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Two notes on eventually

differentiable families of operators

Tomáš Bárta

Abstract. In the first note we show for a strongly continuous family of operators
(T (t))t≥0 that if every orbit t 7→ T (t)x is differentiable for t > tx, then all orbits
are differentiable for t > t0 with t0 independent of x. In the second note we give
an example of an eventually differentiable semigroup which is not differentiable
on the same interval in the operator norm topology.

Keywords: eventually differentiable semigroups, operator families

Classification: 47D06

A strongly continuous semigroup is said to be eventually differentiable if the
mapping t 7→ T (t)x is differentiable for all x ∈ X and all t > t0. Batty asked in
[2], whether this property is equivalent to

(1) ∀x ∃ tx > 0; T (·)x is differentiable ∀ t > tx.

This question was answered positively by Iley in [3]. However, the proof of Iley
depends heavily on the semigroup property. In the present result we show that
the semigroup property is not needed in the proof and that equivalence of differ-
entiability and (1) holds for every strongly continuous family of operators.

For C0-semigroups, eventual differentiability is equivalent to differentiability of
the mapping t 7→ T (t) in the operator norm topology. More precisely, if t 7→ T (t)
is differentiable on (t0, +∞) then obviously t 7→ T (t)x is differentiable on the
same interval for every x ∈ X . If t 7→ T (t)x is differentiable on (t0, +∞) for
every x then t 7→ T (t) is differentiable on (2t0, +∞) (see e.g. [4]). It was not
known, whether 2t0 can be replaced by t0 in the last assertion. In the second
part of this paper we give an example, which shows it is not possible. It is
also an example of a translation semigroup, which is eventually differentiable and
neither immediately differentiable nor nilpotent (an example of an immediately
differentiable translation semigroup that is not analytic was given in [1]).

Theorem 1. Let X be a Banach space and S : R+ → B(X) be a strongly

continuous family of bounded linear operators with the following property. For

every x ∈ X there exists tx such that t 7→ S(t)x is differentiable on (tx, +∞).

This work is a part of the project MSM 0021620839 and was partly supported by Nečas
center for mathematical modelling LC 06052 (MŠMT ČR).
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Then there exists t0 ∈ R+ such that t 7→ S(t)x is differentiable on (t0, +∞) for

every x ∈ X .

Proof: We prove Theorem 1 by contradiction. Assume that there exists a se-
quence tn → +∞ (satisfying tn+1 ≥ tn +1) and xn ∈ X such that un : t 7→ S(t)xn

is not differentiable at tn and it is differentiable on (tn + 1
2 , +∞). We will find

y ∈ X such that v(t) := S(t)y will be differentiable at none of tn, n ∈ N.
This y will be in the form

(2) y :=

∞
∑

n=1

cnxn.

Observe that we can assume that ‖xn‖ ≤ 1. If |cn| ≤ 2−n then the series in (2)
converges and y is well defined. We will find the numbers cn inductively, such
that the orbit vn, defined by

(3) vn := S(t)yn, yn :=

n
∑

k=1

ckxk,

is not differentiable at tk for all k ≤ n.
Before we start constructing the sequence cn, let us mention that nondifferen-

tiability of vm at tk (k ≤ m) is equivalent to existence of ε(k, m) > 0 and two
sequences t(k, m) = (t(k, m)i)

∞
i=1, s(k, m) = (s(k, m)i)

∞
i=1 converging to tk such

that

(4)

∥

∥

∥

∥

vm(t(k, m)i) − vm(tk)

t(k, m)i − tk
−

vm(s(k, m)i) − vm(tk)

s(k, m)i − tk

∥

∥

∥

∥

≥ ε(k, m)

for all i ∈ N.

Simultaneously with cn we will construct sequences t(k, n), s(k, n) and numbers
ε(k, n). We will construct them in such a way that t(k, n+1) will be a subsequence
of t(k, n) and s(k, n + 1) will be the corresponding subsequence of s(k, n) and

(5) t(k, n + 1)i = t(k, n)i, s(k, n + 1)i = s(k, n)i for i ≤ n.

Moreover, we will take

(6) ε(k, n) := ε(k)

(

1 +
1

n

)

for some ε(k) > 0. Let us conclude our requirements in the following claim.

Claim. For all k, n ∈ N, k ≤ n, there exist numbers cn (0 < cn ≤ 2−n),
ε(k) > 0 and sequences t(k, n), s(k, n) converging to tk, such that t(k, n + 1) is a

subsequence of t(k, n) satisfying (5), s(k, n+1) is the corresponding subsequence

of s(k, n), and (4) holds for ε(k, n) defined by (6) and vn defined by (3).
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Assume the Claim is true and fix k ∈ N. Condition (5) guarantees that the
diagonal sequence (t(k))∞

i=k
defined by t(k)i := t(k, i)i, i ≥ k, is a subsequence of

t(k, n) for all n ≥ k (and similarly for s(k)). Therefore, we have for every n ≥ k

∥

∥

∥

∥

vn(t(k)i) − vn(tk)

t(k)i − tk
−

vn(s(k)i) − vn(tk)

s(k)i − tk

∥

∥

∥

∥

≥ ε(k, n) = ε(k)

(

1 +
1

n

)

≥ ε(k)

for all i ≥ k. Hence, the function v(t) = limn→∞ vn(t) satisfies

∥

∥

∥

∥

v(t(k)i) − v(tk)

t(k)i − tk
−

v(s(k)i) − v(tk)

s(k)i − tk

∥

∥

∥

∥

≥ ε(k), i ≥ k.

It follows that v is not differentiable at tk. Since k was arbitrary, this is the desired
contradiction (we have found an orbit that is not eventually differentiable).

It remains to prove the Claim. We will construct the numbers and sequences
inductively. Set c1 := 1

2 . Since v1 = 1
2S(t)x1 is not differentiable at t1, there

exist ε(1, 1) > 0 and two sequences t(1, 1) = (t(1, 1)i)
∞
i=1, s(1, 1) = (s(1, 1)i)

∞
i=1

converging to t1 and satisfying (4) for m = k = 1. Take ε(1) := ε(1, 1)/2 and
define ε(1, n) by (6) for n ≥ 2 (for n = 1 identity (6) also holds).

Let us fix n ∈ N and assume that we already have cm, ε(m) and sequences
t(k, m), s(k, m) satisfying all conditions of the Claim for all 1 ≤ k ≤ m ≤ n. We
will find cn+1, ε(n + 1) and sequences t(k, n + 1), s(k, n + 1) for all 1 ≤ k ≤ n + 1
such that they satisfy the conditions of the Claim.

Let vn+1 := vn + c′
n+1un where c′

n+1 satisfies 0 < c′
n+1 < 2−n−1 and its exact

value will be specified later. It holds that
∥

∥

∥

∥

vn+1(t(k, n)i) − vn+1(tk)

t(k, n)i − tk
−

vn+1(s(k, n)i) − vn+1(tk)

s(k, n)i − tk

∥

∥

∥

∥

(7)

≥

∥

∥

∥

∥

vn(t(k, n)i) − vn(tk)

t(k, n)i − tk
−

vn(s(k, n)i) − vn(tk)

s(k, n)i − tk

∥

∥

∥

∥

(8)

− c′n+1

∥

∥

∥

∥

un+1(t(k, n)i) − un+1(tk)

t(k, n)i − tk
−

un+1(s(k, n)i) − un+1(tk)

s(k, n)i − tk

∥

∥

∥

∥

.(9)

Define

(10) t(k, n + 1)i := t(k, n)i, s(k, n + 1)i := s(k, n)i for i, k ≤ n

(so, (5) will be satisfied for these sequences). If c′
n+1 is small enough then (9) is

less than ε(k) 1
n(n+1) for all i, k ≤ n. It follows that (4) holds (with m = n + 1)

for i, k ≤ n. In fact, (7) is larger than

ε(k, n) − ε(k)
1

n(n + 1)
= ε(k)

(

1 +
1

n
−

1

n(n + 1)

)

= ε(k)
n + 2

n + 1
= ε(k, n + 1).

Let us point out that further reduction of c′
n+1 > 0 will not destroy the inequality

(4) for i, k ≤ n.
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We will construct the rest (i > n) of the sequences t(k, n+1), s(k, n+1), k ≤ n.
Let us fix k ≤ n and define vk

n+1 := vn + d(k)un+1 where d(k) > 0 is arbitrary.
Then exactly one of the following is true: (A) for every d(k) > 0 there exists a
subsequence t(k, n + 1) of t(k, n) such that (4) holds for vk

n+1 and m = n + 1, or
(B) there exists d(k) > 0 such that

(11)

∥

∥

∥

∥

vk
n+1(t(k, n)i) − vk

n+1(tk)

t(k, n)i − tk
−

vk
n+1(s(k, n)i) − vk

n+1(tk)

s(k, n)i − tk

∥

∥

∥

∥

< ε(k, n + 1)

for all i > n with at most finitely many exceptions.
If (A) is true, set d̃(k) := +∞. If (B) is true, take d such that for d(k) = d

inequality (11) holds for all i > n with at most finitely many exceptions. Set

d̃(k) = d
ε(k, n) − ε(k, n + 1)

ε(k, n) + ε(k, n + 1)
.

Denote the expression in the norm in (8) by Oi and the expression in the norm
in (9) by Pi. Then (11) is equivalent to

d(k)Pi ∈ Bi := B(Oi, ε(k, n + 1)),

where B(O, r) denotes the ball of radius r centered at O. Since the ball Bi does
not contain zero (‖Oi‖ ≥ ε(k, n) > ε(k, n + 1)), for di > 0 small enough we have
diBi ∩ Bi = ∅. In fact, di must be smaller than

‖Oi‖ − ε(k, n + 1)

‖Oi‖ + ε(k, n + 1)
.

Since the function z 7→ z−c

z+c
is increasing on (0, +∞) if c > 0, we have

‖Oi‖ − ε(k, n + 1)

‖Oi‖ + ε(k, n + 1)
≥

ε(k, n) − ε(k, n + 1)

ε(k, n) + ε(k, n + 1)

for all i ∈ N. Hence, if we take an arbitrary d(k) satisfying

d(k) ≤ d
ε(k, n) − ε(k, n + 1)

ε(k, n) + ε(k, n + 1)
,

then we have

(12) dPi ∈ Bi ⇒ d(k)Pi /∈ Bi.

Hence, for all d(k) ≤ d̃(k), there exists a subsequence t(k, n + 1) of t(k, n) (and
corresponding subsequence s(k, n + 1)) such that (4) holds with vk

n+1 and m =
n + 1. The last sentence is true in both cases (A) and (B). Hence, cn+1 :=
min{c′

n+1, d(k); k ≤ n} is the desired number, for which the beginning (i ≤ n)
and also the rest (i > n) of the subsequences t(k, n + 1), s(k, n + 1) satisfy (4).
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It remains to note that uk, k ≤ n are differentiable at tn+1 and un+1 is not.
Hence vn+1 is not differentiable at tn+1 (cn+1 > 0) and we can find ε(n+1, n+1)
and sequences t(n + 1, n + 1), s(n + 1, n + 1) → tn+1 such that (4) holds. Take
ε(n + 1) := n+1

n+2 · ε(n + 1, n + 1). By defining ε(n + 1, l) for l > n + 1 by (6) we
finish the inductive step and thus conclude the proof of the Claim. �

Now we give an example of a semigroup where intervals of “strong differentia-
bility” and “operator norm differentiability” do not coincide.

Example 1. Denote N := {0, 1, 2, . . .}. Consider the set

X := {f ∈ BUC ([0, +∞)) : ∃B > 0, ∀n ∈ N

f (n) ∈ BUC ((2πn, +∞)) & |f (n)(t)| ≤ B ∀ t ∈ (2πn, +∞) & f satisfies (U)},

where (U) is the following property

∀ ε > 0 ∃ δ > 0 ∀n ∈ N, s, t ∈ (2πn, +∞), |s − t| < δ ⇒ |f (n)(s) − f (n)(t)| < ε,

i.e., uniform continuity of the derivatives is uniform with respect to n. We define
a norm on X by

‖f‖X := sup
n∈N

sup{|f (n)(t)| : t ∈ (2πn, +∞)}.

Then (X, ‖ · ‖X) is a Banach space. In fact, let fk be a Cauchy sequence. Then
clearly fk converge to a function f in sup-norm with all the derivatives on appro-
priate intervals. The derivatives converge uniformly since the Cauchy estimates
hold uniformly, hence we have convergence in the norm ‖ · ‖X. The limit function
satisfies the estimate |f (n)(t)| ≤ B for some B > 0 since the functions fk sat-
isfy such an estimate and ‖fk − f‖X is small. Property (U) follows by the same
argument as closedness of BUC ([0, +∞)).

Define for t ≥ 0 the mapping T (t) : X → X by

(T (t)f)(s) := f(t + s), s ≥ 0.

Then (T (t))t≥0 is a strongly continuous semigroup on X (this is due to property
(U)) which is eventually differentiable on (2π, +∞). In fact, for n ∈ N, t > 2πn,
s > 2π, h > 0 and k ≤ n we have
∣

∣

∣

∣

1

h
(f (k)(t + s + h) − f (k)(t + s)) − f (k+1)(t + s)

∣

∣

∣

∣

= |f (k+1)(t + ξ)− f (k+1)(t + s)|

for some ξ ∈ (s, s + h). If h < δ then the last term is less than ε (for all s and
k) by property (U). This yields convergence of 1

h
(T (s+ h)f −T (s)f) in the norm

‖ · ‖X .
We show that the semigroup is not differentiable in the operator norm topology

on (2π, 4π). The idea is similar to the proof that the translation semigroup is not
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norm continuous on BUC ([0, +∞)). Let t ∈ (2π, 4π). Take (for k ∈ N, k ≥ 1)

fk(x) :=

{

sin x, x ∈ [0, 2π] ∪ [4π, +∞),
1
k

sin(kx), x ∈ (2π, 4π).

We will show that
∥

∥

∥

∥

1

h
(T (t + h) − T (t)) − AT (t)

∥

∥

∥

∥

L(X)

6→ 0.

In particular, we show that there exists ε > 0 such that for every fixed h > 0
(h < 4π − t) there exist k ∈ N and s ∈ (0, 4π − t − h) such that

∣

∣

∣

∣

1

h
(fk(t + h + s) − fk(t + s)) − f ′

k
(t + s)

∣

∣

∣

∣

> ε.

Take s := 2π/k and k so large, such that s ∈ (0, 4π − t − h). Then we have

f ′
k
(t + s) = cos(k(t + s)) = cos(kt)

and

|fk(t + h + s)| ≤
1

k
, |fk(t + s)| ≤

1

k
.

An easy computation yields

1

h
(fk(t+h+s)−fk(t+s))−f ′

k
(t+s) = sin(kt)

cos(kh) − 1

kh
+cos(kt)

(

sin(kh)

kh
− 1

)

.

If we choose k large enough and such that cos(kt) > 1/2, then
∣

∣

∣

∣

1

h
(fk(t + h + s) − fk(t + s)) − f ′

k(t + s)

∣

∣

∣

∣

>
1

4
.
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