and α < r + 1 we know, that (17) holds. Thus we have proved
that k = n+ 1 and the infimum in (7) can only be attained by (p, q, . . . , q, 0, . . .) ∈
An+1(α,R) or by (p1, p2, . . .) ∈ A(α R)\∪∞

j=1Aj(α,R). Using the results from above
we obtain for any (p1, p2, . . .) ∈ A(α R)\ ∪∞

j=1 Aj(α,R) that

∞∑

i=1

pr+1
i = lim

k→∞
k≥n+1




k∑

i=1

(
pi∑k
l=1 pl

)r+1



> nqr+1 + pr+1.
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Hence (p, q, . . . , q, 0, . . .) is the only element of A(α,R) with

Dα
U([0,1])(R) = Q(r)

∞∑

i=1

pr+1
i

and thus the assertion is proved for α ∈ [0, r + 1[.

2. α > r + 1.
In this case the assertion follows immediately from Lemma A.5.
3. α = r + 1.
Using Lemma 2.3 the assertion follows from step 1 and 2. �

Remark 3.3. If we drop the second constraint h(p1, . . . , pk) = 0 in (10), then it
follows from [14, Theorem III.1.i)] that it suffices to consider for the global minimum
of the mapping in (9) only those probability vectors, who are consisting of k−1 equal
components p ∈ ]0, 1[ and one component q = 1−(k−1)p. If we take also the second
constraint into consideration, then the proof of Theorem 3.1 shows that this property
remains.

Remark 3.4. Harremoës and Topsøe (cf. [14, VII. F.]) proposed the very gen-
eral term information diagram for diagrams built with values from Shannon theory,
prediction and universal coding, rate distortion analysis, error probability analysis
etc. Hence our Figure represents also such an information diagram. Moreover they
pointed out (cf. [14, p. 2947-2948]) that the research of György and Linder [11]
can be interpreted as an information diagram related to the one’s they have studied.
They also motivated (cf. [14, VII. B.]) to study diagrams where Rényi-α-entropy
is plotted against Shannon-entropy for discrete probabilities or to investigate even
more generalized diagrams (cf. [14, VII. H.]). Insofar the results of this paper are
heavily motivated by the earlier results in [11] and [14]. Finally the term complexity
class has been used in [14]. In our setting the complexity class k reflects the set of
all quantizers f for U([0, 1]) with Hα

U([0,1])(f) ∈ ] log(k), log(k + 1)]. Hence also this
term fits naturally into the framework of this paper.

4. ANALYTICAL PROPERTIES OF THE OPTIMAL QUANTIZATION
ERROR FUNCTION

In view of Theorem 3.1 we know that the mapping

[0,∞[ ∋ R → Dα
U([0,1])(R)

is strictly convex and differentiable for α ≥ r+1. Moreover we deduce from Theorem
3.1 that Dα

U([0,1])(·) is differentiable on ∪∞
n=1] log(n), log(n+ 1)[ for α < r + 1. Next

we determine the right- and left-hand limit of the derivative at log(n).

Proposition 4.1. Let n ∈ N and r′ = α−1
α (r + 1) > 0 for α ∈ ]1,∞[. Then

Q(r)−1 lim
R→log(n)
R>log(n)

dDα
µ(R)

dR
=





0, if α ∈ [0, 1]

−r′n−r, if α ∈ ]1, r + 1]

−r′n−r′ , if α ∈ ]r + 1,∞[

−(r + 1)n−(r+1), if α = ∞ .
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and

Q(r)−1 lim
R→log(n+1)
R<log(n+1)

dDα
µ(R)

dR
=





− r(r+1)
α (n+ 1)−r, if α ∈ ]0, r + 1]

−r′(n+ 1)−r′ , if α ∈ ]r + 1,∞[

−(r + 1)(n+ 1)−(r+1), if α = ∞ .

P r o o f . The case α = 0 is obvious. Let n ∈ N and R ∈ ] log(n), log(n + 1)[. First

assume that α ∈ ]0, r + 1[. Thus we have with p = p(R) ∈ [0, 1/n[ the parametric
representation

R =
1

1− α
log

(
pα + n

(
1− p

n

)α)

Q(r)−1Dα
µ(R) = D(p) = pr+1 + n

(
1− p

n

)r+1

.

We calculate

Q(r)−1
dDα

µ(R)

dR
=

∂D

∂p

(
∂R

∂p

)−1

=
r + 1

α
1−α

(
pr −

(
1−p
n

)r) (
pα + n1−α(1− p)α

)

pα−1 − n1−α(1− p)α−1

and

Q(r)−1 lim
R→log(n)

dDα
µ(R)

dR
=

α−1
α (r + 1)n−rn1−α

limp→0 (pα−1 − n1−α(1 − p)α−1)

resp. with de l’Hospital

Q(r)−1 lim
R→log(n+1)

dDα
µ(R)

dR
= −r′(n+ 1)1−α lim

p→ 1
n+1

pr − (1−p
n )r

pα−1 − (1−p
n )α−1

= −r(r + 1)

α
(n+ 1)−r

which yields the assertion for α ∈ [0, r + 1]. If α ∈ ]r + 1,∞] the assertion follows

directly from the analytical representation R → Dα
µ(R) = Q(r)e−(r+1)α−1

α R;α ∈
]r + 1,∞[ resp. R → D∞

µ (R) = Q(r)e−(r+1)R of the quantization error function. �

From Proposition 4.1 we get that the quantization error function Dα
U([0,1])(·) is

non-differentiable in log(n) for every n ≥ 2 and α ∈ [0, r+1]. Moreover Proposition
4.1 yields that Dα

U([0,1])(·) is neither concave nor convex in general for α ∈ [0, r+1[.
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APPENDIX

Lemma A.1. Let a > 1. Then

log(a) >
2(a− 1)

a+ 1
. (18)

P r o o f . We compute

log(a)− 2
a− 1

a+ 1
=

∫ a

1

(
1

x
− 4

(x + 1)2

)
dx =

∫ a

1

(x − 1)2

x(x+ 1)2
dx > 0,

which proves inequality (18). �

Lemma A.2. Let a > 1 and

g(x) =





ax−1
x −a+1

ax−1−1 , if x ∈ ]0,∞[\{1}
a log(a)−a+1

log(a) , if x = 1.

Then g is strictly monotone decreasing.

P r o o f . First let us note that g is continuous on ]0,∞[. This can be seen immedi-

ately by using de l’Hospital. On ]0,∞[\{1} the mapping g is differentiable and we
compute

g′(x) =
ax−1 log(a)

(
ax

x − a
x − ax−1

x + a− 1
)
− ax−1

x2

(
ax−1 − 1

)

(ax−1 − 1)
2 .

Thus for every x ∈ ]0,∞[\{1} we have g′(x) < 0 , if

h(x) = ax − a− 1 + a1−x − log(a)
(
(a− 1)x2 + (1− a)x

)
> 0.

1. x ∈ ]1,∞[.

A straightforward calculation gives

h′(x) = log(a)
(
ax − a1−x − 2(a− 1)x− 1 + a

)

h′′(x) = log(a)
(
log(a)

(
ax + a1−x

)
− 2(a− 1)

)

h′′′(x) = (log(a))3
(
ax − a1−x

)

Hence, h′′′(x) > 0 due to x > 1/2. Moreover we obtain h′′(1) > 0, if

log(a) (a+ 1)− 2(a− 1) > 0,

which is true in view of Lemma A.1. We conclude that

h′′(x) = h′′(1) +
∫ x

1

h′′′(z) dz > 0.
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Thus we deduce

h′(x) = h′(1) +
∫ x

1

h′′(z)dz =

∫ x

1

h′′(z) dz > 0

and, therefore

h(x) = h(1) +

∫ x

1

h′(z) dz =

∫ x

1

h′(z) dz > 0.

2. x ∈ ]0, 1[.

Obviously h is symmetric to 1/2. Thus it suffices to consider x ∈ ]1/2, 1[. It is
h′(1/2) = 0 = h′(1). Because x → ax − a−x is strictly convex on ]1/2,∞[ we obtain
h′(x) < 0 for every x ∈ ]1/2, 1[. Thus we get

h(x) = h(1) +

∫ x

1

h′(z) dz = −
∫ 1

x

h′(z) dz > 0.

Combining step 1 and 2 we obtain g′(x) < 0 for every x ∈ ]0,∞[\{1}. The continuity
of g on ]0,∞[ yields the assertion. �

Lemma A.3. Let 0 < p < q < 1 and

f(x) =





qx−px−(q−p)xpx−1

x(qx−1−px−1) , if x ∈ ]0,∞[\{1}
q log(q)−p log(p)−(q−p)(1+log(p))

log(q)−log(p) , if x = 1.

Then f is strictly monotone decreasing.

P r o o f . With a = q/p > 1 and g from Lemma A.2 we obtain f(x) = pg(x) for

every x > 0. Thus the assertion follows from Lemma A.2. �

Lemma A.4. Let 0 < p < q < 1 and

f(x) =





x−1
x px

px−1−qx−1 , if x ∈ ]0,∞[\{1}
p

log(p)−log(q) , if x = 1.

Then f is strictly monotone increasing.

P r o o f . First let us note that f is continuous on ]0,∞[. This can be seen immedi-

ately by using de l’Hospital. On ]0,∞[\{1} the mapping f is differentiable and we
compute

f ′(x) =
(p

x

x2 + x−1
x log(p)px)(px−1 − qx−1)− x−1

x px(log(p)px−1 − log(q)qx−1)

(px−1 − qx−1)2
.
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A simple calculation yields that f ′(x) > 0 if and only if

1

x
(1 − (p/q)x−1) < (x − 1) log(q/p) (19)

It is well known that for every s > 0 and t > 0, t 6= 1 the inequality

1

s
(1− t−s) < log(t) <

ts − 1

s
(20)

holds (see e. g. [13, p. 117]). Using (20) we obtain for x > 1 that

1

x
(1− (p/q)x−1) < 1− (p/q)x−1 = 1− (q/p)−(x−1) < (x− 1) log(q/p),

resp. for x ∈ ]0, 1[ we deduce

(1− x) log(q/p) < (q/p)1−x − 1 <
1

x

(
(q/p)1−x − 1

)
.

Hence, (19) is valid for x ∈ ]0,∞[\{1}. As a consequence we have f ′(x) > 0 for
every x ∈ ]0,∞[\{1}. Finally the continuity of f on ]0,∞[ yields the assertion. �

Recall the definition of A(α,R) from Eq. (3).

Lemma A.5. Let n ∈ N. If α ∈ [0, r + 1[\{1}, then

min

{ ∞∑

i=1

p1+r
i : (p1, p2, . . .) ∈ A(α, log(n))

}
= n−r. (21)

Every (p1, p2, . . .) ∈ A(α, log(n)) which attains above minimum contains exactly n
positive components pi =

1
n . If α ∈ ]r + 1,∞[ and R > 0, then

inf

{ ∞∑

i=1

p1+r
i : (p1, p2, . . .) ∈ A(α,R)

}
= e−

α−1
α (r+1)R. (22)

Moreover,

inf

{ ∞∑

i=1

p1+r
i : (p1, p2, . . .) ∈ A(∞, R)

}
= e−(r+1)R. (23)

If α ∈ ]r + 1,∞], then no probability vector (p1, p2, . . . , ) ∈ A(α,R) exist which
attains the infimum in (22) resp. (23).

P r o o f .

1. α ∈ [0, r + 1[\{1}.
Let (pi)i∈N ∈ A(α, log(n)). Due to α− 1 < r we have by inequality of means

1

n
=

( ∞∑

i=1

pip
α−1
i

) 1
α−1

≤
( ∞∑

i=1

pip
r
i

) 1
r

, (24)
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which yields

(1/n)r ≤
∞∑

i=1

pr+1
i . (25)

On the other hand let pi = 1/n for every i = 1, . . . , n and pi = 0 for i > n. Hence,∑∞
i=1 pi = 1 and

∞∑

i=1

pαi = n (1/n)
α
= n1−α.

Thus we get
∞∑

i=1

p1+r
i = n (1/n)r+1 = (1/n)r. (26)

The combination of (25) and (26) proves (21). Now let (p1, p2, . . .) ∈ A(α, log(n)).
Assume that an i ∈ N exists, with 0 < pi 6= 1

n . But then, inequality (24) will become

strict. This ensures that
∑∞

i=1 p
1+r
i > n−r and thus proves the assertion in this case.

2. α ∈ ]r + 1,∞[.
Using Jensen’s inequality we obtain

e
1−α
α (r+1)R =

(
e(1−α)R

) r+1
α

=

( ∞∑

i=1

pαi

) r+1
α

≤
∞∑

i=1

pr+1
i . (27)

On the other hand let N > eR and p = p(N) ∈ ]0, 1[ a solution of

pα + (N − 1)

(
1− p

N − 1

)α

= e(1−α)R.

We define the probability vector (pi,N )i∈N with p1,N = p; p2,N , . . . , pN,N = 1−p
N−1 and

pN+k,N = 0 for every k ∈ N. Thus we have

∞∑

i=1

pi,N = 1;

∞∑

i=1

pαi,N = e(1−α)R.

Moreover

∞∑

i=1

pr+1
i,N = pr+1 + (N − 1)

(
1− p

N − 1

)r+1
N→∞−→ e

1−α
α (r+1)R. (28)

Combing (27) with (28) we obtain (22). Now let (p1, p2, . . .) ∈ A(α,R). Assume
that i, j ∈ N, i 6= j exist with 0 < pi < pj. Due to α > r+1, inequality (27) is strict
in this case. If we assume on the other hand that (p1, p2, . . .) contains n positive
components with equal value 1

n , then n = eR and we obtain

∞∑

i=1

pr+1
i = e−rR > e

1−α
α (r+1)R.
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In both cases (p1, p2, . . .) does not attain the right hand side of (22).

3. α = ∞.
Let (pi)i∈N be a probability vector with sup{pi : i ∈ N} = e−R. Hence

e−(r+1)R = (sup{pi : i ∈ N})r+1

≤



( ∞∑

i=1

pr+1
i

)1/(r+1)



r+1

=

∞∑

i=1

pr+1
i . (29)

On the other hand let N > eR and define p1,N = e−R resp.

p2,N = . . . = pN,N =
1− e−R

N − 1

and pk,N = 0 for every k ≥ N + 1. Obviously, sup{pi,N : i ∈ N} = e−R and∑∞
i=1 pi,N = 1. Moreover

∞∑

i=1

pr+1
i,N = e−(r+1)R + (N − 1)

(
1− e−R

N − 1

)r+1
N→∞−→ e−(r+1)R. (30)

Inequality (29) and (30) are yielding (23). Similar to step 2 we obtain that the right
hand side of (23) will not be attained by any (p1, p2, . . .) ∈ A(∞, R). �
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