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A construction of a Fréchet-Urysohn

space, and some convergence concepts

A.V. Arhangel’skii

Abstract. Some strong versions of the Fréchet-Urysohn property are introduced
and studied. We also strengthen the concept of countable tightness and gener-
alize the notions of first-countability and countable base. A construction of a
topological space is described which results, in particular, in a Tychonoff count-
able Fréchet-Urysohn space which is not first-countable at any point. It is shown
that this space can be represented as the image of a countable metrizable space
under a continuous pseudoopen mapping. On the other hand, if a topological
group G is an image of a separable metrizable space under a pseudoopen contin-
uous mapping, then G is metrizable (Theorem 5.6). Several other applications
of the techniques developed below to the study of pseudoopen mappings and
intersections of topologies are given (see Theorem 5.17).

Keywords: first-countable, Fréchet-Urysohn, countably compact, closure-sensor,
topological group, strong FU-sensor, pseudoopen mapping, side-base, ω-Fréchet-
Urysohn space

Classification: 54D20, 54G20, 54J99

1. Introduction

Many convergence properties closely related to first countability have been
studied extensively in General Topology and have been found quite useful in
its applications. One of those is the Fréchet-Urysohn property. It is very easy
to construct a Tychonoff countable non-metrizable Fréchet-Urysohn space — the
well known countable Fréchet-Urysohn fan V (ω) is a standard example. However,
the space V (ω) has only one non-isolated point. Thus, at all other points the space
V (ω) is locally metrizable. It is more tricky to present a transparent example of
a Tychonoff countable Fréchet-Urysohn space that is not first-countable at any
point.

In the next section, we describe a general construction which is used in Section 3
to define a countable Fréchet-Urysohn space with a series of interesting properties.
In particular, it is countable, not first-countable at any point, and has a countable
π-base.

Several general concepts, like the concept of a side-base, are introduced in con-
nection with this construction in Sections 2 and 3. They are studied in Sections 3,
4, and 5. In particular, see Theorems 4.5, 4.6, and Theorem 4.9. It is shown that
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if a topological group G is an image of a separable metrizable space under a pseu-
doopen continuous mapping, then G is metrizable (Theorem 5.6). In Section 5
we obtain some results on the behaviour of the properties introduced in the paper
under pseudoopen mappings and intersection of topologies.

In terminology and notation, we follow [6]. In particular, ω is the set of all
natural numbers. We denote by int(P ) the interior of an arbitrary subset P of a
space X . Recall that a prefilter on a set Y is a non-empty family η of non-empty
subsets of Y such that the intersection of any finite collection of elements of η
contains an element of η. Another name for a prefilter is “a base of a filter”.
A prefilter η is called free if

⋂
η = ∅. We recall also that a space X is said to be

strongly Fréchet-Urysohn if, for any decreasing sequence {An : n ∈ ω} of subsets
of X and any point x in the intersection of the closures of the sets An, one can
select xn ∈ An for every n ∈ ω so that the sequence {xn : n ∈ ω} will converge
to x.

2. A construction of a topological space

A construction. Suppose that Y is an infinite set. We also fix a non-empty family
F of free prefilters on Y .

For every positive integer n, let Zn be the set of finite sequences z =
(z1, z2, . . . , zn) of elements of Y . Thus, the number of entries in any z ∈ Zn

is exactly n, and we denote the k-th element of such z by zk, for k = 1, . . . , n.
We put Z =

⋃
{Zn : n ∈ ω}. If z ∈ Zn, then we write r(z) = n, and say that the

length of z is n.
Take any z, h ∈ Z. We put z ≤ h if r(z) ≤ r(h) and zi = hi, for each

i = 1, . . . , r(z). If we also have r(z) < r(h), then we write z < h.
Let us define a certain neighbourhood-like structure on the set Z which will

allow to introduce a natural topology on Z.
Fix z ∈ Z, and let Hz = {h ∈ Z : z ≤ h}. We also put W (z, U) = {h ∈ Z : z <

h, hn+1 ∈ U}, where n = r(z), and U is any non-empty subset of Y . For η ∈ F,
let ηz = {W (z, U) : U ∈ η}. Further, we put Fz = {ηz : η ∈ F}.

In this way, we have defined a family Fz of families ηz of subsets of the set
Z for every z ∈ Z. Clearly, every ηz is a prefilter: the intersection of any two
elements of ηz contains an element of ηz, and all elements of ηz are non-empty
sets.

Every such assignment of families of subsets to elements of a set generates a
topology on this set. In the case we consider, the definition runs as follows.

A subset H of Z will be called open if, for every z ∈ H and every ηz ∈ Fz,
there exists W ∈ ηz such that W ⊂ H . The set W in this definition need not
contain the point z.

The set of all open subsets of Z so defined will be denoted by TF. Clearly, TF

is a topology on Z, since every ηz is a prefilter on Z. We say that this topology
is generated on Z by the family F.

Proposition 2.1. For each z ∈ Z, the set Hz is open.
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Proof: Indeed, for any p ∈ Hz , any η ∈ F and any U ∈ η, we obviously have
W (p, U) ⊂ Hz. Therefore, the set Hz is open. �

Proposition 2.2. For each z ∈ Z and each U ∈ η, the set W (z, U) is open. In
other words, every element of the family ηz is open in the space Z.

Proof: Put n = r(z), and take any p ∈ W (z, U). Then z < p and pn+1 ∈ U .
It follows that similar conditions are satisfied by every element of Hp. Hence,
Hp ⊂ W (z, U). Since p ∈ Hp, and Hp is open in Z, by Proposition 2.1, it follows
that W (z, U) is open. �

Let us assume that the family F is indexed: F = {ηα : α ∈ A}.
Suppose that ξ = {Uα : α ∈ A} is a family of subsets of X such that Uα ∈ ηα,

for every α ∈ A. Then we say that ξ is a choice family (on F).

Proposition 2.3. Suppose that ξ = {Uα : α ∈ A} is an arbitrary choice family
on F. Then the set Vξ(z) = (

⋃
{W (z, Uα) : α ∈ A})∪ {z} is an open subset of Z,

for any z ∈ Z.

Proof: Indeed, the definition of an open set is, clearly, satisfied at the point
z. It is also satisfied at all other points of Vξ(z), by Proposition 2.2 and by the
definition of Vξ(z). Hence, Vξ(z) is open. �

The sets Vξ(z), such as in the last statement, will be called special open sets .
Proposition 2.3 and the definition of an open set in Z immediately lead to the
next statement:

Proposition 2.4. The family B of all special open sets is a base of the space Z.

Proposition 2.5. Let z and p be any two elements of Z such that Hz ∩ Hp is
not empty. Then either z ≤ p or p ≤ z.

Proof: Put n = r(z) and m = r(p). We may assume that n ≤ m. Let us show
that z ≤ p.

Assume the contrary. Then zi 6= pi, for some i ∈ {1, . . . , n}. Then hi 6= pi, for
any h ∈ Hz . Therefore, any such h is not in Hp, a contradiction. �

Proposition 2.6. Every special open set Vξ(z) is closed in the space Z.

Proof: Take any p ∈ Z \ Vξ(z), and let n = r(z), m = r(p).

Case 1: m < n. Put y = zm+1. Clearly, we can find a choice family κ = {Uα :
α ∈ A} on F such that hm+1 6= zm+1, for any h ∈ Vκ(p). Hence, Hz ∩ Vκ(p) = ∅.
The conclusion follows, since Vκ(p) is open and Vξ(z) ⊂ Hz.

Case 2: m = n. Then Hz ∩ Hp = ∅. The rest is obvious.

Case 3: n < m. If it is not true that z < p, then Hp∩Hz = ∅, and we complete
the argument as in Case 2. Assume now that z < p. Since p does not belong to
Vξ(z), we have pn+1 /∈

⋃
{Uα : α ∈ A}. Again, we conclude that Hp and Vξ(z) do

not meet. Since Hp is an open neighbourhood of p, the argument is complete. �
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Theorem 2.7. The space Z is a zero-dimensional T1-space. Hence, Z is Ty-
chonoff.

Proof: This statement immediately follows from Propositions 2.4 and 2.6. We
also use the assumption that every prefilter in F is free. �

Observe that the space Z does not have isolated points.

3. On ω-first-countable and related spaces

In this section, we present an example of a non-empty Tychonoff countable
Fŕechet-Urysohn space that is not first-countable at any point. We also introduce
some related general concepts and study them.

A prefilter η on a topological space X is called open if all elements of η are
open subsets of X .

A family P of prefilters on a topological space X will be called closure-generating

at a point x ∈ X if, for every subset A of X , the next condition is satisfied:
x ∈ A if and only if there exists η ∈ P such that every element of η meets A.
A family P of prefilters on a topological space X will be called base-generating

at a point x ∈ X if all η ∈ P are open prefilters on X and the family P is
closure-generating at x.

The following elementary statement is easy to prove.

Proposition 3.1. Suppose that x is a point of a space X , and P = {ηα : α ∈ M}
is a closure-generating at x family of prefilters on X . Then:

1) for any open neighbourhood O(x) of x, one can select Pα ∈ ηα, for each
α ∈ M , so that the set B = {x} ∪ {Pα : α ∈ M} is contained in O(x);

2) the interior of the set B = {x} ∪ {Pα : α ∈ M} contains x, for any choice
of Pα ∈ ηα for every α ∈ M .

A topological space X is said to be side-first-countable at a point x ∈ X if
there exists a base-generating at x family P of countable prefilters on X . If, in
addition, this family P can be chosen to be countable, then we call X almost

first-countable at x (or ω-first-countable at x).
If a space is ω-first-countable at every point, we will say that this space is

ω-first-countable (or almost first-countable).
A side-base of a space X is a family S of open subsets of X such that, for each

x ∈ X , there exists a family P of prefilters such that every η ∈ P is contained in
S and P is closure-generating at x. If, in addition, for each x ∈ X the family P

can be selected to be countable, we say that S is an ω-side-base of X . Clearly,
every base of a space X is an ω-side-base of X .

The minimum of cardinalities of side-bases (of ω-side-bases) of a space X will
be called side-weight (ω-side-weight , respectively) of X .

The concepts introduced above can be illustrated using objects in the construc-
tion presented in the preceding section. Indeed, we, obviously, have:
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Proposition 3.2. Let Y , Z, F, and other notation, be as in the Construction.
Then, for every z ∈ Z, the family Fz is base-generating, and the family S =⋃
{Fz : z ∈ Z} is a side-base of Z.

Proof: Let B ⊂ Z, z ∈ Z, and η ∈ Fz be such that every element of η meets B.
Since any open neighbourhood O(z) of z contains some element of η, by the
definition of the topology of Z, it follows that O(z) ∩ B 6= ∅. Hence, z ∈ B.

Conversely, assume that z ∈ B. Then the set C = B \ {z} is not closed.
Therefore, the set V = {z} ∪ (Z \ B) is not open. Since Z \ B is open, from the
definition of open sets in Z it follows that for the set V this definition is violated
precisely at the point z. Hence, there exists η ∈ Fz such that every element of η
meets B. Since every element of η is open in Z, it follows that every element of
η meets B. �

When we impose strong assumptions on Y and F, the properties of the space
Z in the Construction may become rather interesting. In particular, we have the
following statements.

Proposition 3.3. If P is a closure-generating family of countable prefilters on
X at some x ∈ X , then the space X is Fréchet-Urysohn at x, that is, whenever x
is in the closure of a subset B of X , then some sequence of points of B converges
to x.

Proof: Since every prefilter in P is countable, this follows immediately from the
definitions of a closure-generating family and of a prefilter. �

Theorem 3.4. Suppose that, in the construction, Y is countable, F is countable,
and every η ∈ F is countable. Then the space Z is countable and has a countable
ω-side-base. Thus, the ω-side-weight of Z is countable, and Z is an almost first-
countable Frećhet-Urysohn space.

Proof: The first part of the statement follows from Proposition 3.2 and from
the definitions of Fz and ω-side-base. The second conclusion follows from Propo-
sition 3.3. �

Example 3.5. Let Y = ω × ω. Put Pm = {j ∈ ω : m ≤ j} for m ∈ ω, and
ηi = {Pm × {i} : m ∈ ω} for i ∈ ω. Now let us apply the construction using this
Y and the family F = {ηi : i ∈ ω} of free prefilters on Y . We denote by Zω the
space Z defined in this way. The space Zω is a countable normal Fŕechet-Urysohn
space with a countable side-base. This follows immediately from Theorem 3.4.
Thus, Zω is almost first-countable and has a countable π-base. However, there is
no point in Zω at which the space Zω is first-countable.

To prove this, it is enough to show that, for every z ∈ Zω, the space Zω contains
a topological copy Vz(ω) of the countable Fŕechet-Urysohn fan V (ω) such that z
is the only non-isolated point of Vz(ω). The last conclusion easily follows from the
definition of the side-base of Zω at z. Since the space Vz(ω) is not first-countable
at z, it follows that Zω is not first-countable at z. This also means that no point
of Zω is isolated.
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In particular, Zω is not metrizable and does not have a countable base.
It is not difficult to show that the space Zω is homogeneous. However, Zω is

not homeomorphic to a topological group. Indeed, otherwise, Zω would have been
metrizable, as any topological group with a countable π-base.

4. Some applications to topological groups and to compact spaces

In this section, we prove a few results, involving several concepts introduced
above, for compact spaces and for topological groups.

The following convergence concept resembles the notion of a closure-generating
family of prefilters.

Let X be a T1-space, and x be a point of X . A family S of subsets of X will be
called closure-sensitive at x (or just sensitive at x) if, for each open neighbourhood
O(x) of x and for each subset A of X \ {x} such that x ∈ A, there exists P ∈ S

satisfying the following conditions: P ⊂ O(x) and P ∩ A is infinite.
Obviously, if B is a base of X at a point x, and X is a T1-space, then B is

closure-sensitive at x. Every sensitive at x family of sets is a π-network at x, but
its elements need not be open. They also need not contain the point x.

The proof of the next statement is omitted, since it is easy and standard.

Proposition 4.1. If F is a closure-generating family of prefilters at a point x of
a T1-space X , then

⋃
F is a closure-sensitive at x family of subsets of X .

The minimum of cardinalities of sensitive at x families of subsets of X is called
the sensitivity of X at x and is denoted by sn(x, X). Clearly, sn(x, X) ≤ χ(x, X),
for any T1-space X , where χ(x, X) is the character of X at x. The countable
Fréchet-Urysohn fan is not first-countable, but its sensitivity is countable at every
point. Such spaces we will call countably sensitive.

A space X is ω-Fréchet-Urysohn at a point x ∈ X if there exists a countable
family F of countable prefilters on X such that F is closure-generating at x.
Clearly, every ω-first-countable at x space X is ω-Fréchet-Urysohn at x, and if X
is ω-Fréchet-Urysohn at x, then X is Fréchet-Urysohn at x. The next statement
is obvious in view of Proposition 4.1:

Proposition 4.2. If a space X is ω-Fréchet-Urysohn at x ∈ X , then X is count-
ably sensitive at x.

Let us show that the converse to the last statement does not hold.

Example 4.3. Put X = (ω ×ω)∪ {θ}, where θ is some object not in ω ×ω. Let
us define a topology on X . Every point of ω × ω we declare to be isolated in X .
Put Yi = ω × {i}, for each i ∈ ω. For any subset W of X we denote by KW the
set of all i ∈ ω such that Yi \ W is infinite. A subset W of X containing θ is
declared to be open if the set KW is finite. Let ηi be the set of all subsets P of
Yi such that Yi \ P is finite. Then η =

⋃
{ηi : i ∈ ω} is a closure-sensitive at θ

countable family of subsets of X . However, the space X is easily seen not to be
Fréchet-Urysohn at θ. Hence, X is not ω-Fréchet-Urysohn at θ.
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One of main results of this section is Theorem 4.5 below. To prove it, we need
the following elementary fact:

Proposition 4.4. If a T1-space X is countably sensitive at a point x, then the
tightness of X at x is countable.

Proof: Let us fix a countable family S of subsets of X which is closure-sensitive
at x, and take any A ⊂ X such that x ∈ A \ {x}. Fix a point c(P ) ∈ A ∩ P ,
for each P ∈ S such that A ∩ P 6= ∅. Then C = {c(P ) : P ∈ S, A ∩ P 6= ∅} is a
countable subset of A such that x ∈ C, since S is closure-sensitive at x. Therefore,
the tightness of X at x is countable. �

Theorem 4.5. If a countably compact regular T1-space X is countably sensitive
at a point x ∈ X , then X is first-countable at x.

Proof: By Proposition 4.4, the tightness of X is countable. Since X is a count-
ably compact regular T1-space, it follows that the fan-tightness vet(X) is count-
able [3]. Let us fix a countable family S of subsets of X which is closure-sensitive
at x. We may assume that x belongs to every element of S.

Let O(x) be any open neighbourhood of x, and let γ = {P ∈ S : P ⊂ O(x)}.
Then γ is countable, since S is countable. Thus, γ = {Pn : n ∈ ω}. Put Bn =⋃
{Pi : i ≤ n}, for n ∈ ω.

Claim 1: x ∈ int(Bn), for some n ∈ ω.

Assume the contrary. Then, for each n ∈ ω, we put An = X \ Bn and observe
that x ∈ An, for each n in ω. Since the tightness of X is countable, we can find
a countable subset Cn of An such that x ∈ Cn, for each n ∈ ω. The next claim is
obvious:

Claim 2: Pi ∩ Cn = ∅, for each i ≤ n.

Since vet(x, X) ≤ ω, we can choose a finite subset Kn ⊂ Cn for every n ∈ ω so
that x is in the closure of the set M =

⋃
{Kn : n ∈ ω}. Clearly, x is not in M .

Fix k ∈ ω. It follows from Claim 2 that Pk ∩ Kn is empty for every n > k.
Therefore, M ∩ Pk if finite. Thus, the following claim holds:

Claim 3: There exists M ⊂ X \ {x} such that x ∈ M and M ∩ P is finite, for
every P ∈ γ.

Now we can produce a contradiction completing the proof of Claim 1. Indeed,
since S is closure-sensitive at x, we can find P ∈ S such that P ⊂ O(x) and M ∩P
is infinite. Then P ∈ γ, by the definition of γ, and we have a contradiction with
Claim 3. Claim 1 is established.

Observe that Bn ⊂ O(x), for each n ∈ ω. This observation and Claim 1 imply
that the family E of all subsets V of X such that V = int(

⋃
ξ), for some finite

subfamily ξ of S, and x ∈ V , is a base of X at x. Clearly, E is countable, since S

is countable. Hence, X is first-countable at x. �

It follows that the Σ-product of uncountably many copies of the closed unit
interval [0, 1] is not countably sensitive at any point. Notice that this space is
countably compact and Fréchet-Urysohn (and enjoys many other properties).
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The proof of Theorem 4.5 shows that the following statement is also true:

Theorem 4.6. A regular T1-space X is first-countable at a point x ∈ X if and
only if X is countably sensitive at x and the fan-tightness vet(x, X) of X at x is
countable.

Theorem 4.5 can be considerably generalized using the next obvious statement:

Proposition 4.7. If a space X is countably sensitive at a point x ∈ X , then
every subspace Y of X containing x is countably sensitive at x.

Recall that a point x of a space X is called a q-point if there exists a sequence
{Vi : i ∈ ω} of open neighbourhoods of x such that, for any choice of xi in Vi, the
resulting sequence has an accumulation point in X (see [7]).

Theorem 4.8. If a regular T1-space X is countably sensitive at a q-point x ∈ X ,
then X is first-countable at x.

This theorem follows from Theorem 4.5 and Proposition 4.7 by a standard
argument which is omitted.

There is a version of Theorem 4.5 that concerns topological groups.

Theorem 4.9. Suppose that G is a topological group, and that the space G is
Fréchet-Urysohn and countably sensitive at some point. Then G is metrizable.

Proof: By a well-known result of P.J. Nyikos [8], the space G is strongly Fréchet-
Urysohn. Therefore, the fan-tightness of G is countable. It follows from Theo-
rem 4.6 that G is first-countable. Since every first-countable topological group is
metrizable, the conclusion follows. �

We know that a Fréchet-Urysohn topological group need not be metrizable:
the Σ-product of uncountably many copies of the space R of reals can serve as an
example. It is natural to ask whether every countably-sensitive topological group
G is metrizable. I do not know the answer to this question at this time, though I
strongly suspect that it is in the negative.

Here is a useful general statement.

Proposition 4.10. Let X be a T1-space, x ∈ X , and X =
⋃
{Xn : n ∈ ω}, where

x ∈ Xn for each n ∈ ω, and each Xn is first-countable at x. Suppose further that
if A is any subset of X such that x ∈ A, then x ∈ A ∩ Xn, for some n ∈ ω.

Then X is countably sensitive at x.

Proof: Fix a countable base γn of the subspace Xn at x, for every n ∈ ω. We
claim that the countable family S =

⋃
{γn : n ∈ ω} is closure-sensitive in X at x.

Indeed, take any A ⊂ X \ {x} such that x ∈ A. Take also an arbitrary open
neighbourhood O(x) of x in X . By the assumption in the Theorem, x ∈ A ∩ Xk,
for some k ∈ ω. Since γk is a base of Xk at x, there exists V ∈ γk such that
x ∈ V ⊂ O(x) ∩ Xk ⊂ O(x). Since V is an open neighbourhood of x in Xk, it

follows that x ∈ V ∩ (A ∩ Xk) ⊂ V ∩ A. Taking into account that X is a T1-space
and that x is not in V ∩ A, we conclude that the set V ∩ A is infinite. �
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Theorem 4.11. Let G be a topological group, x ∈ G, and G =
⋃
{Xn : n ∈ ω},

where x ∈ Xn for each n ∈ ω, and each Xn is first-countable at x. Suppose
further that if A is any subset of G such that x ∈ A, then x ∈ A ∩ Xn, for some
n ∈ ω.

Then G is metrizable.

Proof: It follows from the second condition in the theorem that the space G
is Fréchet-Urysohn. Now Proposition 4.10 and Theorem 4.9 imply that G is
metrizable. �

We present now a result that easily follows from a well-known theorem on the
cardinality of first-countable compacta (see [1]) and Theorem 4.5:

Theorem 4.12. If a compact Hausdorff space X is countably sensitive at each
point, then the cardinality of X does not exceed 2ω.

The conclusion can be considerably strengthened if the assumptions in the last
theorem are replaced with their global version.

A closure-sensor of a space X (or in X) is a family S of subsets of X which
is closure-sensitive at each point of X . Clearly, every base of a space X is a
closure-sensor of X . On the other hand, a network of a space X need not be
a closure-sensor of X .

Here is one of the main results in this section.

Theorem 4.13. If a regular countably compact T1-space X has a countable
closure-sensor S, then X has a countable base (and hence, X is a metrizable
compactum).

Proof: We just have to add a few observations to those used in the proof of
Theorem 4.5. Indeed, let Y be the set of all non-isolated points of X . Clearly, Y
is closed in X , and therefore the subspace Y is countably compact.

Arguing as in the proof of Theorem 4.5, we see that the family E of all subsets
V of X such that V = int(

⋃
ξ), for some finite subfamily ξ of S, satisfies the

following condition:

(s) For every x ∈ Y and every open neighbourhood O(x) of x in X , there
exists V ∈ E such that V ⊂ O(x) and V ∪ {x} is open in X .

Observe that if x, V , and O(x) are such as in condition (s), then x ∈ V ⊂ O(x).

Hence, x ∈ V ∪ {x} ⊂ int(V ) ⊂ O(x). Since X is regular, it follows that the next
claim holds:

Claim 1: The family H = {int(V ) : V ∈ E} contains a base of X at x, for each
x ∈ Y .

In particular, the space Y has a countable base. Since Y is also countably
compact, we conclude that Y is compact.

Observe that the family H in Claim 1 is countable, since E is countable. There-
fore, the family of all finite subfamilies of H is also countable. It follows now from
compactness of Y and Claim 1 that Y is a Gδ-subset of X . However, every closed
subset of X contained in X \ Y is finite, since X is countably compact and each
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point of X \Y is isolated. Therefore, the set X \Y is countable. Hence, the family
B = H ∪ {{x} : x ∈ X \ Y } is a countable base of X . �

The space Zω in Example 3.5 is a countable Tychonoff space with a countable
side-base. Clearly, any side-base of an arbitrary T1-space is a closure-sensor of
the space. Thus, Zω has a countable open closure-sensor. However, Z is not
first-countable.

5. Some applications to pseudoopen mappings

Some of the notions introduced above naturally appear in the study of map-
pings. This opens an opportunity to apply results obtained in this paper to inves-
tigate connections between topological spaces established by means of mappings.
We present a few such applications in this section.

Let f be a continuous mapping of a space X onto a space Y , and y be a point
of Y . Recall that f is said to be pseudoopen at y if for every open subset U of X
containing f−1(y) we have: y ∈ int(f(U)). We say that f is a strict S-mapping

at y if there exists a countable family γ of open subsets of X such that, for each
x ∈ f−1(y), the family γ contains a base of X at x. If f is a pseudoopen mapping
(a strict S-mapping) at each y ∈ Y , we call f pseudoopen (a strict S-mapping,
respectively).

Proposition 5.1. Suppose that f is a continuous mapping of a space X onto
a T1-space Y , and let y be a point of Y such that f is a pseudoopen strict
S-mapping at y. Then Y is countably sensitive at y.

Proof: Fix a countable family γ of open subsets of X such that, for each x ∈
f−1(y), γ contains a base of X at x. Put P = {f(U) : U ∈ γ}. We claim that the
countable family P of subsets of Y is closure-sensitive at y. Let us check this.

Take any A ⊂ Y \ {y} such that y is in the closure of A, and put B = f−1(A).
Clearly, the sets f−1(y) and B are disjoint. However, since f is pseudoopen at y,
there exists x ∈ f−1(y) such that x is in the closure of B.

Now take an arbitrary open neighbourhood O(y) of y. Since γ contains a
base of X at x, and f is continuous, there exists U ∈ γ such that x ∈ U and
f(U) ⊂ O(y).

We have x ∈ U ∩ B, since U is an open neighbourhood of x. It follows that
f(U ∩B) is infinite. Indeed, otherwise we can find z ∈ f(U ∩B) such that x is in
the closure of f−1(z). Then, by continuity of f , f(x) = z, since Y is a T1-space.
However, f(x) = y, and y 6= z, since z ∈ f(B) = A and y is not in A. This
contradiction shows that f(U ∩ B) is infinite. Since f(U ∩ B) ⊂ f(U) ∩ f(B) ⊂
f(U)∩A, it follows that f(U)∩A is infinite. Taking into account that f(U) ∈ P,
we conclude that P is closure-sensitive at y. �

Theorem 5.2. Suppose that f is a continuous pseudoopen strict S-mapping of a
space X onto a T1-space Y . Then Y is Fréchet-Urysohn and countably sensitive
at each point.
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Proof: Clearly, X is first-countable. Since f is pseudoopen, it follows that Y
is Fréchet-Urysohn (see [6]). The remaining part of the statement immediately
follows from Proposition 5.1. �

Theorem 5.3. Suppose that f is a continuous pseudoopen strict S-mapping of a
space X onto a regular T1-space Y which is a q-space. Then Y is first-countable.

Proof: This statement follows from Theorems 5.2 and 4.8. �

Corollary 5.4. Suppose that f is a continuous pseudoopen strict S-mapping of a
space X onto a regular countably compact T1-space Y . Then Y is first-countable.

Theorem 5.5. Suppose that f is a continuous pseudoopen strict S-mapping of a
space X onto a regular T1-space Y , and that the fan-tightness of Y is countable.
Then Y is first-countable.

Proof: This statement follows from Theorems 5.2 and 4.6. �

Theorem 5.6. Suppose that f is a continuous pseudoopen strict S-mapping of
a space X onto a T1-space Y which is a topological group. Then Y is metrizable.

Proof: This statement follows from Theorems 5.2 and 4.9. �

The countable Fréchet-Urysohn fan V (ω) can be naturally represented as an
image of a separable metrizable space under a continuous pseudoopen strict S-
mapping. However, V (ω) is not metrizable.

We have already mentioned that, for every strict S-mapping of a space X onto
a space Y , the space X is first-countable. The next obvious statement goes in the
opposite direction.

Proposition 5.7. Every countable-to-one mapping of a first-countable space X
to a space Y is a strict S-mapping.

Thus, Proposition 5.1 is applicable to pseudoopen countable-to-one mappings
of first-countable spaces.

Corollary 5.8. Suppose that f is a continuous mapping of a first-countable space
X onto a T1-space Y , and let y be a point of Y such that f is pseudoopen and
countable-to-one at y. Then Y is countably sensitive at y and Fréchet-Urysohn
at y.

Can we say more? The proof of the next statement should be obvious by now
and is omitted.

Proposition 5.9. For every countable-to-one pseudoopen continuous mapping
of a first-countable space X onto a space Y , the space Y is ω-Fréchet-Urysohn.

Let us now consider a continuous pseudoopen mapping of a space with a count-
able base onto an arbitrary space Y . What can we say about the properties of Y ?
Observe that any such mapping is a strict S-mapping. To formulate the results
in the strongest form, we need the following version of the concept of a sensor.
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A family S of subsets of a space X will be called a Fréchet-Urysohn sensor on
X (or a FU-sensor on X) if, for each A ⊂ X and each x ∈ A \ A, there exists a
countable prefilter η ⊂ S converging to x such that P ∩ A 6= ∅ for every P ∈ η.

A family S of subsets of a space X will be called a strong Fréchet-Urysohn

sensor on X (or a strong FU-sensor on X) if, for each x ∈ X , there exists a
countable family F of countable prefilters on X converging to x and contained in
S and satisfying the following condition:

For each A ⊂ X such that x ∈ A, there exists η ∈ F such that P ∩ A 6= ∅ for
every P ∈ η.

Proposition 5.10. If f is a continuous pseudoopen mapping of a space X with
a countable base B onto a space Y , then Y has a countable FU-sensor.

Proof: It is easy to verify that the family S = {f(U) : U ∈ B} is a countable
FU-sensor on Y . �

Similarly, the next statement is established.

Proposition 5.11. If f is a continuous countable-to-one pseudoopen mapping
of a space X with a countable base B onto a space Y , then Y has a countable
strong FU-sensor.

Theorem 5.12. A countable space Y can be represented as an image of a count-
able space with a countable base under a continuous pseudoopen mapping if and
only if Y has a countable strong FU-sensor, that is, if and only if Y is ω-Fréchet-
Urysohn at each point y of Y .

Proof: The necessity follows from Proposition 5.11. Let us prove the sufficiency.
Fix a strong FU-sensor on Y . Thus, for each y ∈ Y and each i ∈ ω, we have

a countable family {η(y,i) : i ∈ ω} of countable prefilters η(y,i), each of which is
converging to y, such that the following condition (t) is satisfied:

(t) For any subset A of Y such that y ∈ A, and for some i ∈ ω, we have
P ∩ A 6= ∅, for every P ∈ η(y,i).

For each pair (y, i) ∈ Y × ω, we define a topological space X(y,i) as follows.
First, we define a topological space Y(y,i). The set of points of this space is the
set Y . The topology T(y,i) of it consists of all subsets of Y \ {y}, as well as of the
subsets W of Y such that y ∈ W and P ⊂ W , for some P ∈ η(y,i). Now we let
X(y,i) = Y(y,i) × {(y, i)}, with the product topology.

The space X(y,i) so defined is first-countable, since η(y,i) is countable. Clearly,
this space has only one non-isolated point. Let X be the free topological sum of
the countable family {X(y,i) : y ∈ Y, i ∈ ω} of topological spaces defined in this
way. Obviously, X has a countable base.

Let f be the standard mapping of X to Y defined by the rule: f(z, (y, i)) = z,
for z ∈ Y , y ∈ Y , and i ∈ ω. Then f is continuous, since η(y,i) converges to y. The
mapping f is also pseudoopen (see Proposition 3.1). And f is, clearly, onto Y . �
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Corollary 5.13. There exists a continuous pseudoopen mapping of a countable
metrizable space X onto a Tychonoff space Y such that, for each y ∈ Y , the space
Y is not first-countable at y.

Proof: Suffices to take the space Zω described in Example 3.5 and to apply the
construction in the proof of Theorem 5.12. �

In connection with the last result, the following questions naturally arise:

Problem 5.14. Does there exist a continuous pseudoopen mapping of a non-
empty locally compact separable metrizable space X onto a Tychonoff space Y
such that, for each y ∈ Y , the space Y is not first-countable at y?

Problem 5.15. Does there exist a continuous pseudoopen mapping of a non-
empty locally compact countable metrizable space Xonto a Tychonoff space Y
such that, for each y ∈ Y , the space Y is not first-countable at y?

If in the above questions we replace “pseudoopen” by the weaker requirement
that f is quotient, then both questions get positive answers. Indeed, it suffices to
take as Y the free topological group of a countable non-discrete compact Hausdorff
space and to use a natural mapping.

Problem 5.16. Suppose that Y is a non-empty (countable) Tychonoff space with
a countable strong FU-sensor S such that each element of S is compact. Is then
Y first-countable at some point?

Results of this section can be applied to intersections of countable families of
first-countable topologies. Let Y be a set, and η = {Ti : i ∈ ω} be a countable
family of first-countable topologies on Y . Then their intersection T =

⋂
η is also

a topology on Y . Provided with this topology, Y is a sequential topological space
[4]. Besides, Y with this topology is a T1-space if every Ti is a T1-topology. We
will now consider an important special case in which the space (Y, T) so obtained
is Fréchet-Urysohn and Hausdorff.

Theorem 5.17. Suppose that G is a Hausdorff Fréchet-Urysohn topological
group the topology T of which is the intersection of a countable family η = {Ti :
i ∈ ω} of first-countable topologies on the set G. Then the space G is metrizable.

Proof: Let X be the free topological sum of the spaces Xi, where Xi is the set
G given the topology Ti. The obvious natural mapping f of the space X onto the
space G (with the topology T) is a quotient mapping. However, since G is Fréchet-
Urysohn and Hausdorff, it follows that f is pseudoopen [4]. Clearly, f is countable-
to-one, onto, and continuous, and X is first-countable. By Proposition 5.7 and
Theorem 4.9, G is metrizable. �
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