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KYBERNET IKA — VOLUME 4 6 ( 2 0 1 0 ) , NUMBER 1 , PAGES 1 4 9 – 1 7 7

STATISTICAL ASPECTS OF ASSOCIATIVITY
FOR COPULAS

José M. González–Barrios

In this paper we study in detail the associativity property of the discrete copulas. We
observe the connection between discrete copulas and the empirical copulas, and then we
propose a statistic that indicates when an empirical copula is associative and obtain its
main statistical properties under independence. We also obtained asymptotic results of the
proposed statistic. Finally, we study the associativity statistic under different copulas and
we include some final remarks about associativity of samples.
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1. INTRODUCTION

The concept of discrete copulas defined in Mayor et al. [14] and Mayor et al. [15] as
a class of binary aggregation operators on finite settings has been proved to be quite
useful to study empirical copulas, see for example Erdely et al. [4]. Let us start by
defining a discrete copula on the finite chain L = {0, 1, . . . , n}.

Definition 1.1. A discrete copula C on L is a binary operation on L, i. e., C :
L× L → L satisfying the following properties:

i) C(i, 0) = C(0, j) = 0 for every i, j ∈ L.

ii) C(i, n) = C(n, i) = i for every i ∈ L.

iii) If 0 ≤ i ≤ i′ ≤ n and 0 ≤ j ≤ j′ ≤ n, then

C(i′, j′) − C(i′, j) − C(i, j′) + C(i, j) ≥ 0,

that is, C is 2-increasing.

As observed in Erdely et al. [4], if we rescale the chain L to be L′ = {0, 1/n, . . .
. . . , n/n = 1}, then Definition 1.1 agrees with the usual definition of subcopulas
with domain L′ × L′ ⊂ [0, 1]2, when the range is L′, see for example Nelsen [17].
Definition 2 of discrete copulas in Kolesárová et al. [11], for the case n = m, coincides
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with rescaling the chain L to be L′ = {0, 1/n. . . . , n/n = 1}, this definition is also
used in Aguiló et al. [1] and Mesiar [16].

As noticed in Mesiar [16], we can use discrete copulas to describe observed data.
Recall that a binary operator C on the chain L is symmetric or commutative if
and only if C(i, j) = C(j, i) for every i, j ∈ L, and C is associative if and only if
C(C(i, j), k) = C(i, C(j, k)) for every i, j, k ∈ L, see for example Alsina et al. [2],
Klement et al. [8], Klement and Mesiar [9] or Schweizer and Sklar [19].

Mayor et al. [14] proved the existence of a bijection between the set of n ×
n permutation matrices and the set of all discrete copulas on L, given in their
Proposition 6 and Corollary 1, that states that C is a discrete copula if and only if
there exists A = (aij)i,j∈{1,...,n} a permutation matrix such that for every r, s ∈ L,

C(r, s) =

{
0, if r = 0 or s = 0∑

i≤r,j≤s aij otherwise.

From this result is easy to see that a discrete copula is symmetric or commutative
if and only if its associated permutation matrix is symmetric, and that the number
of discrete copulas on the chain L is n!. Also, if we define the n × n  Lukasiewicz
permutation matrix by A = (aij)i,j∈{1,...,n}, where aij = 1 if i + j = n + 1, and
aij = 0 otherwise, then a discrete copula C is associative if and only if C is an
ordinal sum of  Lukasiewicz matrices as proved in Proposition 9 in Mayor et al. [14].
This observation is the main key of the present article. It also follows that any
associative discrete copula is necessarily symmetric or commutative. In Kolesárová
et al. [11] it is proved that any discrete copula on L′ × L′ is a convex sum of
irreducible discrete copulas.

In Section 2 of this paper we recall the connection between empirical copulas
and discrete copulas via permutations. We also make some observations about the
permutations that generate the empirical copulas related to associativity and sym-
metry.

In Section 3 we analyze a new statistic that measures associativity, studying some
of its statistical properties under independence in terms of permutations. We also
study an auxiliary statistic of associativity which allows to give asymptotic results
for the proposed statistic.

In Section 4 we observe that the associativity statistic is non distribution free by
simulating its distribution under different Archimedean families. We finally include
some general comments about associativity for samples and some remarks connecting
the proposed statistic with Spearman’s ρ.

2. EMPIRICAL COPULAS, DISCRETE COPULAS AND PERMUTATIONS

We will first recall the definition of the empirical copula, see for example Nelsen
[17], which is based on classical empirical distribution functions as in Deheuvels [3].
Let us denote by X[i] and Y[j] the order statistics of a continuous random sample
(X1, Y1), . . . , (Xn, Yn) of a copula C, the empirical copula is defined by

Cn

(
i

n
,
j

n

)
=

num. of pairs (X,Y ) in the sample such that X ≤ X[i] and Y ≤ Y[j]

n
.
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Without losing generality we will always assume that X1 < X2 < · · · < Xn, that is
the order statistic X[i] = Xi for every i = 1, 2, . . . , n. We also observe that for any
i, j ∈ {1, 2, . . . , n}, Cn(i/n, j/n) = k/n for some k = 0, 1, . . . , n.

In fact, since the empirical copula is invariant under strictly increasing trans-
formations, we can assume that X1 = 1/n,X2 = 2/n, . . . , Xn = n/n = 1, and
that for every k ∈ {1, 2, . . . , n} there exists j ∈ {1, 2, . . . , n} such that Yk = j/n.
Even more, since the term 1/n is just a normalizing factor, we can assume that
X1 = 1, X2 = 2, . . . , Xn = n and the values of Y are simply a permutation σ of
{1, 2, . . . , n}, that is σ(i) = Yi for i = 1, 2, . . . , n. Therefore, from now on we will
study a totally equivalent form of the empirical copula given by

C′
n (i, j) = num. of pairs (X,Y ) in the sample such that X ≤ i and Y ≤ Y[j], (1)

where the sample is given by (1, σ(1) = Y1), (2, σ(2) = Y2), . . . , (n, σ(n) = Yn) and
(σ(1), σ(2), . . . , σ(n)) is a permutation σ of {1, 2, . . . , n}. We define C ′

n(i, 0) =
C′

n(0, j) = 0 for every i, j ∈ L. This approach will facilitate the study of several
properties of the empirical copula in terms of permutations of {1, 2, . . . , n}. In fact,
with this definition the equivalent version of the empirical copula C′

n is simply a
discrete copula on the chain L by Definition 1.1. Therefore, the representation of
discrete copulas in terms of permutation matrices applies to C′

n, and it also gives a
trivial proof of this characterization of discrete copulas. Of course all the properties
stated in the introduction also follow for the empirical copula C′

n.

Now, let us recall that a sample (X1, Y1), . . . , (Xn, Yn) is symmetric if and only if
for every i = 1, 2, . . . , n if (Xi, Yi) is in the sample then (Yi, Xi) is also in the sample.
Since we have agreed that our samples can be written as (1, σ(1)), . . . , (n, σ(n)).
Then our samples are symmetric if and only if for each i = 1, 2, . . . , n if (i, σ(i)) is
in the sample, so is (σ(i), i). Therefore, for every i = 1, 2, . . . , n, σ2(i) = i. Hence, a
sample is symmetric if and only if the permutation it generates is of order two, this
fact was proved in Mayor et al. [14].

Using the fact that samples that generate discrete copulas Cn are associative if
and only if Cn is an ordinal sum of  Lukasiewicz matrices as proved in Mayor et al.
[14], and the previous statement about symmetry we can construct examples of
symmetric samples which are non-associative.

Let us consider the modified sample

Xn = {(1, n), (2, 2), . . . , (n− 1, n− 1), (n, 1)}.

Then, we have that the discrete copula C
′
n equivalent to the empirical copula is given

by

C
′
n(i, j) =

{
min{i, j} − 1 if 1 ≤ i, j < n
min{i, j} if i = n or j = n.

Observe that if i or j are equal to 1, then C
′
n(i, j) = 0, except for the case in

which the other one is n.
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See Figure 1, where we show a graph of the sample X given above.
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Fig. 1. Symmetric sample Xn which is non-associative.

Since associative discrete copulas are ordinal sums of  Lukasiewicz permutation
matrices, as noticed in Mayor et al. [14] and Kolesárová and Mordelová [12]. In
general, associativity has no easy interpretations as noticed in Schweizer and Sklar
[19] “The geometric interpretations of the conditions other than associativity are
evident; associativity, on the other hand, seems to have no simple geometric inter-
pretation”. However, recently Jenei gives a nice geometric interpretation of asso-
ciativity in [7] and related topics of associativity in [6]. Also, Nelsen [17] mentions
“While there does not seem to be a statistical interpretation for random variables
with an associative copula, associativity will be a useful property when we con-
struct multivariate Archimedean copulas.” In Erdely et al. [4] we observed that
we have a very simple and nice geometric representation of associativity in terms
of an associative sample and its idempotent elements. See Figure 2, where an as-
sociative sample of size n = 18 is shown in the case that the idempotent elements
are i0 = 0, i1 = 3, i2 = 7, i3 = 8, i4 = 9, i5 = 10, i6 = 11, i7 = 12 and i8 = 18 = n.
That is from rescaling the original sample into (1, σ(1)), . . . (n, σ(n)) and observing
the resulting graph we can easily deduce if C′

n is associative or not, just by checking
if all points are located in the main diagonal or in secondary diagonals.

In the following section we will define an statistic An
π of associativity based on

the fact that associative discrete copulas are ordinal sums of  Lukasiewicz permuta-
tion matrices. We will analyze in detail some of its statistical properties under the
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hypothesis of independence, and we will find its asymptotic behavior, based on a
simpler version Ân

π of the associativity statistic An
π , which we will see that is closely

related to it. Specifically we will see that both statistics have the same distribution,
at least asymptotically. We will also find the least associative samples.
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Fig. 2. Associative sample with idempotent elements i0 = 0 < i1 < · · · < i8 = n = 18.

3. A NEW ASSOCIATIVITY STATISTIC OF A COPULA

We have already seen that a modified sample of the form (1, σ(1)), (2, σ(2)), . . .
. . . , (n, σ(n)), where σ is a permutation on In, is associative if and only its discrete
copula is an ordinal sum of  Lukasiewicz permutation matrices, see Figure 2. Let us
assume that 1 ≤ i1 < i2 < · · · < ik = n are the idempotent elements of the sample
(1, σ(1)), . . . , (n, σ(n)), that is C′

n(ij , ij) = ij for j = 1, 2, . . . , k. Observe that n is
always an idempotent element of any sample since C′

n(n, n) = n. Now we prove an
easy result that relates the values of the permutation to the idempotent elements of
the sample.

Proposition 3.1. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the modified sample.
Then the idempotent elements of the sample are 1 ≤ i1 < i2 < · · · < ik = n if
and only if

{1, 2, . . . , i1} = {σ(1), σ(2), . . . , σ(i1)},
{i1 + 1, i1 + 2, . . . , i2} = {σ(i1 + 1), σ(i1 + 2), . . . , σ(i2)},

...
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{ik−1 + 1, ik−1 + 2, . . . , n = ik} = {σ(ik−1 + 1), σ(ik−1 + 2), . . . , σ(n) = σ(ik)},
besides for any 1 ≤ j < i1, {1, 2, . . . , j} 6= {σ(1), σ(2), . . . , σ(j)}, and for any 1 ≤ l ≤
k−1 and for any il+1 ≤ j < il+1, {il+1, il+2, . . . , j} 6= {σ(il+1), σ(il+2), . . . , σ(j)}.

P r o o f . Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be a modified sample. Let us observe

that C′
n(i, i) = i if and only if there are i sample points in the set {1, 2, . . . , i} ×

{1, 2, . . . , i}, since for each 1 ≤ i ≤ n there exists a unique 1 ≤ σ(i) ≤ n such that the
point (i, σ(i)) belongs to the sample. Then i is an idempotent of the sample if and
only if C′

n(i, i) = i if and only if {1, 2, . . . , i} = {σ(1), σ(2), . . . , σ(i)}. In particular
n is always an idempotent of the sample.

Therefore 1 ≤ i1 < i2 < · · · < ik−1 < ik = n are all the idempotents of the
sample if and only if

{1, 2, . . . , i1} = {σ(1), σ(2), . . . , σ(i1)},

{1, 2, . . . , i2} = {σ(1), σ(2), . . . , σ(i2)}, · · ·
{1, 2, . . . , ik−1} = {σ(1), σ(2), . . . , σ(ik−1)}

and
{1, 2, . . . , ik = n} = {σ(1), σ(2), . . . , σ(ik) = n}.

From these identities it follows also that

{i1 + 1, i1 + 2, . . . , i2} = {σ(i1 + 1), σ(i1 + 2), . . . , σ(i2)},

{i2 + 1, i2 + 2, . . . , i3} = {σ(i2 + 1), σ(i2 + 2), . . . , σ(i3)},
etc., and

{ik−1 + 1, ik−1 + 2, . . . , n = ik} = {σ(ik−1 + 1), σ(ik−1 + 2), . . . , σ(n) = σ(ik)}.

Observe finally that for any other j ∈ {1, 2, . . . , n}\{i1, i2, . . . ik = n} we have that

{1, 2, . . . , j} 6= {σ(1), σ(2), . . . , σ(j)},

which finishes the proof. �

Let us denote by K the number of idempotent elements of a modified sample
(1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) of size n. Then 1 ≤ K ≤ n and K may take all
the values between 1 and n. To see this just observe that for n fixed, and using
Proposition 3.1, if {1, 2, . . . , i} 6= {σ(1), σ(2), . . . , σ(i)} for any 1 ≤ i ≤ n − 1, then
K = 1, with n the only idempotent element of the sample. Now if K > 1, and we
assume that σ(1) = 1, . . . σ(k − 1) = k − 1, but {k, k + 1, . . . , j} 6= {σ(k), σ(k +
1), . . . , σ(j)} for any k ≤ j < n, then the sample has k idempotents given by
i1 = 1, i2 = 2, . . . ik−1 = k − 1 and ik = n.

Now we define an associativity statistic based on the modified sample (1, σ(1)), . . . ,
(n, σ(n)). In order to do so recall that a modified sample is associative if and only if
its discrete copula is the ordinal sums of  Lukasiewicz permutation matrices, where
the number of terms in the sum is determined by the idempotent elements of the
sample.
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Definition 3.2. Let (1, σ(1)), . . . , (n, σ(n)) be the modified sample with idempo-
tent elements 1 ≤ i1 < i2 < · · · < ik−1 < ik = n. We define an associativity statistic
of the sample by:

An
π =

k∑

l=1

il∑

j=il−1+1

(il + il−1 − j + 1 − σ(j))2, (2)

where i0 = 0. The symbol π is simply to denote the fact that the statistic is based
on permutations.

Then An
π measures the square distances between the modified sample and the

ordinal sum of  Lukasiewicz permutation matrices with idempotent elements 1 ≤
in < i2 < · · · < ik−1 < ik = n. Therefore An

π is a measure of the associativity of the
modified sample.

For example if σ is such that σ(j) = j for j ∈ In, then ij = j for j = 1, . . . , n and

An
π =

n∑

l=1

l∑

j=l−1+1

(l + (l − 1) − j + 1 − σ(j))2 = 0.

Therefore, the sample (1, 1), (2, 2), . . . , (n, n) is associative.
It is important to notice that K the number of idempotent elements in the sample

is a random variable which depends on the joint distribution of the vector (X,Y ).
In the case that K = 1, then i1 = n is the only idempotent of the sample and

An
π =

n∑

j=1

(n− j + 1 − σ(j))2 = Ân
π,

which is a simpler expression for the associativity statistic, and it will be studied in
detail later on. In the following proposition we will find the number of permutations
σ of In such that K = 1 and K = n, that is the extreme values of K.

Proposition 3.3. Let (1, σ(1)), . . . , (n, σ(n)) be the modified sample of size n,
where σ is a permutation of In. Let us denote by K1(j) the number of permutations
of a modified sample of size j, with only one idempotent. Then a recursive formula
for the value of K1(n) is given by

K1(n) = n! −
n−1∑

j=1

K1(j)(n− j)!, (3)

where K1(1) = 1. Besides there is only one permutation σ of In such that K = n.

P r o o f . Let us assume that n = 1, then the only permutation of I1 is σ(1) = 1, in

this case the only idempotent is i1 = 1, and K1(1) = 1. If n = 2, then we have two
permutations of I2. If σ is such that σ(1) = 1 and σ(2) = 2, then the idempotents
of the sample are i1 = 1 < i2 = 2, and the number of idempotents is K = 2. On the
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the other hand, if σ(1) = 2 and σ(2) = 1, then the only idempotent is i1 = 2 and
K = 1. Observe that in this case

K1(2) = 2! −K1(1)(2 − 1)! = 1.

Therefore the formula (3) holds for n = 2.
Now the proof follows by induction. Let us assume that the formula (3) holds for

n− 1. We have to prove that it also holds for n. We will first count the number of
permutations σ of In such that the number of idempotents of the sample generated
by these permutations is greater than one, that is K > 1. In order to see this, we
just have to observe the position of the first idempotent i1.

Now, i1 = 1 if and only if σ(1) = 1. So, if σ(1) = 1, then K > 1, and the
remaining values of σ(2), . . . , σ(n) have no restrictions. Observe that if we ask that
σ(1) = 1, it is equivalent to ask that a sample of size one has only one idempotent,
which happens only in one way. Therefore, if σ(1) = 1, there are K1(1)(n − 1)!
permutations σ of In such that K > 1.

Now assume that i1 = k, for 2 ≤ k < n− 1. By Proposition 3.1, in order to get
a permutation that satisfies the previous condition is necessary to ask that

{1, 2, . . . , k} = {σ(1), σ(2), . . . , σ(k)},

but for any 1 ≤ j < k, {1, 2, . . . , j} 6= {σ(1), σ(2), . . . , σ(j)}. Observe that in Ik, the
number of permutations that satisfy this condition is exactly K1(k). Now if i1 = k,
then the values of σ(k + 1), . . . , σ(n) have no restrictions. Therefore, if i1 = k, there
are K1(k)(n− k)! permutations such that K > 1.

Adding all the cases in which K > 1 depending on the value of i1 such that
i1 < n. We obtain that the number of permutations σ of In such that K > 1 is
given by:

n−1∑

j=1

K1(j)(n− j)!.

And since there are n! possible permutations σ of In, then

K1(n) = n! −
n−1∑

j=1

K1(j)(n− j)!.

Finally observe that K = n if and only if every i ∈ In is an idempotent element
of the sample, this happens if and only if σ(i) = i for every i ∈ In according to
Proposition 3.1. Therefore, there exists only one permutation σ of In such that
K = n. �

Now, let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a bivariate random sample
of size n where X and Y are continuous random variables with copula C. Let
(1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the modified sample induced by the original sam-
ple. In this case σ the permutation and K the number of idempotent elements of
the discrete copula C′

n are random. In particular, when C = Π is the product copula
we have immediately from Proposition 3.3 the following:
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Corollary 3.4. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a continuous random
sample of size n where X and Y are continuous and independent random variables,
that is, the pair (X,Y ) has copula Π. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the
modified sample and let K be the number of idempotent elements of the discrete
copula Cn induced by the modified sample. Then

P (K = n) =
1

n!
and P (K = 1) = 1 −

∑n−1
j=1 K1(j)(n− j)!

n!
.

In Table 1 we give the values of P (K = 1) for different values of n the sample
size, as can be observed the value of P (K = 1) for n ≥ 2 increases to one as n
increases, and also P (K = 1) ≈ 1 − 2/n for n ≥ 2.

Table 1. P (K = 1) for different values of n

and values of 1− 2/n.

value of n P (K = 1) 1 − 2/n
1 1 –
2 0.5 0
3 0.5 0.3333
4 0.5416 0.5
5 0.5916 0.6
6 0.6402 0.666
7 0.6839 0.714
8 0.7217 0.750
9 0.7532 0.777

10 0.7796 0.8
50 0.9595 0.96

100 0.9798 0.98
200 0.989974 0.99
300 0.993322 0.9933
400 0.994994 0.995
500 0.995956 0.996

1000 0.997999 0.998

Let us study some properties of the associativity statistic defined in equation (2).
First we will prove that in the case of the existence of more than one idempotent,
An

π is a sum of variables of the same type in dimensions smaller than or equal n.

Lemma 3.5. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the modified sample of size
n and assume that 1 ≤ i1 < i2 · · · < ik = n are its idempotents. Then for each
l = 1, 2, . . . , k there exists a unique permutation σl of {1, 2, . . . , il − il−1}, where
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i0 = 0, such that

il∑

j=il−1+1

(il + il−1 − j + 1 − σ(j))2 =

il−il−1∑

k=1

(il − il−1 − k + 1 − σl(k))2.

P r o o f . If l = 1 since il−1 = i0 = 0 and i1 is the first idempotent, taking σ′(k) =

σ(k) for k = 1, 2, . . . , i1 the result follows.
If 1 < l ≤ k, since il−1 and il are consecutive idempotents, from Proposition 3.1

we know that

{il−1 + 1, il−1 + 2, . . . , il} = {σ(il−1 + 1), σ(il−1 + 2), . . . , σ(il)}.

Let us define

σ′(k) = σ(il−1 + k) − il−1 for k = 1, 2, . . . , il − il−1.

Then σ′ is a unique permutation of {1, 2, . . . , il − il−1}, and

il−il−1∑

k=1

(il − il−1 − k + 1 − σ′(k))2=

il−il−1∑

k=1

(il − il−1 − k + 1 − (σ(il−1 + k) − il−1))2

=

il−il−1∑

k=1

(il − k + 1 − σ(il−1 + k))2

=

il∑

j=il−1+1

(il + il−1 − j + 1 − σ(j))2,

where j = il−1 + k. �

Let us assume again that Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is a bivariate
random sample of size n where X and Y are continuous random variables with
copula C. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the modified sample generated by
Xn. Let us define an auxiliary event by

Ji1i2···ik = {the idempotents associated to σ are 1 ≤ i1 < i2 · · · < ik = n} (4)

for some 1 ≤ k ≤ n, with ik = n. For example Jn is the event that the only
idempotent element associated to σ is i1 = n, and in this case K = 1. Conditioning
on these events we can find an expression for the density of the random variable An

π ,
as shown in the following:

Theorem 3.6. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a continuous random
sample of size n where X and Y are continuous and independent random variables,
that is, the pair (X,Y ) has copula Π. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the
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modified sample and assume that 1 ≤ i1 < i2 < · · · ik = n are the idempotents
associated to σ and i0 = 0. Then

P (Ji1i2···ik) =
K1(i1)K1(i2 − i1) · · ·K1(n− ik−1)

n!
, (5)

where K1(l) is the number of permutations τ of {1, 2, . . . , l} with only one idempo-
tent, which is necessarily l. Besides, for any nonnegative integer a

P (An
π = a) =

n∑

k=1

∑

i∈Rk

∑

b∈Ba

{
Πk

j=1P
(
Aij−ij−1

π = bj|Ji1i2···ik
)}

P (Ji1i2···ik), (6)

where

Rk = {i = (i1, i2, . . . , ik) | 1 ≤ i1 < i2 < · · · ik−1 < ik = n are k integers},

Ba = {b = (b1, b2, . . . , bk) | b1, b2, . . . , bk ≥ 0 are integers, and

k∑

j=1

bj = a}. (7)

P r o o f . Let (1, σ(1)), (2, σ(2)), . . . (n, σ(n)) be a modified sample of X and Y two

continuous and independent random variables. Let us assume that 1 ≤ i1 < i2 <
· · · < ik = n are the idempotents associated to the permutation σ of In. Using
Proposition 3.1 we know that

{il−1 + 1, il−1 + 2, . . . , il} = {σ(il−1 + 1), σ(il−1 + 2), . . . , σ(il)},

for each l = 1, 2, . . . , k, and also for any j ∈ {1, 2, . . . , i1 − il−1 − 1}

{il−1 + 1, il−1 + 2, . . . , il−1 + j} 6= {σ(il−1 + 1), σ(il−1 + 2), . . . , σ(il−1 + j)}.

If we consider the function that maps il−1 +s into s, for s = 1, 2, . . . , il− il−1 and we
define the permutation σ′ of {1, 2, . . . , il − il−1} such that σ′(s) = σ(il−1 + s)− il−1

for s = 1, 2, . . . , il − il−1. Then we have that

{1, 2, . . . , il − il−1} = {σ′(1), σ′(2), . . . , σ′(il − il−1)}

but for any j ∈ {1, 2, . . . , il − il−1 − 1}

{1, 2, . . . , j} 6= {σ′(1), σ′(2), . . . , σ′(j)}.

Therefore using Proposition 3.3 there are exactly K1(il − il−1) permutations σ′ of
{1, 2, . . . , il − il−1} that satisfy the above conditions. Now by letting l vary from 1
to k we obtain that

P (Ji1i2···ik) =
Πk

l=1K1(il − il−1)

n!
,

which proves equation (5).
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Recall that the associativity statistic is defined by

An
π =

k∑

l=1

il∑

j=il−1+1

(il + il−1 − j + 1 − σ(j))2.

Then conditioning on the idempotents, we have that for any a nonnegative integer

P (An
π = a) =

n∑

k=1

∑

i∈Rk

P (An
π = a|Ji1i2···ik)P (Ji1i2···ik).

Now observe that using Lemma 3.5 An
π can be rewritten as

An
π =

k∑

l=1

il−il−1∑

j=1

(il − il−1 − j + 1 − σ′
l(j))

2,

where σ′
l is a permutation of the set {1, 2, . . . , il − il−1} for every 1 ≤ l ≤ k. If we

let

Ail−il−1
π =

il−il−1∑

j=1

(il − il−1 − j + 1 − σ′
l(j))

2 for every 1 ≤ l ≤ k.

Then

An
π =

k∑

l=1

Ail−il−1
π . (8)

Hence, for any a nonegative integer

P (An
π = a) =

n∑

k=1

∑

i∈Rk

P
(
Ai1

π + Ai2−i1
π + · · · + An−ik−1

π = a|Ji1i2···ik
)

P (Ji1i2···ik)

=

n∑

k=1

∑

i∈Rk

∑

b∈Ba

P
(
Ai1

π = b1, A
i2−i1
π = b2, . . . , A

n−ik−1
π = bk|Ji1i2···ik

)
P (Ji1i2···ik).

Now finally observe that Ai1
π , Ai2−i1

π , . . . , A
n−ik−1
π are conditionally independent given

Ji1i2···ik , since the permutations σ′
l only depend on the length il − il−1. Therefore,

P (An
π = a) =

n∑

k=1

∑

i∈Rk

∑

b∈Ba

{
Πk

j=1P
(
Aij−ij−1

π = bj|Ji1i2···ik
)}

P (Ji1i2···ik),

as we wanted to prove. �

Observe that from Theorem 3.6, if σ is a permutation of In with more than one
idempotent and we know the distribution of Aj

π, for any 1 ≤ j ≤ n − 1. Then
we can find inductively P (An

π = a|Ji1i2···ik) for any a ≥ 0 and i ∈ Rk. The only
cases in which we have to find P (An

π = a|Ji1i2···ik) explicitly is when σ induces only
one idempotent, that is, when i1 = n and K = 1. That is, we have to evaluate
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all the conditional probabilities of the form P (An
π = a|Jn). The exact number of

evaluations that we have to do is K1(n) given in Proposition 3.3.

As an easy example we provide the actual density of A5
π which is given by

P
(
A5

π = a
)

=





16/120 if a = 0
20/120 if a = 2
5/120 if a = 4
14/120 if a = 6
11/120 if a = 8
10/120 if a = 10, 14, 18
4/120 if a = 12, 20, 22, 24
6/120 if a = 16
2/120 if a = 26.

In Figure 3, we graph the density of A5
π. Observe that this density is quite

asymmetric, and it has several modes. This behavior also holds for larger values of
n. An important question which we will solve next is: What is the actual range of
An

π? We will need to answer this question to analyze in detail the distribution of
the statistic An

π.

6

-
0 2 4 6 8 10 12 14 16 18 20 22 24 26

⊙

⊙
4/24 −

3/24 −

2/24 −

1/24 − ⊙

⊙

⊙
⊙

⊙

⊙

⊙

⊙

⊙ ⊙ ⊙
⊙

Fig. 3. Density of A5
π.

Now we will see which is the range of An
π and we will find the probability of its

extreme values.
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Lemma 3.7. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a continuous random
sample of size n where X and Y are continuous and independent random variables,
that is, the pair (X,Y ) has copula Π. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) be the
modified sample and assume that 1 ≤ i1 < i2 < · · · ik = n are the idempotents
associated to σ and i0 = 0. Then the range of An

π, denoted by Ran(An
π), is given by

Ran(An
π) =

{
0, 2, 4, . . . ,

n3 − 13n + 18

3

}
.

Besides,

P (An
π = 0) =

2n−1

n!
and P

(
An

π =
n3 − 13n + 18

3

)
=

2

n!
, if n ≥ 3,

and
P (A1

π = 0) = P (A2
π = 0) = 1.

P r o o f . Using equation (8) in the proof of Theorem 3.6, we have that

An
π =

k∑

l=1

Ail−il−1
π =

k∑

l=1

il−il−1∑

j=1

(il − il−1 − j + 1 − σ′
l(j))

2.

In order to see that An
π only takes values on the set of nonnegative even integers,

just observe that for any j ≥ 1 and τ, σ permutations in the set {1, 2, . . . , j} we have

that
∑j

k=1(τ(k) − σ(k))2 is a nonnegative even integer, since

j∑

k=1

(τ(k) − σ(k))2 =

j∑

k=1

τ(k)2 − 2

j∑

k=1

τ(k)σ(j) +

j∑

k=1

σ(k)2

= 2

(
j(j + 1)(2j + 1)

6
−

j∑

k=1

τ(j)σ(j)

)
,

since σ and τ are bijections from Ij onto Ij .
Now observe that

n∑

i=1

(n− i + 1 − i)2 =

n∑

i=1

(n + 1 − 2i)2

=

n∑

i=1

(
(n + 1)2 − 4(n + 1)i + 4i2

)

= n(n + 1)2 − 2n(n + 1)2 +
4

6
n(n + 1)(2n + 1)

= n(n + 1)

(
n− 1

3

)

=
n3 − n

3
. (9)
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This is clearly the maximum value for
∑n

i=1(n− i + 1− σ(i))2 when we vary σ over
all permutations of In. Observe that the terms (n − 1)2 and (1 − n)2 = (n − 1)2

appear in this sum. In fact it is clear that

n∑

i=1

(n− i + 1 − i)2 = 2

[n/2]−1∑

k=0

(n− (2k + 1))2, (10)

where [n/2] is the greatest integer less or equal n/2.
However, (n3 − n)/3 is not a possible value for An

π, since if σ(i) = i for i =
1, 2, . . . , n, then in fact An

π = 0, as noticed after Definition 3.2 (every i from 1 to
n are idempotents). The maximum of An

π must be attained when there is only one
idempotent, that is , when K = 1. Let us see that the value (n − 1)2 is not a term
in
∑n

i=1(n− i+ 1−σ(i))2, if the only idempotent is i1 = n. The only possibilities in
order to have that the term (n− 1)2 appears in the previous sum are if σ(1) = 1 or
σ(n) = n, but in both cases there are at least two idempotents, respectively 1 and
n, or n− 1 and n.

Nevertheless, the term (n−2)2 is always possible in
∑n

i=1(n− i+1−σ(i))2, when
i1 = n is the only idempotent of σ.

From equation (10) we will complete a permutation σ of In with one idempotent,
such that

n∑

i=1

(n− i + 1 − σ(i))2 = 2(n− 2)2 + 2

[n/2]−1∑

k=1

(n− (2k + 1))2. (11)

Let us assume that n is an odd integer of the form n = 2l + 1. We will ask that the
permutation satisfies the following condition:

If σ(k)=s then σ(n−σ(k)+1)=σ(n−s+1)=n−k+1, for every k∈In. (12)

First, let us define σ(1) = 2 then using (12), σ(n− σ(1) + 1) = σ(n− 1) = n. Then
(n− 1 + 1 − σ(1))2 = (n− 2)2 and (n− (n− 1) + 1 − σ(n− 1))2 = (2 − n)2.

Now, for k = 2j and 1 ≤ j < [n/2] = l define σ(2j) = 2j + 2, then from equation
(12), σ(n− σ(2j) + 1) = σ(n− 2j − 1) = n− 2j + 1. Then (n− 2j + 1 − σ(2j))2 =
(n−2j + 1− (2j+ 2))2 = (n−4j−1)2 = (2l−4j)2 and (n− (n−2j−1) + 1−σ(n−
2j − 1))2 = (2j + 2 − (n− 2j + 1))2 = (4j + 1 − n)2 = (n− 4j − 1)2 = (2l− 4j)2.

If k = 2j + 1 and 1 ≤ j ≤ [n/2] = l define σ(2j + 1) = 2j − 1, then from
equation (12), σ(n − σ(2j + 1) + 1) = σ(n − 2j + 2) = n − 2j. Then (n − (2j +
1) + 1 − σ(2j + 1))2 = (n − 2j − (2j − 1))2 = (n − 4j + 1)2 = (2l + 2 − 4j)2 and
(n − (n − 2j + 2) + 1 − σ(n − 2j + 2))2 = (2j − 1 − (n − 2j))2 = (4j − 1 − n)2 =
(n− 4j + 1)2 = (2l + 2 − 4j)2.

For example if n = 11, and we define the permutation σ in I11 described above,
that is, σ = (2, 4, 1, 6, 3, 8, 5, 10, 7, 11, 9). Then

11∑

i=1

(11 − i + 1 − σ(i))2 = 92 + 62 + 82 + 22 + 42 + 22 + 0 + 62 + 42 + 92 + 82

= 2 ∗ (11 − 2)2 + 2
4∑

k=1

(11 − (2k + 1))2,
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then σ satisfies equation (11), and clearly the only idempotent of σ is i1 = 11.
Now assume that n is an even integer of the form n = 2l. Let us define σ in

In such that σ(1) = 2, σ(n) = n − 1, σ(2j) = 2j + 2, for 1 ≤ j < [n/2] = l, and
σ(2j + 1) = 2j − 1 for 1 ≤ j < [n/2]. Then, as above, it can be seen that σ satisfies
equation (11).

For example if n = 10, and we define the permutation σ in I10 described above,
that is, σ = (2, 4, 1, 6, 3, 8, 5, 10, 7, 9). Then

10∑

i=1

(10 − i + 1 − σ(i))2 = 82 + 52 + 72 + 12 + 32 + 32 + 12 + 72 + 52 + 82

= 2 ∗ (10 − 2)2 + 2
4∑

k=1

(10 − (2k + 1))2,

then σ satisfies equation (11), and clearly the only idempotent of σ is i1 = 10.
Now using equations (9), (10) and (11) we can easily obtain the maximum value

Mn of An
π , since

Mn =
n∑

i=1

(n− i + 1 − σ(i))2 − 2(n− 1)2 + 2(n− 2)2

=
n3 − n− 6(n− 1)2 + 6(n− 2)2

3

=
n3 − 13n + 18

3
.

It can be seen that An
π takes any even value between 0 and Mn. Therefore, Ran(An

π) =
{0, 2, . . . ,Mn}.

For each n ≥ 1 there exists just another similar construction of a permutation σ
of In, such that σ(1) = 3, σ has only one idempotent, and σ satisfies equation (11).
To see this we just have to find the symmetric permutation of the above case, for
example for n = 10 we observed that the permutation σ = (2, 4, 1, 6, 3, 8, 5, 10, 7, 9)
leads to the maximum value of A10

π , that is, M10. Then finding the symmetric
permutation of σ, that is, σ′ = (3, 1, 5, 2, 7, 4, 9, 6, 10, 8), observe that σ(σ′(i)) = i
for i = 1, 2, . . . , 10. This case also leads to the maximum value of A10

π . Therefore,
P (An

π = Mn) = 2/n!.
Finally, if σ is a permutation of In, with k idempotents, for 1 ≤ k ≤ n, since

ik = n is always an idempotent, then the remaining k−1 idempotents can be selected
in (

n− 1
k − 1

)

ways, and for each selection of 1 ≤ i1 < i2 < · · · < ik−1 < ik = n of idempotents of
σ there is only one permutation σ such that An

π = 0. Therefore, there are

n−1∑

k=0

(
n− 1
k − 1

)
= 2n−1
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cases such that An
π = 0. Kolesárová and Mordelová [12] were the first to observe

that there are 2n−1 associative discrete copulas on L. Hence, P (An
π = 0) = 2n−1

n! .
The last statement of the Lemma follows straightforward. �

Observe that according to Lemma 3.7, equation (7) in Theorem 3.6 can be rewrit-
ten as

Ba =



b = (b1, b2, . . . , bk) | b1, . . . bk ≥ 0 are even integers, and

k∑

j=1

bj = a



 ,

where a is a nonegative even integer.
Now we will study a statistic which is close and related to An

π defined by

Ân
π =

n∑

j=1

(n− j + 1 − σ(j))2. (13)

If we have a modified sample of the form (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) and
there is only one idempotent associated to the permutation σ of In, that is, K = 1
then

An
π = Ân

π if K = 1. (14)

Now we will find the expectation and variance of Ân
π under independence. The

results in Proposition 3.8 and 3.9 could be obtained using ranks, see for example
Hettmansperger [5], but we include them here for completeness, and the fact that
interesting observations can be derived from them.

Proposition 3.8. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a continuous ran-
dom sample of size n where X and Y are continuous and independent random
variables, that is, the pair (X,Y ) has copula Π. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n))
be the modified sample. Then

E (σ(j)k) =

∑n
l=1 l

k

n
for every k ≥ 1, (15)

E (σ(j)σ(k)) =
(n + 1)(3n + 2)

12
for every 1 ≤ j 6= k ≤ n. (16)

Besides, the expectation and variance of Ân
π are given by

E (Ân
π) =

n(n− 1)(n + 1)

6
(17)

and

Var(Ân
π) =

n2(n + 1)2(n− 1)

36
. (18)

P r o o f . Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n)) a modified sample of two continuous



166 J.M. GONZÁLEZ–BARRIOS

and independent random variables. Then every permutation σ of In has probability
1/n!. Hence, for every j ∈ In,

P (σ(j) = i) =

{
(n−1)!

n! = 1
n if 1 ≤ i ≤ n

0 otherwise.

Besides, if 1 ≤ j, k ≤ n with j 6= k, then

P (σ(j) = i, σ(k) = l) =

{
(n−2)!

n! = 1
n(n−1) if 1 ≤ i 6= l ≤ n

0 otherwise.

Therefore,

E (σ(j)k) =

n∑

i=1

ikP (σ(j) = i) =

n∑

i=1

ik

n
,

if k ≥ 1, which proves (15). In particular,

E (σ(j)) =
n + 1

2
and E ((σ(j))2) =

(n + 1)(2n + 1)

6
. (19)

Now, if j, k ∈ In with j 6= k, then

E (σ(j)σ(k)) =

n∑

i=1

n∑

l=1,l 6=i

il

n(n− 1)

=
1

n(n− 1)

n∑

i=1

i

(
n(n + 1)

2
− i

)

=
1

n(n− 1)

(
n2(n + 1)2

4
− n(n + 1)(2n + 1)

6

)

=
(n + 1)(3n + 2)

12
,

which proves (16). Now since τ(j) = n − j + 1, for j = 1, 2, . . . , n, and σ are
permutations of In. Then

Ân
π =

n∑

j=1

(n− j + 1 − σ(j))2

=

n∑

j=1

(n− j + 1)2 − 2

n∑

j=1

(n + 1 − j)σ(j) +

n∑

j=1

(σ(j))2

=
n(n + 1)(2n + 1)

3
− n(n + 1)2 + 2

n∑

j=1

jσ(j)

= 2

n∑

j=1

jσ(j) − n(n + 1)(n + 2)

3
. (20)
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Now, using equations (19) and (20) we have that

E (Ân
π) = 2

n∑

j=1

jE (σ(j)) − n(n + 1)(n + 2)

3

=
n(n + 1)2

2
− n(n + 1)(n + 2)

3

= n(n + 1)

(
n + 1

2
− n + 2

3

)

=
n(n− 1)(n + 1)

6
,

proving (17). Now, using equation (20), and letting Cn = n(n + 1)(n + 2)/3,

E ((Ân
π)2) = 4

n∑

j=1

n∑

k=1

jkE (σ(j)σ(k)) − 4Cn

n∑

j=1

jE (σ(j)) + C2
n

= 4

n∑

j=1

j2E ((σ(j)2) + 4

n∑

j=1

n∑

k=1,k 6=j

jkE (σ(j)σ(k))

−4Cn

n∑

j=1

jE (σ(j)) + C2
n

= a1 + a2 + a3 + a4. (21)

From equation (19),

a1 = 4
(n + 1)(2n + 1)

6

n(n + 1)(2n + 1)

6
=

n(n + 1)2(2n + 1)2

9
,

from equation (16),

a2 =
4(n + 1)(3n + 2)

12

n∑

j=1

j

(
n(n + 1)

2
− j

)

=
4n(n + 1)2(3n + 2)

24

n(n + 1)

2
− 4(n + 1)(3n + 2)

12

n(n + 1)(2n + 1)

6

=
n2(n + 1)3(3n + 2)

12
− n(n + 1)2(3n + 2)(2n + 1)

18

a3 = −Cnn(n + 1)2 = −n2(n + 1)3(n + 2)

3
,

and

a4 = C2
n =

n2(n + 1)2(n + 2)2

9
.
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Replacing a1, a2, a3 and a4 in (21) we get

E ((Ân
π)2) =

n(n + 1)2

36
{4(2n + 1)2 + 3n(n + 1)(3n + 2)

−2(3n + 2)(2n + 1) − 12n(n + 1)(n + 2) + 4n(n + 2)2}

=
n3(n + 1)2(n− 1)

36
. (22)

Finally using equations (17) and (22)

Var(Ân
π) = E ((Ân

π)2) − (E (Ân
π))2

=
n3(n + 1)2(n− 1)

36
− n2(n + 1)2(n− 1)2

36

=
n2(n + 1)2(n− 1)

36
(n− (n− 1))

=
n2(n + 1)2(n− 1)

36
,

which is equation (18). �

Now we will find some properties of the statistic Ân
π , relating its distribution with

any other fixed permutation τ , and using the fact that Ân
π is the sum of n random

variables.

Proposition 3.9. Let Xn = (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a continuous ran-
dom sample of size n where X and Y are continuous and independent random
variables, that is, the pair (X,Y ) has copula Π. Let (1, σ(1)), (2, σ(2)), . . . , (n, σ(n))
be the modified sample. Let τ be a fixed permutation of In. Define

Ãn
π =

n∑

j=1

(τ(j) − σ(j))2, and recall that Ân
π =

n∑

j=1

(n− j + 1 − σ(j))2.

Then
Ãn

π
d
= Ân

π, (23)

where
d
= stands for “equals in distribution”. Let Yi = 2(Rn − iσ(i)), for i =

1, 2, . . . , n, where Rn = (n + 1)(2n + 1)/6. Then the covariances Cov(Yi, Yj) and
correlations ρ(Yi, Yj) are given by:

Cov(Yi, Yj) =
−(n + 1)

3
ij and ρ(Yi, Yj) =

−1

(n− 1)
, (24)

for every i, j ∈ {1, 2, . . . , n} with i 6= j.
Besides, Ân

π is a symmetric random variable with respect to (n3 − n)/6.

P r o o f . First let us observe that defining τ(j) = n− j + 1 for j = 1, 2, . . . , n, we
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obtain a permutation τ of In. So, Ân
π is of the form

∑n
j=1(τ(j) − σ(j))2 for a fixed

permutation τ of In. Now, let τ be a fixed permutation of In, then

Ãn
π =

n∑

j=1

(τ(j) − σ(j))2

=
n∑

j=1

τ(j)2 − 2
n∑

j=1

τ(j)σ(j) +
n∑

j=1

σ(j)2

=
2n(n + 1)(2n + 1)

6
− 2

n∑

j=1

τ(j)σ(j)

=
2n(n + 1)(2n + 1)

6
− 2

n∑

k=1

kσ′(k), (25)

where the last equation follows from reindexing the terms τ(j)σ(j), j = 1, . . . , n in
increasing order with respect to the values of τ(j). Of Course σ′ is a permutation
of In. This equation proves that the distribution of Ãn

π does not depend on the
selection of the fixed permutation τ . Hence, from equation (25)

Ân
π

d
=

n∑

i=1

(i− σ(i))2 =

n∑

i=1

2(Rn − iσ(i)) =

n∑

i=1

Yi, (26)

where Rn = (n + 1)(2n + 1)/6. So, we have expressed Ân
π as the sum of n random

variables Yi for i = 1, . . . , n. Now, using Proposition 3.8, equation(15), for i =
1, . . . , n we obtain:

E (Yi) = 2Rn − 2iE (σ(i))

=
(n + 1)(2n + 1)

3
− (n + 1)i

= (n + 1)

{
2n + 1

3
− i

}
, (27)

E (Y 2
i ) = E (4R2

n − 8Rniσ(i) + 4i2σ(i)2)

= 4

{
(n + 1)2(2n + 1)2

36
− i(n + 1)2(2n + 1)

6
+

i2(n + 1)(2n + 1)

6

}

=
2(n + 1)(2n + 1)

3

{
(n + 1)(2n + 1)

6
− i(n + 1) + i2

}
. (28)

Therefore, using equations (27) and (28), for every i ∈ {1, 2, . . . , n}

Var(Yi) = E (Y 2
i ) − (E (Yi))

2

= (n + 1)i2
(

2

3
(2n + 1) − (n + 1)

)

=
(n2 − 1)i2

3
. (29)
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By Proposition 3.8, equation (16), if i 6= j, i, j ∈ {1, 2, , . . . , n},

E (YiYj) = E (4(Rn − iσ(i))(Rn − jσ(j)))

= E (4{R2
n −Rn(iσ(i) + jσ(j)) + ijσ(i)σ(j)})

=
n + 1

3

{
(n + 1)(2n + 1)2

3
− (n + 1)(2n + 1)(i + j) + ij(3n + 2)

}
(30)

So, using equations (27) and (30),

Cov(Yi, Yj) = E (YiYj) − E (Yi)E (Yj)

= (n + 1)ij

(
3n + 2

3
− (n + 1)

)

= − (n + 1)

3
ij. (31)

Finally, using equations (29) and (31) we get

ρ(Yi, Yj) =
Cov(Yi, Yj)√

Var(Yi)Var(Yj)

= −
(n+1)ij

3
(n+1)(n−1)ij

3

= − 1

(n− 1)
,

for every i 6= j, i, j ∈ {1, 2, . . . , n}.

To prove the symmetry of Ân
π , by equation (23) we know that Ân

π
d
=
∑n

i=1(i −
σ(i))2 = A, but using equation (25)

A =
n(n + 1)(2n + 1)

3
− 2

n∑

i=1

iσ(i) for every σ permutation of In.

For every σ fixed permutation of In, let τ(i) = n − σ(i) + 1, for i ∈ In, which is
obviously a permutation of In, and let B =

∑n
i=1(i− τ(i))2. Then

B =
n(n + 1)(2n + 1)

3
− 2

n∑

i=1

(n− σ(i) + 1)i

=
n(n + 1)(2n + 1)

3
− n2(n + 1) + 2

n∑

i=1

iσ(i) − n(n + 1)

=
n(n + 1)(2n + 1)

3
− n(n + 1)2 + 2

n∑

i=1

iσ(i).
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Therefore,

n3 − n

3
−B =

n(n + 1)(n− 1)

3
− n(n + 1)(2n + 1)

3
+ n(n + 1)2 − 2

n∑

i=1

iσ(i)

= n(n + 1)

{
(n− 1)

3
− (2n + 1)

3
+ (n = 1)

}
− 2

n∑

i=1

iσ(i)

=
n(n + 1)(2n + 1)

3
− 2

n∑

i=1

iσ(i)

= A.

Hence, Ân
π is symmetric with respect to (n3 − n)/6. �

The values of E (Ân
π) and Var(Ân

π) given in Proposition 3.8 can also be obtained
using the results in Proposition 3.9.

From Proposition 3.9 we observe that the random variable Ân
π is a sum of n

random variables Yi, i = 1, . . . , n, which are not identically distributed nor indepen-
dent. However we also can observe that the random variables Yi, i = 1, . . . , n are
asymptotically uncorrelated. If we consider

An =
Ân

π − E (Ân
π)√

Var(Ân
π)

. (32)

Then An is a discrete symmetric random variable by Proposition 3.9, with E (An) =
0 and Var(An) = 1. Now using representation given in equation (26) we know that

Ân
π

d
=

n∑

i=1

(i− σ(i))2.

If we let Zi = (i − σ(i))2 for i = 1, . . . , n, then Ân
π

d
=
∑n

i=1 Zi, and it can easily be

proved that Z1
d
= Zn, Z2

d
= Zn−1, etc.

Now we will find the asymptotic distribution of An given in equation (32). Recall
the sample version of Spearman’s rho, see for example Nelsen [17] or Hettmansperger
[5]. Let {(Xi, Yi)}ni=1 be sample of a continuous joint distribution F . Let us assume
that X1 < X2 < · · · < Xn, and let

ρ =
12

n(n2 − 1)

{
n∑

i=1

iRi −
n(n + 1)2

4

}
, (33)

where R1, R2, . . . , Rn are the ranks of Y1, Y2, . . . , Yn. In our notation Ri corresponds
to σ(i) for i = 1, 2, . . . , n. Now using equations (20), (17) and (18), we have that
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equation (32) becomes

An =
Ân

π − E (Ân
π)√

Var(Ân
π)

=
2
∑n

i=1 iσ(i) − n(n+1)(n+2)
3 − n(n−1)(n+1)

6√
n2(n+1)2(n−1)

36

=
2
∑n

i=1 iσ(i) − n(n+1)
6 [2n + 4 + n− 1]

n(n+1)
6

√
n− 1

=
12

n(n + 1)
√
n− 1

(
n∑

i=1

iσ(i) − n(n + 1)2

4

)

=
√
n− 1 · 12

n(n2 − 1)

(
n∑

i=1

iRi −
n(n + 1)2

4

)

=
√
n− 1 · ρ (34)

It is well known that under independence,
√
n− 1ρ is asymptotically N(0, 1), see Ap-

pendix, Section 5 of U -statistics in Lehman [13] or exercise 4.5.15 in Hettmansperger
[5]. The proof of the asymptotical normality of An =

√
n− 1ρ in Lehmann [13]

follows using U -statistics techniques and an approximation, on the other hand in
Hettmansperger [5] the proof is based on the Projection Theorem and using Slut-
sky’s Theorem. In both cases the proofs are elaborate.

As observed above the random variable An is just the standardization of the ran-
dom variable Ân

π, which is the sum of n random variables Yi, i = 1, . . . , n standard-
ized, which are not identically distributed nor independent according to Proposition
3.9, and they are asymptotically uncorrelated. However the sum of the random vari-
ables Yi satisfy the central limit theorem. In fact, what is really surprising is the
speed of convergence to a standard normal random variable. In Figure 4 we compare
the exact distribution of An for n = 12 with the distribution of a standard normal
variable, as can be seen for n as small as 12 the approximation to the standard
normal is amazingly good.

Another way to observe the asymptotic normality of An would be to take n ran-
dom permutations τ1, . . . , τn and define Wj =

∑n
i=1(τj(i)−σ(i))2, for j = 1, 2, . . . , n.

Then by Proposition 3.9 equation (23), we have n independent identically distributed

random variables W1, . . . ,Wn and W1
d
= An. Then using the usual central limit the-

orem we have that

Tn =
1

n

n∑

j=1

(
n∑

i=1

(τj(i) − σ(i))2

)

is asymptotically normal when standardized. Then we can compare the distributions
of Tn and An.

The asymptotic distribution of An
π is also normal, this follows from Corollary 3.4,

since for n large enough P(K = 1) ≈ 1 − 2/n, that is An
π ≈ Ân

π for n large enough.
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Fig. 4. Distribution functions of A12 and a standard normal.

Observe also that always An
π ≤ Ân

π , in Figure 5 we compare the exact densities of
A12

π and Â12
π , as can be seen even for n small the densities are similar. In fact as n

increases the density of An
π approaches “from the left” the density of Ân

π .
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Fig. 5. Exact densities of A12
π and Â12

π .

4. ASSOCIATIVITY OF SAMPLES AND FINAL REMARKS

The distribution of the statistic An
π depends of course on the copula C from which

we are sampling.

If we obtain a sample (X1, Y1), . . . (Xn, Yn) from the product copula Π and we
obtain its modified sample (1, σ(1)), . . . , (n, σ(n)), we observe that any of the possible
permutations σ of {1, 2, . . . , n} is equally likely to appear, since all permutations have
the same probability 1/(n!) under independence.
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We also notice that if the observed sample does not have idempotents, the statis-
tic An

π = Ân
π . Therefore, we are measuring the “l2 distance” between the modified

sample {(1, σ(1)), . . . , (n, σ(n))} and {(1, n), (2, n− 1), . . . , (n, 1)}. Hence, if we are
sampling from a copula with positive ρ correlation which is not too close to 1 (see
next paragraph), we obtain large values of An

π. This is the case when we are sam-
pling from Archimedean families which may vary between Π and M , such as the
Clayton or Frank families with θ > 0, see [17]. In [18], Nelsen studies copulas with
maximal nonexchangeability or maximal asymmetry, this problem is also studied in
[10], Nelsen proves that if X and Y are maximal nonexchangeable continuous ran-
dom variables then ρX,Y ∈ [−5/9,−1/3]. This result opens an interesting question,
that is, if maximal non associativity of two continuous random variables X and Y
measured in some sense, leads to restrictions on the values of ρX,Y ?

We also observe that if we are sampling from M , then our modified sample is
{(1, 1), (2, 2), . . . , (n, n)} with probability one. Therefore, the sample has n idempo-
tents and the value of An

π = 0 with probability one. In fact, the existence of some
idempotents in the sample leads to small values of An

π , this is the case for copulas
C which are very close to M .

In Lemma 3.7 we obtain the range of the statistic An
π, observe that the inde-

pendence assumption is only used to find the probabilities of the minimum and
maximum of An

π . In fact, Lemma 3.7 tells us which permutations σ lead to max-
imum values of the statistic An

π. This permutations allow us to construct copulas
that generate samples with only large values of An

π , as we will see in the last example.

Let Xn = (X1, Y1), . . . , (Xn, Yn) be a random sample from an Archimedean cop-
ula C, and let (1, σ(1)), . . . , (n, σ(n)) be the modified sample defined in Section 2.
We perform a simulation study of the behavior of An

π under different families, see
[17], such as the Clayton, Frank, Gumbel-Barnett, etc., and we compare the simu-
lated distributions to the distribution obtained sampling from Π. For example, in
the case of the Clayton family Cθ, with θ ∈ [−1,∞)\{0}, which includes as limiting
cases C−1 = W , C0 = Π and C∞ = M , and as a special case C1 = Π/(Σ − Π).
We observed that the value of Spearman’s rho increases from −1 to 1 when θ varies
from −1 to ∞, and tends to 0 when θ approaches 0. We generated 10000 samples
of size n = 100 of the Clayton family varying θ from −0.9 up to 50 obtaining the
empirical distributions of A100

π in each case. In Figure 6 we include the empirical
distributions of A100

π for θ = −0.7,−0.3, 0, 0.5, 1, 3, 8 and 30. As can be seen from
this graph the distribution of An

π moves to the right when θ increases from −0.7 up
to 3, for the last two values of the parameter θ the distribution moves to the left.
We also observe that for θ = 3, the value of Spearman’s rho equals ρ = .78 and in
this case the distribution still moves to the right, but its variance starts to grow.
For θ = 8 Spearman’s rho equals ρ = .94, and in this case the distribution moves
to the left and has a larger variance. Finally, for θ = 30 the distribution of A100

π

approaches the distribution of the constant zero. Of course for the limiting cases M
and W the distribution is degenerate into the constant zero. A similar situation is
obtained if we are sampling from the Frank family.

Finally, we would like to construct copulas which produce very little associative
samples.
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Recall that in the proof of Lemma 3.7, where we defined the range of the statis-
tic An

π, we found for each n, the least associative samples according to the maxi-
mum value of An

π. If we let the sample size to be 8, we observed that the sample
{(1, 2), (2, 4), (3, 1), (4, 6), (5, 3), (6, 8), (7, 5), (8, 7)} is one of the two least associa-
tive samples. As an example, and based on the observations above, we generated
100000 simulations of sample sizes n = 25, n = 50 and n = 100 of a copula C(u, v)
whose support is uniform on the little squares given in Figure 7, that is, the density

c(u, v) = ∂2

∂u∂vC(u, v) associated to this copula is given by c(u, v) = 8, if (u, v) be-
longs to any of the little dotted squares in Figure 7, and c(u, v) = 0 otherwise. For
the three sample sizes we obtained the empirical distributions, we observe that as n
increases the values of An

π concentrate more and more on large values that are close
to the maximum value of An

π .
The other least associative sample of size 8 is given by {(1, 3), (2, 1), (3, 5), (4, 2),

(5, 7), (6, 4), (7, 8), (8, 6)}, which corresponds to the symmetric version of the other
sample. We also performed the simulations obtaining in this case similar results.

• This paper introduces a new statistic An
π which is nonnegative and measures

the associativity of given sample using a characterization of associativity for
discrete copulas. The larger the value of the statistic the less associative the
sample.

• Given any value of the sample size n and using Lemma 3.7, we can say exactly
which modified samples produce the largest possible value of the statistic An

π ,
hence the less associative samples.

• Since the composite problem of associativity is quite complex, and the statistic
An

π is not distribution free, using an appropriate representative member of the
associative copulas, that is Π, it is possible to find its exact distribution for
small sample sizes n when the number of idempotents of the sample is greater
than one, see Theorem 3.6.

• In the case that the sample has only the trivial idempotent i1 = n, the statistic
An

π reduces to the statistic Ân
π , which under standardization using Proposition

3.8, reduces to the Spearman’s ρ. Observe that at least in this case, we find
a nice statistical interpretation of associativity of samples, answering at least
partially the question raised by Nelsen [17], see Section 2.

• In the case of independence it is also possible to find the normal asymptotic
distribution not only for the simplified statistic Ân

π, but also for the original
statistic An

π , using Corollary 3.4 and Table 1.
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