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Abstract. In this paper we analyze the stream function-vorticity-pressure method for the
Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue

approximations for the Stokes eigenvalue problem based on asymptotic error expansions

for two nonconforming finite elements, Q1°% and EQE°t. Using the technique of eigenvalue

error expansion, the technique of integral identities and the extrapolation method, we can
improve the accuracy of the eigenvalue approximations.
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1. INTRODUCTION

There are various approximation methods for solving the Stokes problem, see
Bercovier and Pironneau [3], Brezzi et al. [4], Chen and Lin [5], Girault and
Raviart [9], Glowinski and Pironneau [10], Han [11], Kfizek [13], Mercier et al. [20],
Rannacher and Turek [21], Wang and Ye [23], Ye [25], Zhou and Li [26], and
references cited therein.

In this article we will study two nonconforming finite elements, Q}°* and EQ}°,
for the eigenvalue approximations of the Stokes eigenvalue problems. For simplicity
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China (10471103) and is subsidized by the National Basic Research Program of China
under the grant 2005CB321701.



we consider the model eigenvalue problem stated as follows:
—Au+gradp=Au in Q,

(1) divu=0 in Q,
u=20 on 09,

where (Q is a rectangular domain in R?. For simplicity, we take 2 = (0,1) x (0, 1).

It is well known that the extrapolation method is an efficient procedure for im-
proving the accuracy of approximation of many problems in numerical analysis. The
effectiveness of this technique relies heavily on the existence of an asymptotic expan-
sion for the error. This technique has been well demonstrated in its application to
the finite element methods [17], [18] and [22].

The application of the extrapolation method to eigenvalue problems was first
proposed by Q. Lin and T. Lii [16], and was analyzed in [14], [15], [17], [19], and [22].

In [5], the bilinear finite element has been analyzed for the Stokes eigenvalue
problem and the error asymptotic expansion and the extrapolation formula were
given.

This paper is organized in the following way. In Section 2 we present asymptotic
expansions for nonconforming finite elements, Qi°* and EQ'°*. The analysis for the
eigenvalue problem is given in Section 3, and in Section 4 we derive the expansions of
the eigenvalue error, using some integral identities and the Bramble-Hilbert lemma in
our analysis. Section 5 is devoted to extrapolation and an a posteriori error estimate
for eigenvalue approximations. And finally, in Section 6 numerical experiments are
reported.

Throughout this article we shall use the standard notation as in Chen [7] and Cia-
rlet [8], for example, the notation of the Sobolev space, product, norms, seminorms,
and discretized norms.

The main technique we use is the eigenvalue error expansion technique first pro-
posed by Lin and Lii [16], and the Bramble-Hilbert lemma [15].

2. @Q}°* AND EQ'°" ELEMENTS
Let T, = {e} be a rectangular partition over 2, where
€= [e = he,Te + he] X [ye — ke, ye + ke,
h= meax{he, k.}. Moreover, T}, is regular, i.e.
Coh? < meas(e) < Cih? Vee Ty,
where C; >0 (i =0,1).
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The Q}°* finite element space V}, is defined as follows:
Vi i={v € L*(Q); v|. € span{l,xz,y,2* —y*}, Ve € Tp}

with the interpolation u; € V} which is defined by the edge conditions

/uds:/ujds, 1=1,2,3,4,
I L

i

where I; (i = 1,2,3,4) are the four edges of e. In addition, set
Vor. = {v € Vi; v|on = 0}.
The EQ'°* finite element space W), is defined as follows:
Wy = {v e L*(Q); vl. € span{1,z,y,2°% 3}, Ve € Ty}

with the interpolation u; € W}, which is defined by the edge-surface conditions

/uds: /ujds, 1=1,2,3,4,
1 1

i i

/udmdy: /uIdxdy,

where I; (i = 1,2,3,4) are the four edges of e.

In addition, set

Won = {U S Wh; U|aQ = 0}.

It is obvious that Vj, € HY(Q) and W), € H* ().

We have the following integral expansions (see [15]):

Lemma 2.1. For all v € V}, or W, and u € H°(Q) we have

ou k2 4k
(2) Z o’ ds = Z (; /umyvy dzdy — 15 /uzzyyvyy de dy
€ (&

h? / 4ht
+ == | Uyyzv dxdy——e/u v dmdy)
3 . yyxVx 45 i yyxxVzx

+ O(hY)|uls|v]1,n

and furthermore, if T}, is uniform and du/0n|sq = 0 or v|sq = 0, we have

du h? 4+ k2 \
® % [ Greas= -1 [uededy+ 0ndlulsllan

ecTy,

where h and k are the mesh step sizes in x- and y-directions, respectively.



Lemma 2.2. Ifv € V},, T}, is a square mesh and uy € Vj, then

(4) Z V(u—ur)Vudedy =0,

e€T), v °

h2
6) [ @ uodedy =~ [ (o + w)odsdy + OB ulaloln
Q Q

Lemma 2.3. For allv € Wy, uy € W;, we have

(6) Z V(u—ur)Vudedy =0,
ecT) V€
(1) / (u — wr)o dzdy = O(h*) [ulla[v] 1.
Q

3. APPROXIMATION OF THE STOKES EIGENVALUE PROBLEM

In this section we consider a stream function-vorticity-pressure method to solve
the eigenvalue problem (1).

We introduce the stream function 1 for the velocity (u = curly = (929, —01v)),
based on the identities ([4], [8])

curl(curlu) = — Au + grad(divu),
curl(curly) = — Ay

where curlu = —0uq +01us. Problem (1) can be expressed as the following buckling
plate problem:
Find ), v satisfying

—A%) =AAY in Q,
8 0
®) Y= 9% =0 on 09,
on
where n is the outward unit normal.
Then we can obtain the following weak mixed formulation for (8) which seeks
A ER, (Y,w) € HI(Q) x HY(Q) satisfying s(¢,) = 1 and

o) {a(w,@) +b(0,9)=0 VO H(Q),

b(wa 50) = —AS(Q/% 50) VQO € H&(Q)v



and find p € H'(Q2) such that

(grad p,gradq) = A\(u — curlw,gradq) Vqe HY(Q),
(10)

/pdx:()
Q

with u = curl vy, where w = —A and
a(w, ) :/QwQ Vw,0 € HY(Q),
b(w, ) = —/chrlw curlpdedy Ywe HY(Q), ¢ € Hy(Q),
s(,p) = /chrlwcurlgodxdy Vo € HY(w), ¢ € Hy(Q).
Problem (9) has an eigenvalue sequence {\;} ([1], [2]):

O</\1<)\2<...<)\k<..., lim A\ = oo

k—oo

and the associated eigenfunctions

(Y1, w1), (Y2, wa), oy (Vs wi), - -,

where (curly;, curly;) = 6,5, wp = —Agdy.
The finite element approximation of (9) is to seek A\, € R, (¢p,wp) € Vor X Vj, or
Won x Wy, such that sp(p, ) =1 and

(11) {ah( 10) +bn(0,9n) =0 VO €Vy, or W,

bi(wh, @) = =Ansn(Yn, @) Vo € Vor, or Wop,
and find pp € V}, or W}, such that
(grad pp, grad ¢i)n = A(up, — curlwy, grad g,)n Vqn € Vi, or Wy,

(12) /Qph dz =0

with up = curlyy, where
ap(w, ) = / wldrdy VYw,0 €V or Wy,
Q

bp(w, v) Z /curlwcurlapdxdy Vw e Vi or Wy, ¢ € Vo, or Wy,

eeTy,

sn(, ) Z /curlwcurlgodxdy Vi € Vop, or Wop, @ € Vo, or Wop,.

eeTy,



In order to get the error expansion of the eigenvalue problem we analyze the
original problem first.
The original problem is: Find (v, w) € H3 () x H*(Q) such that

alw = 1
13) { (w,0) +b(0,9) =0 YO HY(Q),

blw,p) =—s(g,9) Ve Hs(Q).

The finite element approximation for (13) is: Find (Rpt), Rpw) € Vop X Vi, or
(Rpt), Rpw) € Wop X Wy, such that

(14) { ah(Rhw,H) + bh(H,Rhw) =0 V0eV, or Wy,

bn(Rhw, ) = —sn(g, @) YV € Vo, or Wy,

Lemma 3.1. Assume ¢ € H°(Q), T}, is a square mesh for Q}°* and a uniform
mesh for EQ°*. Then

(15) lvor — Rutpllip + [lwr — Rpwllo < CR?,
(16) ¥ — Rutllo + Al — Rutllin + lw — Rawllo < Ch2
Proof. Since w = —A, we have

||w1 — Rhw||(2) = ah(wj — Rhw,w[ — Rhw)
= ap(wr — w,wr — Rpw) + ap(w — Rpw,ws; — Rpw)
= ap(w; — w,wy — Rpw) — Z AyY(wy — Rpw) da dy
ecT), V¢
— ah(Rhw, wr — Rhw)

=ap(wr — w,wr — Rpw) + Z / n x curl ¢ (w; — Rpw)ds
Oe

ecTy
+ Z curly curl(w; — Rpw) dzdy + by (wr — Rrw, Rpt))
ecT), ” €
= ap(w; —w,wy — Rpw) + Z / n x curl Y (w; — Rpw)ds
e€T), e

— by (wr — Rpw, ¥ — Rptp)

=ap(wr — w,wr — Rpw) + Z / n x curl (w; — Rpw)ds
ecTy Oe

—bp(wr — Rpw, ¥ — 1) — bp(wr — Rpw, 1 — Rpp).



Let us define

I:=ap(wr —w,w; — Rpw) + Z /nxcurlw wr — Rpw) ds
ecTy

—bn(wr — Rpw, ¥ — 9y),
II:= — by(ws — Rpw, b1 — Rpab).

Then

II = —bh( wr —w wI—Rh’lp) —bh(w—Rhw ’lb[ —Rh’lp)
= —bp(wr —w, ¥y — Rpb) + Z /curlwcurl(d)[—Rhw)dxdy

ecTy
+ bn(Rhw, 1 — Rypp)

—bp(wy —w,¥r — Rpp) — Z /a n x curlw(y; — Rpt) ds

ecTy,

-y / Aol — Ry) dardy — s (g1 — Ryd)

ecTy,
= —bp(wr —w, 1 — Rptp) — Z / n x curlw(yy — Rpep)ds
e€T), de
- Z /Ag(wf — Rpyp) de dy — su(g, ¥r — Rut)
ecTy
= —bp(wr —w, ¥y — Rpp) — Z / n x curlw(y; — Rpv) ds
e€T), de
+ Z / n x curlg(¢r — Rpp) ds + Z /curlgcurl(l/JI — Rpy)ds
ecTy, ecTy,
— sn(9, %1 — Rp)
= —bp(wr —w, ¥y — Rpp) — Z /a n x curlw(y; — Rpv) ds
eceTy €

+ Z / n x curl g(¢r — Rptp) ds

ecTy,

Therefore,
(17) |lwr = Raw|3
= ap(wr — w,wy — Rpw) + Z / n x curl ¥ (w; — Rpw) ds
de

eeTy
—bu(wr — Rpw, ¥ — 1) — bu(wr — w,¥r — Rp1)

- Z /nxcurlw t; — Rpp) ds + Z /nxcurlg%—Rhw)
e e

ecTy ecTy,



Similarly, we have

Cller — Rat|I3 , < bn(r — Rutp, o1 — Ru))
= bn(Yr — Rptp, 1 — ) + bn(¥1r — Rayp, b — Rpp),

where

bu (Y1 — Rpap, 1 — Rpa)
= bh(ﬂ)[ — R}ﬂ/) w) - bh(wl - Rhwa Rhw)

= -y curl (Y1 — Rp) curlyp da dy + ap(Rpw, 1br — Rptb)

ecTy
= Z / n x curly(yp; — Rpp) ds + Z /Aw Y1 — Rptp) dody
ecTy, de ecTy

+ an(Rpw, 1 — Rpt)
= Z /d n x curl (¢ — Rptp) ds — Z / (vr — Rpp) dz dy

ecTy, ecTy,
+ an(Rpw, 1 — Rpp)

S /8 n x curl Y(r — Rath) ds — an(w — Raw, 61 — Rue))

ecTy

= Z/@nxcurlw(%—RhwdS—ah(w wr, 1 — Rpap)

ecTy,
— ap(wr — Rpw, Y1 — Rypp).

Then,

(18) Cllvor — RupllF ), < ba(¥r — Rutb, o1 = 4)
+ Z / n x curl¥(v; — Rp) ds

ecTy,
—ap(w —wr, Y1 — Rpyp) — ap(wr — Rpw, 1 — Rp)).

From (17), (18) and Lemmas 2.1-2.3 we can prove the assertion of Lemma 3.1. [

Here we assume that all eigenvalues have ascent and their geometric multiplicity is
one. From Lemma 3.1 and the results of [6], [12], [20], and [24] we have the following
theorem.



Theorem 3.1. Under the conditions of Lemma 3.1 let us assume that (A, ¥, w) €
R x H}(Q) x HY(Q) is an eigenpair of (9) and (An,¥n,wn) € R x Vop x Vi, or
R x Wop x Wy, is an eigenpair of (11). Then

(19) A — A < Ch2,
(20) [w—wallo < CR?,
(21) Y — ¥nllo + hllY — Yull1n < CR2.

4. ASYMPTOTIC EIGENVALUE ERROR EXPANSIONS BY Q°" AND EQ}°*

Theorem 4.1. When we use the finite element spaces Q°* and EQ'°* and under
the conditions of Theorem 3.1, we have

(22) A= A= Apsn(th — thr, y,) + bp(@n, b — 1)

— Z / wpn X curl Y ds + ap(w — wr,wp)

e€T), e
+ by (w — wr,¥y,) — Z / n x curlwi, ds
e€T), Oe
+ A Z / n x curlwwhds,
eeT), Oe

where

Dy = _Yn D= —

" s, ) sn(®,n)

Proof. It is obvious that sp(¢,1;) = 1. Then

A = Ansn (1, 1y,)
= Ansn(Ruib,y,) + Ansn( — Rpab, 1y,)
=1+1I,

where (Rp1), Rpw) is the solution of (14) with g = A¢p. Then

L= Npsu(Rat, ) = —bn(@n, Rpt) = an(Raw,@n) = an(@h, Ruw)
- - bh(RhwaEh) = Ash(d)vwh) = >‘a



I = Xpsu (¢ — Rut), ¢y,)
= M (¥ = ¥1,9%) + Ansn(¢r — Rut,1by,)
= M (¥ — 1, 9) — bu(@h, Y1 — Rat))
= M (¥ = Y1, y) = bp(@n, Y1 — ) — bp(@h, ¥ — Rpt))
=111 + 11y,

where
Iy = Apsn(¥ — 1, ¥p) — bp(wh, Y1 — ),
and since w = —A,

Oy = — bp(@h, ) — Rpp)
Z /curl wp, curly da dy + by, (Wh, Rpt)

ecT), V€
== Z / wpn X curlyds + Z wp, curl(curly) dz dy
ecTy, e ecT), e
_ah(Rhw7wh)
=- 3 / @ x curlpds — > [ DpAY dady — an(Ryw, @)
ecTy, Oe ecT), ” ¢
= — Z / wpn X curly ds + Z wwp, dzdy — ap(Rpw, 0p,)
ecTy e ecT), V€
= — Z / wpn X curly ds + ap(w — Rpw,@p)
e€T), e
= — Z / wpn X curly ds + ap(w — wr,@p) + ap(wr — Rpw, @p)
€Ty, Oe
= — Z / wpn X curly ds + ap(w — wy,wp) — bp(wy — Rhw,@h)
€Ty, Oe
= — Z / wpn X curly ds + ap(w — wr,wp)
e€T), de

— bp(wr — w,1y,) — bp(w — Rupw, ¥y,)

_ Z/ whnxcurlwds—kah(w—wj,wh)—bh(wj—w,@h)
ecTy, Oe

+ Z curlw curl ), dz dy + by, (Rpw, 1y,)

e€T), v °
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= — Z/ Tpn x curly ds + ap(w — wr,@x) — bp(wr — w,¥y,)
Oe

ecTy,

— Z / n x curlwy, ds
Oe

ecTy,

+ Z curl(curl w)i,, dz dy + by (Ruw, 1)

e€T), v ¢

- Z/ Tpn x curly ds + ap(w — wr,@x) — bp(wr — w, ¥y,)
Oe

e€Ty,

— Z / n x curlwy, ds — Z /Aw@h dzdy — Asp(¥,1y,)
Ode

ecTy, e€Ty V¢

— Z / wpn x curly ds + ap(w — wr,@h) — bp(wr — w,¥y,)
e

e€Ty

— Z / n x curlwi;, ds
Oe

ecTy,

Y Z curl(curl )i, dz dy — Asp (v, 1)y,)

e€T), v °

- Z/ Tpn x curly ds + ap(w — wr,@x) — bp(wr — w, ¥y,)
Oe

e€Tp,

- Z/ nxcurlw@hds—FAZ/ n x curl ¢, ds.
Oe Oe

ecTy, ecTy,

Thus we get the theorem. (I

Theorem 4.2. If ¢ € H5(Q) and w € H5(Q) then for the finite element Q%°*,
when Ty, is a square mesh, we have

h? 9 4h?
(23) A —A= — 5 QA wAwdxdy—l—T QAwwmyydxdy

2\h?

3

/Q gyt dady + O(h),

and for the finite element EQ'°*, if T}, is uniform, we have

2(h? + k?

A(h2 + k2
% /Q rayytdz dy + O(%).

(24) Ap— A= —

11



Proof. It is obvious that ([15])

%y, — ¥nllo < ch®,  ||@h — wallo < ch®.

Then Lemma 2.1-2.3, Theorem 3.1 and Theorem 4.1 yield the assertion of this the-
orem. O

5. EXTRAPOLATION AND AN A POSTERIORI ERROR ESTIMATE
FOR EIGENVALUES

In order to use the extrapolation method, we assume that T}, /> has been obtained
from T}, by dividing each element into four congruent rectangles by connecting the
midpoints of its edges. Let (A, 2,%n/2,wn/2) be the eigensolution approximation on
the mesh T}, /5.

Denote by

4\nj2 — An

25 )\extra —
(25) ; ;

the extrapolation of \. Then by Theorem 4.2 we get the following error estimate for
the extrapolation A\, and an a posteriori error estimate for the eigenvalue.

Theorem 5.1. Under the conditions of Theorem 4.2 we have

(26) A — At — O(pt)
and thus,
A — A
(27) N = A= T2 oY)

provides an a posteriori error estimate %()\h — Any2) for Ap o — A

12



6. NUMERICAL RESULTS

First, we introduce some notation

erry = /\h _ )\,
1
Agxtra 5(4)\}1//2 — ),
err{ta — \extra _ \
log(|errs|/lerry, s2|)
R, = 7
log(2)
postra _ 108 (Iler Rt/ lerri?))
" log(2) .

We compute the first eigenvalue and take A = 52.3446911 (accurate enough).

M x N 4x4 8 x 8 16 x 16 32 x 32 64 x 64
An |52.15082488284 | 52.31809045313 | 52.34015032048| 52.34368098538| 52.34444610834
A%Xtra — 52.37384564323| 52.34750360960 | 52.34485787368| 52.34470114933
erry, |—0.19386621716|—0.02660064687 |—0.00454077952|—0.00101011462|—0.00024499166
errix“a — 0.02915454323| 0.00281250960( 0.00016677368| 0.00001004933
Ry, - 2.86552818903| 2.55044943728| 2.16842097918| 2.04371449127
R%Xtra - - 3.37379079440| 4.07589449578| 4.0527200264
Table 1. Computation of the first eigenvalue by Q1°%.
M x N 4x4 8 x8 16 x 16 32 x 32
An 47.18962964955835 | 50.70035642020135 | 51.90518931765972 | 52.23288933622509
A?thra — 51.87059867708234 | 52.30680028347918 | 52.34212267574687
errp |—5.15506145044165 |—1.64433467979865 |—0.43950178234028 |—0.11180176377491
errzx“a — —0.47409242291766 |—0.03789081652081 [—0.00256842425313
Ry, — 1.64848565724684 | 1.90356304681561 | 1.97492606784368
sztra — - 3.64524820130709 | 3.88289279718122

Table 2. Computation of the first eigenvalue by EQL°.

From Tabs. 1 and 2 we can find that with the extrapolation the approximation
accuracy can be improved from O(h?) to O(h*), which validates the corresponding
theoretical result in Theorem 5.1 computationally. The extrapolation of the eigen-

value gives a more efficient approximation.
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7. CONCLUDING REMARKS

The nonconforming finite elements, Q}°* and EQ}°*, can give optimal error esti-
mates under some conditions for the stream function-vorticity-pressure method of the
Stokes eigenvalue problems. The eigenvalue extrapolation can improve the accuracy
of the eigenvalue approximations and give an a posteriori error estimate.

We can also apply Q'°' and EQ}°* elements to other problems and also use the
extrapolation method to improve the accuracy order.

We also need to notice that the extrapolation method may give “good” results
even though the true solution does not satisfy regularity assumptions guaranteeing
superconvergence theoretically.

Acknowledgement. The authors would like to express their grateful thanks to
their supervisor Prof. Qun Lin for his supervision.
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