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HYPERSURFACES WITH CONSTANT k-TH MEAN
CURVATURE IN A LORENTZIAN SPACE FORM

Shichang Shu

Abstract. In this paper, we study n(n ≥ 3)-dimensional complete connected
and oriented space-like hypersurfaces Mn in an (n+1)-dimensional Lorentzian
space form Mn+1

1 (c) with non-zero constant k-th (k < n) mean curvature and
two distinct principal curvatures λ and µ. We give some characterizations of
Riemannian product Hm(c1) ×Mn−m(c2) and show that the Riemannian
product Hm(c1)×Mn−m(c2) is the only complete connected and oriented
space-like hypersurface in Mn+1

1 (c) with constant k-th mean curvature and two
distinct principal curvatures, if the multiplicities of both principal curvatures
are greater than 1, or if the multiplicity of λ is n − 1, lim

s→±∞
λk 6= Hk and

the sectional curvature of Mn is non-negative (or non-positive) when c > 0,
non-positive when c ≤ 0, where Mn−m(c2) denotes Rn−m, Sn−m(c2) or
Hn−m(c2), according to c = 0, c > 0 or c < 0, where s is the arc length of
the integral curve of the principal vector field corresponding to the principal
curvature µ.

1. Introduction

Let Mn+1
1 (c) be an (n + 1)-dimensional Lorentzian space form with constant

sectional curvature c. According to c > 0, c = 0 or c < 0, it is called a de Sitter
space, a Minkowski space or an anti-de Sitter space, respectively, and it is denoted
by Sn+1

1 (c), Rn+1
1 or Hn+1

1 (c). A hypersurface in a Lorentzian manifold is said to
be space-like if the induced metric on the hypersurface is positive definite.

In connection with the negative settlement of the Bernstein problem due to
Calabi [4], Cheng-Yau [5] and Chouque-Bruhat et al. [6] proved for c ≥ 0 and
T. Ishihara [9] proved for c < 0 the following theorem:

Theorem 1.1. Let Mn be an n-dimensional (n ≥ 2) complete maximal space-like
hypersurface in an (n+ 1)-dimensional Lorentzian space form Mn+1

1 (c). Then
(i) if c ≥ 0, Mn is totally geodesic;
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(ii) if c < 0, then S ≤ n and S = n if and only if Mn = Hm(− n
m ) ×

Hn−m(− n
n−m ), (1 ≤ m ≤ n − 1), where S denotes the norm square of the se-

cond fundamental form of Mn.

As a generalization of Theorem 1.1, complete space-like hypersurfaces with
constant mean curvature or constant scalar curvature in a Lorentz manifold have
been investigated by many mathematicians. For example, let Mn be an n-complete
space-like hypersurface with constant mean curvature in a de Sitter space Sn+1

1 (c),
Goddard [7] conjectured that every such hypersurface must be totally umbilical.
Akutagawa [2] and Ramanthan [13] have proved independently that Goddard’s
conjecture is true if H2 ≤ c when n = 2, and n2H2 < 4(n − 1)c when n ≥ 3.
Further discussions in this regard have been carried out by many other authors,
we can see ([8]–[10] and [14]). Z. Hu et al. [8] studied the complete connected and
oriented space-like hypersurfaces in an (n+ 1)-dimensional de Sitter space Sn+1

1 (1)
with constant scalar curvature n(n− 1)r and with two distinct principal curvatures
and gave some characterizations of Riemannian product Hm(c1) × Sn−m(c2) in
terms of the squared norm of the second fundamental form of Mn. By considering
the sectional curvature of Mn, Zheng [16] proved the following result:

Theorem 1.2. Let Mn be an n-dimensional compact space-like hypersurface in
an (n + 1)-dimensional de Sitter space Sn+1

1 (c) with constant scalar curvature
n(n− 1)r. If r < c and the sectional curvature of Mn is non-negative, then Mn is
isometric to a sphere.

We denote by h the second fundamental form of Mn and denote by λ1, λ2, . . . , λn
the principal curvatures at an arbitrary point of Mn. From [11], we know that the
k-th mean curvature Hk of Mn is defined by

Pn(t) = (1 + tλ1)(1 + tλ2) . . . (1 + tλn) = 1 + C1
nH1t+ · · ·+ CnnHnt

n ,

that is, the k-th mean curvature Hk is the normalized k-th symmetric function of
principal curvatures of the hypersurface Mn defined by

(1.1) CknHk =
∑

1≤i1<i2<···<ik≤n
λi1 . . . λik ,

where Ckn = n!
k!(n−k)! .

We should note that if k = 1, H1 is the mean curvature of Mn and if k = 2, from
(1.1) and (2.11), we have H2 = c− r, where r is the normalized scalar curvature of
Mn.

In this paper, we investigate complete hypersurfaces in a Lorentzian space form
Mn+1

1 (c) with constant k-th mean curvature Hk and with two distinct principal
curvatures. In order to state our theorem clearly, we introduce, see U.-H. Ki et al.
[10], the well-known standard models of complete space-like hypersurfaces with
constant k-th mean curvature in an (n + 1)-dimensional Lorentzian space form
Rn+1

1 , Sn+1
1 (c) or Hn+1

1 (c):

Hm(c1)×Rn−m =
{

(x, y) ∈ Rn+1
1 = Rm+1

1 ×Rn−m : |x|2 = − 1
c1
> 0
}
,
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where c1 < 0 and m = 1, . . . , n − 1. We note that Hm(c1) × Rn−m in Rn+1
1 has

two distinct principal curvatures
√
−c1 with multiplicity m and 0 with multiplicity

n−m;

Hm(c1)× Sn−m(c2)

=
{

(x, y) ∈ Sn+1
1 (c) ⊂ Rn+2

1 = Rm+1
1 ×Rn−m+1 : |x|2 = − 1

c1
, |y|2 = 1

c2

}
,

where 1
c1

+ 1
c2

= 1
c , c1 < 0, c2 > 0 and m = 1, . . . , n− 1. We note that Hm(c1)×

Sn−m(c2) in Sn+1
1 (c) has two distinct principal curvatures

√
c− c1 with multiplicity

m and
√
c− c2 with multiplicity n−m;

Hm(c1)×Hn−m(c2)

=
{

(x, y) ∈ Hn+1
1 (c) ⊂ Rn+2

2 = Rm+1
1 ×Rn−m+1

1 : |x|2 = − 1
c1
, |y|2 = − 1

c2

}
,

where 1
c1

+ 1
c2

= 1
c , c1 < 0, c2 < 0 and m = 1, . . . , n − 1. We note that

Hm(c1) ×Hn−m(c2) in Hn+1
1 (c) has two distinct principal curvatures ±

√
c− c1

with multiplicity m and ∓
√
c− c2 with multiplicity n−m.

From U.-H. Ki et al. [10], H1(c1) × Sn−1(c2), H1(c1) × Rn−1 or H1(c1) ×
Hn−1(c2) is, in particular, called a hyperbolic cylinder in Sn+1

1 (c), Rn+1
1 or Hn+1

1 (c);
Hn−1(c1)×S1(c2) or Hn−1(c1)×R1 is also called a spherical cylinder or Euclidean
cylinder in Sn+1

1 (c) or Rn+1
1 .

From above, we know that the hyperbolic cylinders, spherical cylinder or Eucli-
dean cylinder has two distinct principal curvatures one of which is simple. Without
loss of generality, we can denote the two distinct principal curvatures by λ and µ,
and say that λ with multiplicity n− 1 and µ with multiplicity 1. Therefore, from
(1.1), we obtain

CknHk = Ckn−1λ
k + Ck−1

n−1λ
k−1µ ,

this implies that

(1.2) λk−1[(n− k)λ+ kµ] = nHk .

For the hyperbolic cylinder H1(c1)×Rn−1, we know that λ = 0 and µ 6= 0. If
k ≥ 2, from (1.2), we have Hk ≡ 0.

We shall prove the following result:

Main Theorem. Let Mn be an n-dimensional (n ≥ 3) complete connected and
oriented space-like hypersurface in an (n+1)-dimensional Lorentzian space form
Mn+1

1 (c) with non-zero constant k-th (k < n) mean curvature Hk and with two
distinct principal curvatures λ and µ. Then

(1) if the multiplicities of both principal curvatures are greater than 1, then Mn

is isometric to the Riemannian product Hm(c1)×Mn−m(c2), where 1 < m < n−1,
Mn−m(c2) denotes Rn−m, Sn−m(c2) or Hn−m(c2), according as c = 0, c > 0 or
c < 0.
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(2) if the multiplicity of λ is n− 1 and lim
s→±∞

λk 6= Hk, where s is the arc length
of the integral curve of the principal vector field corresponding to the principal
curvature µ, then

(i) for c > 0, Mn is isometric to the hyperbolic cylinder H1(c1)×Sn−1(c2) or
spherical cylinder Hn−1(c1)× S1(c2), 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 > 0, if the sectional
curvature of Mn is non-negative or non-positive on Mn;

(ii) for c = 0, Mn is isometric to the Euclidean cylinder Hn−1(c1)× R1 or
the hyperbolic cylinder H1(c1) × Rn−1 and k = 1, where c1 < 0, if the sectional
curvature of Mn is non-positive on Mn;

(iii) for c < 0, Mn is isometric to the hyperbolic cylinder H1(c1)×Hn−1(c2),
1
c1

+ 1
c2

= 1
c , c1 < 0, c2 < 0, if the sectional curvature of Mn is non-positive on

Mn.

Remark 1.1. If c = 1, k = 1 and k = 2, the result of (1) in Main Theorem was
proved by A. Brasil Jr. et al. [3] and Z. Hu et al. [8], respectively.

Remark 1.2. Let Mn be an n-dimensional (n ≥ 3) space-like hypersurface in an
(n+ 1)-dimensional Lorentzian space form Mn+1

1 (c) (c ≤ 0). We should note that
there is no space-like hypersurface in Hn+1

1 (c) or Rn+1
1 with non-negative sectional

curvature. In fact, if λ1, λ2, . . . , λn are the principle curvatures of Mn, then the
sectional curvature of the plane section spanned by {ei, ej} is Rijij = c−λiλj , i 6= j.
For c ≤ 0, if the sectional curvature is non-negative, we have Rijij = c− λiλj ≥ 0,
this is, λiλj ≤ c ≤ 0. We infer that λ1, λ2, . . . , λn must have not the same sign each
other, this implies that n = 2. Since we assume that n ≥ 3, we have a contradiction.

2. Preliminaries

Let Mn be an n-dimensional space-like hypersurface in an (n+ 1)-dimensional
Lorentzian space form Mn+1

1 (c). We choose a local field of semi-Riemannian
orthonormal frames {e1, . . . , en+1} in Mn+1

1 (c) such that at each point of Mn,
{e1, . . . , en} span the tangent space of Mn and form an orthonormal frame there.
We use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ 1 ; 1 ≤ i, j, k, . . . ≤ n .

Let {ω1, . . . , ωn+1} be the dual frame field so that the semi-Riemannian metric of
Mn+1

1 (c) is given by ds̄2 =
∑
i

ω2
i − ω2

n+1 =
∑
A

εAω
2
A, where εi = 1 and εn+1 = −1.

The structure equations of Mn+1
1 (c) are given by

dωA =
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0 ,(2.1)

dωAB =
∑
C

εCωAC ∧ ωCB + ΩAB ,(2.2)
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where

ΩAB = −1
2
∑
C,D

KABCDωC ∧ ωD ,(2.3)

KABCD = εAεBc(δACδBD − δADδBC) .(2.4)

Restricting these forms to Mn, we have

(2.5) ωn+1 = 0 .

Cartan’s Lemma implies that

(2.6) ωn+1i =
∑
j

hijωj , hij = hji .

The structure equations of Mn are

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0 ,(2.7)

dωij =
∑
k

ωik ∧ ωkj −
1
2
∑
k,l

Rijklωk ∧ ωl ,(2.8)

Rijkl = c(δikδjl − δilδjk)− (hikhjl − hilhjk) ,(2.9)

where Rijkl are the components of the curvature tensor of Mn and

(2.10) h =
∑
i,j

hijωi ⊗ ωj

is the second fundamental form of Mn.
From the above equation, we have

(2.11) n(n− 1)(r − c) = S − n2H2 ,

where n(n − 1)r is the scalar curvature of Mn, H is the mean curvature, and
S =
∑
i,j

h2
ij is the norm square of the second fundamental form of Mn.

We choose e1, . . . , en such that hij = λiδij . From (2.6) we have

(2.12) ωn+1i = λiωi , i = 1, 2, . . . , n .

Hence, we have from the structure equations of Mn

dωn+1i = dλi ∧ ωi + λidωi

= dλi ∧ ωi + λi
∑
j

ωij ∧ ωj .(2.13)
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On the other hand, we have on the curvature forms of Mn+1
1 (c),

Ωn+1i = −1
2
∑
C,D

Kn+1iCDωC ∧ ωD

= 1
2
∑
C,D

c(δn+1CδiD − δn+1DδiC)ωC ∧ ωD

= cωn+1 ∧ ωi = 0 .(2.14)

Therefore, from the structure equations of Mn+1
1 (c), we have

dωn+1i =
∑
j

ωn+1j ∧ ωji − ωn+1n+1 ∧ ωn+1i + Ωn+1i

=
∑
j

λjωij ∧ ωj .(2.15)

From (2.13) and (2.15), we obtain

(2.16) dλi ∧ ωi +
∑
j

(λi − λj)ωij ∧ ωj = 0 .

Putting

(2.17) ψij = (λi − λj)ωij ,

we have ψij = ψji. (2.16) can be rewritten as

(2.18)
∑
j

(ψij + δijdλj) ∧ ωj = 0 .

By E. Cartan’s Lemma, we get

(2.19) ψij + δijdλj =
∑
k

Qijkωk ,

where Qijk are uniquely determined functions such that for all index i, j, k

(2.20) Qijk = Qikj .

3. Proof of Main Theorem

We firstly state a Proposition which is well-known due to Otsuki [12] for Rie-
mannian space forms (and for Lorentzian space forms see [8] or [3]).

Proposition 3.1. Let Mn be a space-like hypersurface in an (n+ 1)-dimensional
Lorentzian space form Mn+1

1 (c) such that the multiplicities of the principal cur-
vatures are constant. Then the distribution of the space of the principal vectors
corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal
curvature is constant on each integral submanifold of the corresponding distribution
of the space of the principal vectors.



HYPERSURFACES WITH CONSTANT k-TH MEAN CURVATURE 93

Proof of Main Theorem. (1) Let λ and µ be the two distinct principal curva-
tures of multiplicities m and n−m respectively, where 1 < m < n− 1. From (1.1),
we have

CknHk =
∑

1≤i1<i2<...<ik≤n
λi1 . . . λik ,

where the principal curvatures λi = λ or µ (i = 1, . . . , n). This is always a equality
of Hk, λ and µ, we can denote it by
(3.1) CknHk = F(λ, µ) .

Denote by Dλ and Dµ the integral submanifolds of the corresponding distribution
of the space of principal vectors corresponding to the principal curvature λ and µ,
respectively. From Proposition 3.1, we know that λ is constant on Dλ. Since the
k-th mean curvature Hk is constant, (3.1) implies that µ is constant on Dλ. By
making use of Proposition 3.1 again, we have µ is constant on Dµ. Therefore, we
know that µ is constant on Mn. By the same assertion we know that λ is constant
on Mn. Therefore Mn is isoparametric. By the congruence Theorem of Abe, Koike
and Yamaguchi [1], we know that Mn is isometric to the Riemannian product
Hm(c1) ×Mn−m(c2), where Mn−m(c2) denotes Rn−m, Sn−m(c2) or Hn−m(c2),
according as c = 0, c > 0 or c < 0.

(2) From now on, we consider n(n ≥ 3)-dimensional complete connected and
oriented space-like hypersurface with non-zero constant k-th mean curvature Hk

and with two distinct principal curvatures, one of which is simple. Without loss of
generality, we may assume

λ1 = λ2 = · · · = λn−1 = λ , λn = µ ,

where λi for i = 1, 2, . . . , n are the principal curvatures of Mn. Therefore, we obtain
CknHk = Ckn−1λ

k + Ck−1
n−1λ

k−1µ ,

this implies that
(3.2) λk−1[(n− k)λ+ kµ] = nHk .

For k ≥ 2, if λ = 0 at some point, from (3.2), we have Hk = 0 at this point, this is
a contraction. Therefore, we have for all k

(3.3) µ = n

k
Hkλ

1−k − n− k
k

λ .

Since
λ− µ = n

λk −Hk

kλk−1 6= 0 ,

we know that λk −Hk 6= 0.
Let $ = |λk − Hk|−

1
n . We denote the integral submanifold through x ∈ Mn

corresponding to λ by Mn−1
1 (x). Since {ω1, . . . , ωn} is the dual frame field of Mn,

putting

(3.4) dλ =
n∑
k=1

λ,k ωk , dµ =
n∑
k=1

µ,k ωk ,
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from Proposition 3.1, we have
(3.5) λ,1 = λ,2 = · · · = λ,n−1 = 0 on Mn−1

1 (x) .
From (3.3), we have

(3.6) dµ =
[n(1− k)

k
Hkλ

−k − n− k
k

]
dλ .

Thus, we also have
(3.7) µ,1 = µ,2 = · · · = µ,n−1 = 0 on Mn−1

1 (x) .
In this case, we may consider locally λ is a function of the arc length s of the integral
curve of the principal vector field en corresponding to the principal curvature µ.
From (2.19) and (3.5), we have for 1 ≤ j ≤ n− 1,

dλ = dλj =
n∑
k=1

Qjjkωk

=
n−1∑
k=1

Qjjkωk +Qjjnωn = λ,n ωn .(3.8)

Therefore, we have
(3.9) Qjjk = 0 , 1 ≤ k ≤ n− 1 , and Qjjn = λ,n .

By (2.19) and (3.7), we have

(3.10)

dµ = dλn =
n∑
k=1

Qnnkωk

=
n−1∑
k=1

Qnnkωk +Qnnnωn =
n∑
i=1

µ,i ωi = µ,n ωn .

Hence, we obtain
(3.11) Qnnk = 0 , 1 ≤ k ≤ n− 1 , and Qnnn = µ,n .

From (3.6), we get

(3.12) Qnnn = µ,n =
[n(1− k)

k
Hkλ

−k − n− k
k

]
λ,n .

From the definition of ψij , if i 6= j, we have ψij = 0 for 1 ≤ i ≤ n − 1 and
1 ≤ j ≤ n− 1. Therefore, from (2.19), if i 6= j and 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1
we have
(3.13) Qijk = 0 , for any k .

Since for all index i, j, k (2.20) holds, we have from (3.11) that Qjnn = 0. By
(2.19), (3.9), (3.11), (3.12) and (3.13), we get

(3.14) ψjn =
n∑
k=1

Qjnkωk = Qjjnωj +Qjnnωn = λ,n ωj .
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From (2.19), (3.3) and (3.14)we have

(3.15) ωjn = ψjn
λ− µ

= λ,n
λ− µ

ωj = kλk−1λ,n
n(λk −Hk)ωj .

Therefore, from the structure equations of Mn we have

dωn =
n−1∑
k=1

ωk ∧ ωkn + ωnn ∧ ωn = 0 .

Therefore, we may put ωn = ds. By (3.6) and (3.10), we get

dλ = λ,n ds , λ,n = dλ

ds
,

and

dµ = µ,n ds , µ,n = dµ

ds
.

Then we have

ωjn = kλk−1λ,n
n(λk −Hk)ωj =

kλk−1 dλ
ds

n(λk −Hk)ωj

= d{log |λk −Hk|
1
n }

ds
ωj .(3.16)

From (3.16) and the structure equations of Mn+1
1 (c), we have

dωjn =
n−1∑
k=1

ωjk ∧ ωkn + ωjn ∧ ωnn − ωjn+1 ∧ ωn+1n + Ωjn

=
n−1∑
k=1

ωjk ∧ ωkn − ωjn+1 ∧ ωn+1n − cωj ∧ ωn

= d{log |λk −Hk|
1
n }

ds

n−1∑
k=1

ωjk ∧ ωk − (c− λµ)ωj ∧ ds .

From (3.16), we have

dωjn = d2{log |λk −Hk|
1
n }

ds2 ds ∧ ωj + d{log |λk −Hk|
1
n }

ds
dωj

= d2{log |λk −Hk|
1
n }

ds2 ds ∧ ωj + d{log |λk −Hk|
1
n }

ds

n∑
k=1

ωjk ∧ ωk

=
{
− d2{log |λk −Hk|

1
n }

ds2 +
[d{log |λk −Hk|

1
n }

ds

]2}
ωj ∧ ds

+ d{log |λk −Hk|
1
n }

ds

n−1∑
k=1

ωjk ∧ ωk .
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From the above two equalities, we have

(3.17) d2{log |λk −Hk|
1
n }

ds2 −
{d{log |λk −Hk|

1
n }

ds

}2
− (c− λµ) = 0 .

Since we define $ = |λk −Hk|−
1
n , we obtain from the above equation

(3.18) d2$

ds2 +$(c− λµ) = 0 .

Now we prove the second part of Main Theorem.
(i) For c > 0, if the sectional curvature of Mn is non-negative, that is, for

i 6= j, Rijij = c − λiλj ≥ 0, we have c − λµ ≥ 0. From (3.18), we have d2$
ds2 ≤ 0.

Thus, d$
ds is a monotonic function of s ∈ (−∞,+∞). Therefore, by the similar

assertion in Wei [15], we have $(s) must be monotonic when s tends to infinity.
Since λk 6= Hk and λ is continuous, we know that there is no s0 ∈ (−∞,+∞), such
that lim

s→s0
λk = Hk. From the definition of $(s) and lim

s→±∞
λk 6= Hk, we infer that

the positive function $(s) is bounded. Since $(s) is bounded and monotonic when
s tends to infinity, we know that both lim

s→−∞
$(s) and lim

s→+∞
$(s) exist and then

we get

(3.19) lim
s→−∞

d$(s)
ds

= lim
s→+∞

d$(s)
ds

= 0 .

From the monotonicity of d$(s)
ds , we have d$(s)

ds ≡ 0 and $(s) = constant. From
$ = |λk − Hk|−

1
n and (3.2), we have λ and µ are constant, that is, Mn is

isoparametric. Therefore, by the congruence Theorem of Abe, Koike and Yamaguchi
[1], we know that Mn is isometric to the hyperbolic cylinder H1(c1)× Sn−1(c2) or
spherical cylinder Hn−1(c1)× S1(c2), 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 > 0.
If the sectional curvature of Mn is non-positive, that is, for i 6= j, Rijij =

c− λiλj ≤ 0, we have c− λµ ≤ 0. From (3.18), we have d2$
ds2 ≥ 0. Similar to the

assertion of the proof above, we know that Main Theorem is true.
(ii) For c = 0, if the sectional curvature of Mn is non-positive, that is, for i 6= j,

Rijij = −λiλj ≤ 0, we have −λµ ≤ 0. From (3.18), we have d2$
ds2 ≥ 0. Thus, d$ds is

a monotonic function of s ∈ (−∞,+∞). Combining d2$
ds2 ≥ 0 with the boundedness

of $(s), similar to the assertion of the proof in (i), we know that λ and µ are
constant, that is, Mn is isoparametric. Therefore, by the congruence Theorem of
Abe, Koike and Yamaguchi [1] and the discussion of Section 1, we know that Mn

is isometric to the Euclidean cylinder Hn−1(c1)× R1 or the hyperbolic cylinder
H1(c1)×Rn−1, in this case k = 1, where c1 < 0.

(iii) For c < 0, if the sectional curvature of Mn is non-positive, that is, for
i 6= j, Rijij = c − λiλj ≤ 0, we have c − λµ ≤ 0. From (3.18), we have d2$

ds2 ≥ 0.
Thus, d$ds is a monotonic function of s ∈ (−∞,+∞). Combining d2$

ds2 ≥ 0 with the
boundedness of $(s), similar to the assertion of the proof in (i), we know that λ
and µ are constant, that is, Mn is isoparametric. Therefore, by the congruence
Theorem of Abe, Koike and Yamaguchi [1], we know that Mn is isometric to the
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hyperbolic cylinder H1(c1)×Hn−1(c2), where 1
c1

+ 1
c2

= 1
c , c1 < 0, c2 < 0. This

completes the proof of Main Theorem. �
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