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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 46 (2010), 105–118

A NOTE ON LINEAR PERTURBATIONS OF OSCILLATORY
SECOND ORDER DIFFERENTIAL EQUATIONS

Renato Manfrin

Abstract. Under suitable hypotheses on γ(t), λ(t), q(t) we prove some
stability results which relate the asymptotic behavior of the solutions of
u′′ + γ(t)u′ +

(
q(t) + λ(t)

)
u = 0 to the asymptotic behavior of the solutions

of u′′ + q(t)u = 0.

1. Introduction

Let q : [t0,∞)→ (0,∞) and γ, λ : [t0,∞)→ C be continuous functions. We will
consider the differential equation
(1.1) u′′ + γ(t)u′ +

(
q(t) + λ(t)

)
u = 0 , t0 ≤ t <∞

as a perturbation of
(1.2) u′′ + q(t)u = 0 , t0 ≤ t <∞ .

A number of papers have dealt with the linear perturbations of (1.2) assuming q,
or the solutions of (1.2), suitably well-behaved as t→∞. For instance, R. Bellman
[1] proved that if all solutions of (1.2) belong to Lp[t0,∞) ∩ Lp′ [t0,∞), where
1 ≤ p ≤ p′ ≤ ∞, 1

p + 1
p′ = 1 (p′ =∞, if p = 1) then all solutions of

(1.3) u′′ + (q(t) + λ(t))u = 0 ,

where λ is bounded, belong to Lp[t0,∞)∩Lp′ [t0,∞); Z. Opial [9] showed that if q is
nondecreasing, then all solutions of (1.3) are bounded as t→∞, if

∫∞ |λ| q− 1
2 dx <

∞ ; W. F. Trench [10] demonstrated that if
∫∞ |λ| |zi|2dt < ∞ (i = 1, 2), where

z1, z2 are two linearly independent solutions of (1.2), then every solution of (1.3)
can be written in the form αz1 + βz2 with α, β suitable absolutely continuous
functions. For other results of this type we may refer to [2, 3, 5].

Now, one observes immediately that many of these criteria place rather ineffective
conditions, since one needs to know the behavior of solutions of the unperturbed
equation (1.2) as t→∞. On the other hand, assuming q nondecreasing, in Opial’s
criteria [9] this a-priori knowledge is not required.

In this note, applying some results proved in [7], we will derive new effective
conditions on q, γ, λ which, if q is positive and sufficiently smooth, ensure that
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all solutions of (1.1) are bounded or p−integrable (i.e.
∫∞
t0
|u|p dt < ∞ for some

p > 0) on [t0,∞). Precisely, under the assumption that

(1.4) q(t) ≥ δ > 0 and dm

dtm
(
q−

1
2
)

is of bounded variation in [t0,∞) ,

for some integer m ≥ 1, we shall prove the following:

Theorem 1.1. Assume (1.4) holds and that
∫∞
t0

(
|γ|+ |λ| q− 1

2
)
dτ <∞. Then all

solutions of (1.1) are p-integrable (p > 0) if and only if
∫∞
t0
q−

p
4 dt <∞.

According to the Weyl classification, for p = 2 the conclusion of Th. 1.1 means
that if |γ|+ |λ| q− 1

2 is integrable then equation (1.1) retains the limit circle property.
Concerning the boundedness and the asymptotic behavior of solutions of (1.1),

we introduce the energy:

(1.5) E(u, t) def= q(t) 1
2 |u(t)|2 + q(t)− 1

2 |u′(t)|2 , t ≥ t0 .
Then, we have:

Theorem 1.2. Assume (1.4) and
∫∞
t0

(
|γ| + |λ| q− 1

2
)
dx < ∞. Then for every

solution u of (1.1) there exists the finite limit limt→∞ E(u, t) def= Eu, with Eu > 0
if u 6≡ 0.

Moreover, if z1, z2 are linearly independent solutions of (1.2), there exist unique
α, β ∈ AC[t0,∞) (i.e. α′, β′ ∈ L1[t0,∞)) such that
(1.6) u = α z1 + β z2 , u′ = α z′1 + β z′2 .

Finally, if q(t)→∞ as t→∞, we also have:

Theorem 1.3. Assume (1.4) holds with q → ∞ as t → ∞. In addition suppose
that there exists a constant C > 2 such that

(1.7) lim sup
t→∞

(∫ t

t0

(
3 |γ|+ 4 |λ| q− 1

2
)
dτ − 1

C
ln q(t)

)
<∞ .

Then all solutions of (1.1) satisfy limt→∞ u(t) = 0. Furthermore, (1.6) holds with
α, β ∈ ACloc[t0,∞) , i.e. α′, β′ ∈ L1

loc[t0,∞) .

We do not know if the condition C > 2 in (1.7) is the best possible. However,
we can show that it is not sufficient to require that (1.7) holds for an arbitrary
constant C > 0. See Example 5.4 below.

Remark 1.4. It is possible to prove all the previous results under slightly different
assumptions on q. More precisely, the following holds:

Assume q(t) > 0 and (q− 1
2 )(m) ∈ ACloc[t0,∞) for some integer m ≥ 1. Then

Th. 1.1, 1.2, 1.3 remain to hold if, instead of (1.4), we suppose:

(1.8) lim
t→∞

(
q−

1
2 (t)

)1− 1
h
∣∣(q− 1

2 )(h)(t)
∣∣ 1
h = 0 , 1 ≤ h ≤ m,

and

(1.9) q−η0/2
( d
dt
q−

1
2

)η1
. . .
( dm+1

dtm+1 q
− 1

2

)ηm+1
∈ L1(t0,∞) ,
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for all integers η0 , . . . , ηm+1 ≥ 0 such that

(1.10)
∑

0≤h≤m+1
ηh = m,

∑
1≤h≤m+1

h ηh = m+ 1 .

See [7, Prop. 6.1, Cor. 6.3]. One can also show that q satisfies (1.8)–(1.10) if (1.4)
holds and (q− 1

2 )(m) ∈ ACloc[t0,∞). In some cases the conditions (1.8)–(1.10) are
less restrictive than (1.4). See [8], [7, Section 7] and Remark 5.3 below.

2. Some preliminaries

To demonstrate Th. 1.1, 1.2 and 1.3 we will apply some results of [7] (see also
[6, 8]) on the asymptotic behavior of solutions of the unperturbed equation (1.2).
Below we briefly state the main results which will be needed in the proofs.

Theorem 2.1 ([7, Th. 1.1]). Assume that (1.4) holds. Then all solutions of (1.2)
are p−integrable, p > 0, if and only if

∫∞
t0
q−

p
4 dt <∞.

Theorem 2.2 ([7, Th. 1.2]). Assume that (1.4) holds and let u be a solution of
(1.2). Then there exists the finite limit

(2.1) lim
t→∞

E(u, t) def= Eu , with Eu > 0 if u 6≡ 0 .

Remark 2.3. All these statements remain true if, instead of (1.4), we assume one
of the following conditions:

– q satisfies the conditions (1.8)–(1.10), see [7];
– 0 < δ ≤ q(t) ≤ δ̂ <∞ and q(m) is of bounded variation for some m ≥ 1;

if m = 1 it is enough to suppose q(t) ≥ δ > 0. See [8].
On the other hand if, instead of (1.4) with m ≥ 1, we only suppose q ≥ δ > 0 and
q−

1
2 of bounded variation, the conclusions of Th. 2.1 and Th. 2.2 are, in general,

false. This happens even if we further require that q(t)→∞ as t→∞. See [4].

Notation. Given a, b ∈ R, we shall use the symbol a∨b for max{a, b}.
From now on we fix

(2.2) z1, z2 : [t0,∞)→ C ,
two linearly independent solutions of (1.2). Namely we suppose that, for i = 1, 2,
(2.3) z′′i + q(t)zi = 0 in [t0,∞) ,
with nonzero wronskian, i.e. W (zi, z2) = z1z

′
2 − z′1z2 6= 0.

Applying Th. 2.2 we deduce the following:

Lemma 2.4. Assume that (1.4) holds. Then there exists the finite limit

(2.4) lim
t→∞

(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
def= E12 .

In addition, setting Ei
def= limt→∞ E(zi, t) (i = 1, 2), the quadratic form

(2.5) Q(a, b) def= E1 |a|2 + E2 |b|2 + 2 Re
(
E12 ab̄

)
, (a, b) ∈ C2 ,



108 R. MANFRIN

is positive definite.

Proof. By Th. 2.2 there exist finite, the limits as t→∞, of

(2.6) E(z1, t), E(z2, t), E(z1 + z2, t), E(z1 + iz2, t) .

Observing that

(2.7) E(z1 + z2, t) = E(z1, t) + E(z2, t) + 2Re
(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
,

we deduce that there exits the finite limit

(2.8) lim
t→∞

Re
(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
.

Moreover, since

(2.9) E(z1 + iz2, t) = E(z1, t) + E(z2, t) + 2 Im
(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
,

we also deduce that there exits the finite limit

(2.10) lim
t→∞

Im
(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
.

Thus, it is clear that there exists the finite limit (2.4).
To continue, if u = az1 + bz2 (a, b ∈ C) is any solution of (1.2), we easily have

lim
t→∞

E(u, t) = lim
t→∞

E(az1 + bz2, t)

= |a|2 lim
t→∞

E(z1, t) + |b|2 lim
t→∞

E(z2, t)

+ 2 Re lim
t→∞

ab̄
(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
= E1 |a|2 + E2 |b|2 + 2 Re

(
E12 ab̄

)
,

(2.11)

Since limt→∞ E(u, t) > 0 if u 6≡ 0, by definition (2.5) it follows that

(2.12) Q(a, b) > 0 , ∀ (a, b) ∈ C2 \ {(0, 0)} .

Thus the quadratic form (2.5) is positive definite. �

Further, we also have:

Lemma 2.5. Assume that (1.4) holds. Given Λ > 1 there exists tΛ ≥ t0 such that
for all solutions u of (1.2) one has

(2.13) Λ−1 E(u, t1) ≤ E(u, t2) ≤ Λ E(u, t1) ,

for all t1, t2 ≥ tΛ.

Proof. It is clearly sufficient to prove the second inequality in (2.13).
Since the quadratic form (2.5) is positive definite, there exists ρ > 0 such that

(2.14) Q(a, b) > 2 ρ (|a|2 + |b|2) , ∀ (a, b) ∈ C2 .

By a continuity argument, this in turn implies that

(2.15) E(az1 + bz2, t) ≥ ρ (|a|2 + |b|2) , ∀ (a, b) ∈ C2 ,
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provided t is large enough, say t ≥ t̄ ≥ t0. Moreover, ∀ ε > 0 there exists tε ≥ t0
such that
(2.16) |E(az1 + bz2, t2)− E(az1 + bz2, t1)| ≤ ε (|a|2 + |b|2) ,
for all (a, b) ∈ C2, for all t1, t2 ≥ tε. Hence
(2.17) |E(az1 + bz2, t2)− E(az1 + bz2, t1)| ≤ ε ρ−1 E(az1 + bz2, t1)
if t1, t2 ≥ (tε∨ t̄ ). From this, we obtain that
(2.18) E(az1 + bz2, t2) ≤

(
1 + ερ−1) E(az1 + bz2, t1) ,

for all (a, b) ∈ C2, if t1, t2 ≥ (tε∨ t̄ ).
Hence, if

(2.19) u = az1 + bz2

is any solution of (1.2), we have
(2.20) E(u, t2) ≤

(
1 + ερ−1) E(u, t1) , ∀ t1, t2 ≥ (tε∨ t̄ ) .

Finally, given Λ > 1, setting
(2.21) ε = ρ (Λ− 1) and tΛ = (tε∨ t̄ ) ,
we obtain the second inequality of (2.13). �

3. Proofs of Theorems 1.1, 1.2

Let z1, z2 be the independent solutions of (1.2) fixed in (2.2)–(2.3). Denoting
with

(3.1) W
def= W (z1, z2) = z1 z

′
2 − z′1 z2

the wronskian, we clearly have
(3.2) W (t) = W (t0) 6= 0 , ∀ t ∈ [t0,∞) .
Then, recalling (1.5), we introduce the quantity

(3.3) A
def= sup

t≥t0

[
E(z1, t)∨E(z2, t)

]
.

By Th. 2.2, we know that 0 < A <∞.
Besides, since E(zi, t)

def= q(t) 1
2 |zi(t)|2 + q(t)− 1

2 |z′i(t)|2, for all t ≥ t0 we have:

|z1|, |z2| ≤
√
Aq−

1
4 ,

|z′1|, |z′2| ≤
√
A q

1
4 ,

|z1 z
′
1|, |z2 z

′
2| ≤

A

2 ,

(3.4)

where the last inequality of (3.4) is a consequence of the fact that
(3.5) |zi(t) z′i(t)| ≤ 2−1E(zi, t) (i = 1, 2) ,
via the classical inequality: ab ≤ (a2 + b2)/2 for a, b ∈ R.
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Now, let

(3.6) u : [t0,∞)→ C

be a given solution of (1.1). Following the argument of W. F. Trench [10], we look
for α, β : [t0,∞)→ C such that

(3.7) u = αz1 + βz2 , u′ = αz′1 + βz′2 .

If (3.7) holds, then α, β are uniquely determined by

(3.8) α = u z′2 − u′ z2

W
and β = u′ z1 − u z′1

W
.

On the other hand, differentiating the expression αz1 + βz2 twice and substituting
into (1.1), we easily see that (3.7) holds if and only if α, β verify

(3.9)
{
α′ z′1 + β′ z′2 = −γ

(
αz′1 + βz′2

)
− λ

(
αz1 + βz2

)
,

α′ z1 + β′ z2 = 0 ,

with initial data, at t = t0,

(3.10) α(t0) = u z′2 − u′ z2

W

∣∣∣
t=t0

, β(t0) = u′ z1 − u z′1
W

∣∣∣
t=t0

.

Solving (3.9) with respect to α′, β′ we obtain the first order, linear system

(3.11)
{
α′ = α

W

(
γ z2 z

′
1 + λ z1 z2

)
+ β

W

(
γ z2 z

′
2 + λ z2

2
)

β′ = − α
W

(
γ z1 z

′
1 + λ z2

1
)
− β

W

(
γ z1 z

′
2 + λ z1 z2

) t ≥ t0 .

Since the Cauchy problem (3.10)–(3.11) has a unique solution in [t0,∞), we conclude
that there exist α, β such that (3.7) holds.

Now, using the integral representation

α(t) = α(t0) + 1
W

∫ t

t0

[
α
(
γ z2 z

′
1 + λ z1 z2

)
+ β

(
γ z2 z

′
2 + λ z2

2
)]
ds ,

β(t) = β(t0)− 1
W

∫ t

t0

[
α
(
γ z1 z

′
1 + λ z2

1
)

+ β
(
γ z1 z

′
2 + λ z1 z2

)]
ds ,

(3.12)

for all t ≥ t0, we can estimate α, β.
In fact, setting

(3.13) Z(t) def=
∣∣α(t)

∣∣+
∣∣β(t)

∣∣ ,
from (3.4) and (3.12) it follows that

(3.14) Z(t) ≤ Z(t0) + A

2 |W |

∫ t

t0

Z
(
3 |γ|+ 4 |λ| q− 1

2
)
ds ,

for all t ≥ t0. Then, applying Gronwall’s Lemma to (3.14), we finally deduce

(3.15) Z(t) ≤ Z(t0) exp A

2 |W |

∫ t

t0

(
3 |γ|+ 4 |λ| q− 1

2

)
ds ,

for all t ≥ t0.
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Remark 3.1. More generally, given t1, t2 ≥ t0 , one can also prove that

(3.16) Z(t2) ≤ Z(t1) exp A

2 |W |

∣∣∣ ∫ t2

t1

(
3 |γ|+ 4 |λ| q− 1

2

)
ds
∣∣∣ .

For t2 ≥ t1 it is clear that (3.16) holds; for t2 < t1 it sufficient to apply Gronwall’s
Lemma backward in time. In particular, if

∫∞
t0

(
|γ|+ |λ| q− 1

2
)
dx <∞, it follows

from (3.16) that there exists the finite limit

lim
t→∞

Z(t) def= Z∞ , with Z∞ > 0 if u 6≡ 0 .

We are now in position to prove Th. 1.2 and then Th. 1.1.

3.1. The Proof of Th. 1.2. The assumption

(3.17)
∫ ∞
t0

(
|γ|+ |λ| q− 1

2
)
dt <∞

and inequality (3.15) imply that Z(t) ≤ C in [t0,∞), for a suitable C ≥ 0. Thus
(3.18)

∣∣α(t)
∣∣, ∣∣β(t)

∣∣ ≤ C in [t0,∞) .
From this, we easily see that
(3.19) E(u, t) ≤ 2C2A for all t ≥ t0 .

Further, from (3.4), (3.17) and (3.18), it turns out that the integrals in the right
hand-side of (3.12) are absolutely convergent. This means that α, β ∈ AC[t0,∞) ,
i.e. α′, β′ ∈ L1[t0,∞). In particular, it follows that there exist the finite limits
(3.20) lim

t→∞
β(t) = β∞ , lim

t→∞
α(t) = α∞ .

By Th. 2.2 and Lemma 2.4, we know that there exist the finite limits:
lim
t→∞

E(zi, t) = Ei (i = 1, 2) ,(3.21)

lim
t→∞

(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2

)
= E12 .(3.22)

Then, by (3.7), one has
lim
t→∞

E(u, t) = lim
t→∞

E(αz1 + βz2, t)

= lim
t→∞

|α|2E(z1, t) + lim
t→∞

|β|2 E(z2, t)

+ 2 Re lim
t→∞

αβ̄
(
q

1
2 z1z̄2 + q−

1
2 z′1z̄

′
2
)

= E1 |α∞|2 + E2 |β∞|2 + 2 Re
(
E12 α∞β̄∞

)
= Q(α∞, β∞) ,

(3.23)

where Q(·, ·) is the quadratic form (2.5). This means that E(u, t) tends to a finite
limit as t→∞. Moreover, by Remark 3.1, we know that
(3.24) |α∞|+ |β∞| = Z∞ > 0 if u 6≡ 0 .
Since Q(·, ·) is positive definite, the limit (3.23) is strictly positive if u 6≡ 0.
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3.2. The Proof of Th. 1.1. Assuming (1.4), by Th. 2.1 the condition
∫∞
t0
q−

p
4 dt <

∞ (p > 0) is equivalent to the p-integrability of z1, z2, namely

(3.25)
∫ ∞
t0

|z1|p dt <∞ ,

∫ ∞
t0

|z2|p dt <∞ .

Besides, the assumption
∫∞
t0

(|γ|+ |λ| q− 1
2 )dt <∞ and (3.15) lead to (3.18). Hence,

by (3.7), we obtain

(3.26)
∫ ∞
t0

|u|p dt ≤ 2p Cp
∫ ∞
t0

(
|z1|p + |z2|p

)
dt <∞ .

Conversely, let us suppose that all solutions of (1.1) are p-integrable. By Th. 1.2,
we know that for every solution u 6≡ 0 of (1.1) there exists a finite and positive the
limit

(3.27) lim
t→∞

E(u, t) def= Eu > 0 .

This implies that if u1, u2 are two linearly independent solutions of (1.1) then

(3.28) lim inf
t→∞

√
q(t)

(
|u1(t)|2 + |u2(t)|2

)
> 0 .

In fact, if (3.28) does not hold, there exists a sequence {tn}n≥1, tn →∞ , such
that

√
q(tn) (|u1(tn)|2 + |u2(tn)|2)→ 0 as n→∞. Then, by Th. 1.2,

(3.29) lim
n→∞

|u′1(tn)|2√
q(tn)

= Eu1 , lim
n→∞

|u′2(tn)|2√
q(tn)

= Eu2 ,

with 0 < Eu1 , Eu2 <∞ . In particular |u′1(tn)| , |u′2(tn)| > 0 for n large enough,
and

(3.30) lim
n→∞

|u′1(tn)|
|u′2(tn)| = E

1
2
u1 E

− 1
2

u2 .

Hence, for a suitable subsequence {τn}n≥1 ⊂ {tn}n≥1 we may suppose that
u′2(τn) 6= 0 for all n ≥ 1 and that

(3.31) lim
n→∞

u′1(τn)
u′2(τn) = ζ with |ζ| = E

1
2
u1 E

− 1
2

u2 .

Next, we consider

(3.32) v(t) def= u1(t)− ζ u2(t) .

Since u1, u2 are linearly independent, v is a non-zero solution of (1.1). It follows
that

lim sup
n→∞

√
q(τn) |v(τn)|2

≤ 2 lim
n→∞

√
q(τn)

(
|u1(τn)|2 + |ζ|2|u2(τn)|2

)
= 0 .

(3.33)
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Moreover, by (3.29) and (3.31)–(3.32) we have also

lim
n→∞

|v′(τn)|2√
q(τn)

= lim
n→∞

|u′1(τn)− ζ u′2(τn)|2√
q(τn)

= lim
n→∞

|u′2(τn)|2√
q(τn)

∣∣∣u′1(τn)
u′2(τn) − ζ

∣∣∣2 = 0 .
(3.34)

From (3.33) and (3.34) it follows that limn→∞ E(v, τn) = 0 . On the other hand,
by Th. 1.2, we must have limt→∞ E(v, t) = Ev > 0 because v 6≡ 0.

This contradiction proves that (3.28) holds.
Now we can show that

∫∞
t0
q−

p
4 dt < ∞ , if all the solutions of (1.2) are

p-integrable. In fact, (3.28) implies that there exists ε > 0 such that
√
q(t)

(
|u1(t)|2+

|u2(t)|2
)
≥ ε for t large enough, say t ≥ t̄ ≥ t0 . Hence, since p > 0 , we have the

inequalities ∫ ∞
t̄

q(t)−
p
4 dt ≤

(1
ε

) p
2
∫ ∞
t̄

(
|u1(t)|2 + |u2(t)|2

) p
2 dt

≤
(2
ε

) p
2
∫ ∞
t̄

(
|u1(t)|p + |u2(t)|p

)
dt <∞ .

(3.35)

4. Proof of Theorem 1.3

First of all we prove that the solutions of (1.1) are bounded if (1.7) holds. To
this end, we select suitable linearly independent solutions of (1.2). More precisely,
fixed τ ≥ t0 , we denote by vτ , wτ the solutions of (1.2) satisfying, for t = τ , the
initial conditions

(4.1)
{
vτ (τ) = q(τ)− 1

2

v′τ (τ) = 0

{
wτ (τ) = 0
w′τ (τ) = 1

Denoting with Wτ
def= vτ w

′
τ − v′τ wτ the wronskian of vτ , wτ , from (4.1) we clearly

have
(4.2) Wτ (t) = q(τ)− 1

2 , ∀ t ∈ [t0,∞) .
Taking (1.5) into account, we introduce the quantity

(4.3) Aτ
def= sup

t≥τ

[
E(vτ , t)∨E(wτ , t)

]
.

By Th. 2.2, 0 < Aτ <∞ . In addition, we have:

|vτ |, |wτ | ≤
√
Aτ q

− 1
4 ,

|v′τ |, |w′τ | ≤
√
Aτ q

1
4 ,

|vτ v′τ |, |wτ w′τ | ≤
Aτ
2 ,

(4.4)

for all t ≥ τ . Now, let
(4.5) u : [t0,∞)→ C
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be a solution of (1.1). We look for α̃, β̃ : [t0,∞)→ C such that

(4.6) u = α̃vτ + β̃wτ , u′ = α̃v′τ + β̃w′τ .

As in the proofs of Th. 1.1 and 1.2, differentiating the expression u = α̃vτ + β̃wτ
twice (with respect to t) and substituting into (1.1), we easily see that α̃, β̃ must
satisfy the integral equations

α̃(t) = α̃(τ) + 1
Wτ

∫ t

τ

[
α̃
(
γ wτ v

′
τ + λ vτ wτ

)
+ β̃

(
γ wτ w

′
τ + λw2

τ

)]
ds ,

β̃(t) = β̃(τ)− 1
Wτ

∫ t

τ

[
α̃
(
γ vτ v

′
τ + λ v2

τ

)
+ β̃

(
γ vτ w

′
τ + λ vτ wτ

)]
ds

(4.7)

with initial data, at t = τ ,

(4.8)
{
α̃(τ) = u(τ) q(τ) 1

2 ,

β̃(τ) = u′(τ) .

From (4.4) and (4.7), it follows that∣∣α̃(t)
∣∣+
∣∣β̃(t)

∣∣ ≤∣∣α̃(τ)
∣∣+
∣∣β̃(τ)

∣∣
+ Aτ

2Wτ

∫ t

τ

(
|α̃|+ |β̃|

)(
3 |γ|+ 4 |λ| q− 1

2
)
ds ,

(4.9)

for all t ≥ τ . Thus, by Gronwall’s Lemma, we obtain:

(4.10)
∣∣α̃(t)

∣∣+
∣∣β̃(t)

∣∣ ≤ (|α̃(τ)|+ |β̃(τ)|
)

exp Aτ
2Wτ

∫ t

τ

(
3 |γ|+ 4 |λ| q− 1

2
)
ds .

Then, from (4.4), (4.6), (4.8) and (4.10) we have

(4.11)
∣∣u(t)

∣∣ ≤ Bτ q(t)− 1
4 exp Aτ

2Wτ

∫ t

τ

(
3 |γ|+ 4 |λ| q− 1

2
)
ds ,

for all t ≥ τ , with Bτ =
√
Aτ
(
|u(τ)| q(τ) 1

2 + |u′(τ)|
)

.
We can now prove that u remains bounded as t→∞. In fact, by (4.11), u is

uniformly bounded in [t0,∞) if the quantity

(4.12) Kτ (t) def=
∫ t

τ

(
3 |γ|+ 4 |λ| q− 1

2
)
dx− Wτ

2Aτ
ln q(t)

remains bounded as t→∞ , i.e. if (1.7) is verified for some C ≥ 2Aτ
Wτ

. Hence, it is
clearly enough that (1.7) holds for some C such that

(4.13) C > 2 inf
τ≥t0

Aτ
Wτ

.

We claim that the greatest lower bound of the quotient Aτ/Wτ is equal to one.
To see this, we observe that the initial conditions (4.1)–(4.2) give

(4.14) E(vτ , τ) = E(wτ , τ) = q(τ)− 1
2 .

Thus, by (4.2)–(4.3), we have Aτ/Wτ ≥ 1 for all τ ≥ t0 .
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On the other hand, by Lemma 2.5, for all Λ > 1 there exists tΛ ≥ t0 such that

(4.15) E(vτ , t) ≤ Λ E(vτ , τ) , E(wτ , t) ≤ Λ E(wτ , τ) ,

for all t, τ ≥ tΛ. Hence, by (4.3) and (4.14), we have

(4.16) Aτ ≤ Λ q(τ)− 1
2 , for τ ≥ tΛ .

It follows that Aτ/Wτ ≤ Λ for τ ≥ tΛ and we my conclude that

(4.17) lim
τ→∞

Aτ
Wτ

= 1 .

From (4.13) we deduce that u remains bounded if (1.7) holds with C > 2.
Finally, let us prove that u(t)→ 0, as t→∞, if (1.7) is verified with C > 2. In

fact, by (4.17) we may fix τo ≥ t0 such that

(4.18) C > 2Aτ0

Wτ0

.

Then, by (1.7), there exists ρ ∈ R such that

(4.19) Kτ0(t) ≤ ρ+
( 1
C
− Wτ0

2Aτo

)
ln q(t) , ∀ t ≥ τ0 ,

where Kτ is the quantity introduced in (4.12). Hence, since q(t) → ∞ , from
(4.18)–(4.19) we see that Kτ0(t) → −∞ as t → ∞ . Then, setting τ = τo in
(4.11), we deduce that u(t)→ 0 as t→∞ .

5. Some applications

We give here some applications of Th. 1.1, 1.2 and 1.3. We will also compare
these results with the criteria of R. Bellman [1] and Z. Opial [9] stated in the
introduction.

In the following examples, C will stands for a generic positive constant, inde-
pendent of t ; in addition, r, r′, s will always indicate real numbers.

Example 5.1. Let us consider equation (1.1) in [e,∞), with q(t) = (2 + sin(ts)) ln t,
0 ≤ s < 1 ; γ(t) = φ1(t)

t ln t , λ(t) = φ2(t)
t
√

ln t where φ1, φ2 are bounded, continuous func-
tions.

Then q(t) ≥ ln t ≥ 1 in [e,∞), moreover

(5.1)
∣∣(q− 1

2
)(h)∣∣ ≤ C th(s−1)

√
ln t

in [e,∞) ,

for all integers h ≥ 1. Hence (1.4) is verified taking a positive integer m > s
1−s .

It is easy to show that (1.7) holds if 3‖φ1‖L∞ + 4‖φ2‖L∞ < 1
2 . In this case,

applying Th. 1.3 we deduce that every solution u of (1.1) tends to 0 as t→∞. The
assumptions of [9] are not verified, because q is not monotone. Since

∫∞
q−

p
4 dt =

+∞ for all p > 0, by Th. 2.1 for every p > 0 there exists at least a solution of (1.2)
which is not p-integrable on [t0,∞). Thus the criterium of [1] is not applicable.
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Example 5.2. Consider the equation

(5.2) u′′ + φ

t
u′ +

[
tr + a tr

′
sin(ts)

]
u = 0 for t ≥ t0 ≥ 1 ,

where φ is a continuous function, a ∈ R, r ≥ 0.

1) Case r′ < r
2 − 1,

∫∞ |φ|
t <∞. Setting q(t) = tr, (1.4) is easily verified and we

can apply Th. 1.1 and Th. 1.2. Therefore for every solution u of (5.2) there exists
the finite limit

(5.3) lim
t→∞

(
t
r
2 |u(t)|2 + t−

r
2 |u′(t)|2

)
= Eu , with Eu > 0 if u 6≡ 0 ;

if r > 0 then every solution u of (5.2) is p-integrable for p > 4
r .

1′) Case r′ ≤ r
2 − 1, φ bounded. Setting q(t) = tr as above, condition (1.7) holds if

we suppose if 3‖φ‖L∞ + 4|a| < r
2 ( 3‖φ‖L∞ < r

2 , if r′ < r
2 − 1). In this case, by

Th. 1.3, every solutions u tends to 0 as t→∞.
Observe that in cases 1) and 1′) there are no restrictions on s. Even if φ ≡ 0,

the criterium of [1] is applicable only for r > 2 and r′ ≤ 0.

2) Case r
2 − 1 < r′ < r, 0 ≤ s < 1. In this case we must set q = tr + a tr

′ sin(ts).
Then, we have the inequalities

(5.4) |(q− 1
2 )(h)| ≤ C

(
t−

r
2−h + tr

′− 3r
2 +h(s−1)) in [t0,∞) ,

for all integers h ≥ 0, provided t0 is sufficiently large. This means that (1.4) is
verified if we take a positive integer m > 2s+2r′−3r

2(1−s) . Then we have:
– if

∫∞ |φ|
t <∞, we can apply Th. 1.1 and 1.2 as in the previous cases;

– if φ is bounded, condition (1.7) holds if 3‖φ‖L∞ < r
2 . In this case, by Th. 1.3,

every solutions u tends to 0 as t→∞.

3) Case r′ = r, 0 ≤ s < 1. Setting q = tr + a tr sin(ts), we have exactly the
previous situation, provided |a| < 1.

In cases 2) and 3) the criterium of [9] is not applicable if q is not monotone
nondecreasing, i.e. respectively if s > r − r′ and s > 0.

Remark 5.3. Let us consider equation (5.2) in [1,∞) with r′ = r ≥ 0 , |a| < 1
and s ≥ 1. Setting q = tr + a tr sin(ts) as above, we have q(t) ≥ tr(1 − |a|) in
[1,∞) . The assumptions stated in (1.8)–(1.10) of Remark 1.4 are easily verified if
we suppose

(5.5) r > 2(s− 1)

and m is a sufficiently large, positive integer. In fact, from (5.4) we obtain

(5.6) (q− 1
2 )1− 1

h |(q− 1
2 )(h)| 1

h ≤ C t− r2 +(s−1) ∀h ≥ 1 .

Thus (5.5) implies (1.8). In addition, (5.4) also gives

(5.7)
∣∣∣q−η0/2

( d
dt
q−

1
2

)η1
· · ·
( dm+1

dtm+1 q
− 1

2

)ηm+1
∣∣∣ ≤ C t−

mr
2 +(m+1)(s−1) ,
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for all integers η0 , . . . , ηm+1 ≥ 0 satisfying (1.10). Hence, (1.9) is verified if

(5.8) r >
2
m

+ 2(s− 1)m+ 1
m

.

From (5.5) again, we can see that (5.8) holds if m is large enough. As stated in
Remark 1.4, we are therefore in a position to apply Th. 1.1, 1.2 and 1.3. More
precisely, assuming

∫∞ |φ|
t <∞, we can apply Th. 1.1 and 1.2 as in the previous

cases. Condition (1.7) holds if 3‖φ‖L∞ < r
2 and, in this case, every solution u

tends to 0 as t→∞.

Example 5.4. Here we will show that the conclusion of Th. 1.3 (u(t) → 0 as
t→∞) may be false if we only require that (1.7) holds for an arbitrary C > 0. In
other words, we must suppose C ≥ C0, for a suitable C0 > 0. In fact, let us consider
the equation

(5.9) u′′ + γ(t)u′ + q(t)u = 0 , t ∈ [τ,∞) .

As it is known, if γ ∈ C1, the substitution u = v e
− 1

2

∫ t
τ
γ dt transforms (5.9) into

(5.10) v′′ +
(
q − γ′

2 −
γ2

4
)
v = 0 , t ∈ [τ,∞).

Now, setting q = t , γ = a
t (a ∈ R) and τ = 1 we obtain the equation

(5.11) v′′ +
(
t+ a

2t2 −
a2

4t2

)
v = 0 t ∈ [1,∞) .

Equation (5.11) satisfies the assumptions of Th. 1.2 in [t0,∞) ⊆ [1,∞), provided
t0 is large enough; for every nonzero solution v there exists finite and positive the
limit

(5.12) lim
t→∞

(
t

1
2 |v(t)|2 + t−

1
2 |v′(t)|2

) def= Ev .

Now, let ṽ be a fixed nonzero solution of (5.11), thus Eṽ > 0. Since ṽ is oscillating,
there exists a sequence {tn}n≥1, tn →∞ as n→∞, such that

(5.13)
∣∣ṽ(tn)

∣∣ ≥ Eṽ
2 4
√
tn
, ∀n ≥ 1 .

Then ũ = ṽ e
− 1

2

∫ t
1
γ dt = t−

a
2 ṽ is a solution of (5.9) in [1,∞) satisfying:

(5.14)
∣∣ũ(tn)

∣∣ ≥ Eṽ2 t
− a2−

1
4

n , ∀n ≥ 1 .

In particular, it follows that ũ(tn) 6→ 0, as n→∞, if a ≤ − 1
2 . Hence, for a ≤ − 1

2 ,
the conclusion of Th. 1.3 cannot hold.

On the other hand, taking q = t, γ = a
t it is easy to see that equation (5.9)

satisfies condition (1.7) only if |a| < 1
6 .
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