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Abstract. This paper is devoted to the homogenization beyond the periodic setting, of
nonlinear monotone operators in a domain in RN with isolated holes of size ε

2 (ε > 0 a
small parameter). The order of the size of the holes is twice that of the oscillations of the
coefficients of the operator, so that the problem under consideration is a reiterated homoge-
nization problem in perforated domains. The usual periodic perforation of the domain and
the classical periodicity hypothesis on the coefficients of the operator are here replaced by
an abstract assumption covering a great variety of behaviors such as the periodicity, the
almost periodicity and many more besides. We illustrate this abstract setting by work-
ing out a few concrete homogenization problems. Our main tool is the recent theory of
homogenization structures.
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1. Introduction

Let Ω be an open bounded set of RN
x (the space R

N of variables x = (x1, . . . , xN ),

N > 1) with smooth boundary ∂Ω, Z = (− 1
2 ,

1
2 )N the reference cell, T ⊂ Z a

compact set in R
N
z with smooth boundary ∂T and nonempty interior, and S an

infinite subset of ZN (Z denotes the integers).

For fixed ε > 0, we define the perforated domain Ωε as follows:

tε = {k ∈ S : ε2(k + T ) ⊂ Ω},

T ε =
⋃

k∈tε

ε2(k + T )

and

Ωε = Ω \ T ε (points in Ω lying off T ε).
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The set tε is finite, since Ω is bounded. Hence T ε is closed in RN
x and so Ωε is open.

This being so, let 1 < p < ∞. Let (y, λ) → a(y, λ) be a function from R
N × R

N

to RN with the properties:

For each fixed λ ∈ R
N , the function y → a(y, λ) (denoted(1.1)

by a(·, λ)) from R
N to RN is measurable.

a(y, 0) = 0 almost everywhere (a.e.) in y ∈ R
N .(1.2)

There are four constants c1, c2 > 0, 0 < α1 6 min(1, p− 1)(1.3)

and α2 > max(p, 2) such that, a.e. in y ∈ R
N and for λ, µ ∈ R

N :

(i) (a(y, λ) − a(y, µ)) · (λ− µ) > c1(|λ| + |µ|)p−α2 |λ− µ|α2

(ii) |a(y, λ) − a(y, µ)| 6 c2(|λ| + |µ|)p−1−α1 |λ− µ|α1 ,

where the dot denotes the usual Euclidean inner product in R
N

and | · | the associated norm.

For fixed ε > 0, let

− div a
(x

ε
,Duε

)

= f in Ωε,(1.4)

a
(x

ε
,Duε

)

· ν = 0 on ∂T ε,

uε = 0 on ∂Ω,

where f ∈ Lp′

(Ω;R) with p′ = p/(p− 1), ν = (νi) denotes the unit external normal

vector to ∂T ε with respect to Ωε, and D denotes the usual gradient operator with

respect to x, i.e., D = (Dxi
)16i6N with Dxi

= ∂/∂xi, and finally div denotes the

usual divergence operator in Ω.

Once more, fix ε > 0, and fix u ∈ W 1,p(Ωε;R). In [24] the trace function x →

a(x/ε,Du(x)) from Ωε into R
N (denoted by aε(·, Du)) is rigorously defined as an

element of Lp′

(Ωε;R)N with the properties:

(aε(·, Du) − aε(·, Dv)) ·D(u − v)(1.5)

> c1(|Du| + |Dv|)p−α2 |Du−Dv|α2 a.e. in Ωε,

‖aε(·, Du) − aε(·, Dv)‖Lp′(Ωε)N(1.6)

6 c2(‖Du‖Lp(Ωε)N + ‖Dv‖Lp(Ωε)N )p−1−α1‖Du−Dv‖α1

Lp(Ωε)N ,

for all u, v ∈ W 1,p(Ωε;R). Therefore, the problem (1.4) uniquely determines a func-

tion uε ∈ Vε = {u ∈ W 1,p(Ωε;R) : u = 0 on ∂Ω} (see, e.g., [17]). We endow the vec-

tor space Vε with the norm (equivalent to theW
1,p(Ωε)-norm) ‖u‖Vε

= ‖Du‖Lp(Ωε)N

(u ∈ Vε), which makes it a Banach space (see, e.g., [1]).
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Perforated media are nowadays widely used in various domains such as the

aerospace industry, civil engineering, and have a lot of applications in physics, chem-

istry and geology, in particular. That is why the homogenization of partial differential

equations in perforated domains is actually a very attractive field. We refer, e.g.,

to [8], [6], [7], [9], [11], [12] and the references therein, for some bibliographical links.

In most of the previous works, the results were established for the case that the

holes are periodically distributed and the size of the holes is of the same order as that

of the period of oscillations of the coefficients of the operator under consideration.

Cioranescu and Murat [10] have for the first time envisaged the situation, where the

order of the size of the holes is different from that of the period of oscillations of the

coefficients of the operator, but the perforation is still a periodic one.

Recently Nguetseng [23] has considered the more general situation where the pe-

riodic perforation is replaced by an abstract hypothesis covering a range of concrete

behaviors such as the periodic perforation, the almost periodic perforation and the

concentration of the holes in a neighborhood of some hyperplane. But here again,

the size of the holes and the period of oscillations are of the same order. Similarly,

see, e.g., [2], [27].

In the present work, we consider the situation where the order of the size of the

holes is twice that of the period of oscillations of the coefficients of the operator

in (1.4), and at the same time, we replace the periodic perforation by a general

assumption similar to that in [23]. This seems to be, to our knowledge, a true

advance and in all points of view, new.

More precisely, we investigate the asymptotic behavior of uε (the solution of (1.4))

as ε → 0, under an abstract assumption on a(y, λ) (for fixed λ) and an hypothesis

characterizing the manner in which the holes are distributed. That abstract assump-

tion is made, on the one hand, on the function a(y, λ) with respect to the variable

y = x/ε, and on the other hand, on the characteristic function χG(z) of the set

G = R
N
z \

(

⋃

k∈S

(k + T )
)

with respect to the variable z = x/ε2. Thus, the problem

under consideration is a reiterated homogenization problem in perforated domains.

Each of these abstract hypotheses covers a great variety of concrete behaviors in-

cluding, in particular, the classical periodicity hypothesis and the almost periodicity

hypothesis.

The layout of the paper is as follows. In Section 2 we give preliminary notions

and results about reiterated Σ-convergence, and we state and solve the abstract

homogenization problem for (1.4). Section 3 deals with concrete homogenization

problems for (1.4).

Unless otherwise specified, the vector spaces throughout are assumed to be com-

plex vector spaces, and the scalar functions are assumed to attain values in C (the
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complex numbers). This permits us to make use of basic tools provided by the clas-

sical Banach algebras theory. We shall always assume that the numerical space Rm

(integer m > 1) and its open sets are each provided with the Lebesgue measure

denoted by dx = dx1 . . . dxm. Finally, let F (X) be a given function space. We

shall denote by F (X ;R) or FR(X) the subspace of F (X) consisting of real valued

functions.

2. The abstract homogenization problem for (1.4)

2.1. Reiterated Σ-convergence

We first state some fundamentals of homogenization structures beyond the classical

two-scale setting.

Let H = (Hε)ε>0 be one of the following two actions of R
∗
+ (the multiplicative

group of positive real numbers) on the numerical space RN , defined as follows:

Hε(x) =
x

ε
(x ∈ R

N ),(2.1)

Hε(x) =
x

ε2
(x ∈ R

N ).(2.2)

It is an easy task to see that each of these two actions satisfies the following properties:

(H)1 Each Hε maps continuously R
N into itself;

(H)2 lim
ε→0

|Hε(x)| = +∞ for any x ∈ R
N with x 6= 0;

(H)3 The Lebesgue measure λ on R
N is quasi-invariant under H, i.e., to each

ε > 0 there is attached some γ(ε) > 0 such that Hε(λ) = γ(ε)λ.

Now, given ε > 0, let

uε(x) = u(Hε(x)) (x ∈ R
N )

for u ∈ L1
loc(R

N
y ) (as usual, RN

y denotes the numerical space R
N of variables y =

(y1, . . . , yN)). In view of (H)3, u
ε lies in L1

loc(R
N
x ). More generally, if u lies in

Lp
loc(R

N ) (resp. Lp(RN )), 1 6 p < +∞, then so also does uε.

We denote by Π∞(RN
y ;H), or simply Π∞ when there is no danger of confusion,

the space of those functions u ∈ B(RN
y ) (the space of bounded continuous complex

functions on RN
y ) for which a complex number M(u) exists such that uε →M(u) in

L∞(RN
x )-weak∗ as ε→ 0. There is no difficulty in verifying that Π∞ is a closed vector

subspace of B(RN) (provided with the supremum norm) and hence a Banach space

under the supremum norm. Also, Π∞ contains the constants and further Π∞ is

closed under complex conjugation. On the other hand, the mapping u 7−→ M(u)

of Π∞ into C, denoted below by M , is a positive linear form on Π∞ attaining the
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value 1 on the constant function 1. Hence, M is continuous on Π∞; more precisely

|M(u)| 6 ‖u‖∞ for all u ∈ Π∞. The mapping M is called the mean value on R
N

for H.

For the benefit of the reader we summarize below a few basic notions and results

about the homogenization structures in a general setting [26].

First, by a structural representation on RN for the actionH is meant any countable

set Γ ⊂ Π∞ with the properties:

(HS1) Γ is a group under multiplication in B(RN
y ),

(HS2) Γ is closed under complex conjugation.

Now, in the collection of all structural representations on RN
y (for H) we consider

the equivalence relation ∼ defined as: Γ ∼ Γ′ if and only if CLS(Γ) = CLS(Γ′),

where CLS(Γ) denotes the closed vector subspace of B(RN
y ) spanned by Γ. By an H-

structure on RN
y for H (H stands for homogenization) is understood any equivalence

class modulo ∼.

An H-structure is fully determined by its image. Specifically, let Σ be an H-

structure on R
N . Put A = CLS(Γ), where Γ is any equivalence class representative

of Σ (such a Γ is termed a representation of Σ). The space A is a so-called H-algebra

on R
N
y for H, that is, a closed algebra contained in Π∞ with:

(HA1) A contains the constants,

(HA2) A is closed under complex conjugation.

It is to be noted that by the definition of A, endowed with the supremum norm,

A is a separable Banach algebra. Moreover, A depends only on Σ and not on the

chosen representation Γ of Σ; so that we may set A = J (Σ) (the image of Σ), which

yields a one-to-one mapping Σ → J (Σ) that carries the collection of all H-structures

(for H) onto the collection of all H-algebras on R
N
y (for H) (see [19, Theorem 3.1]).

Let A be an H-algebra on R
N
y . Clearly A (with the supremum norm) is a com-

mutative C∗-algebra with identity (the involution is here the usual one of complex

conjugation). We denote by ∆(A) the spectrum of A and by G the Gelfand transfor-

mation on A. We recall that ∆(A) (a subset of the topological dual A′) is the set of

all nonzero multiplicative linear forms on A, and G is the mapping of A into C(∆(A))

such that G(u)(s) = 〈s, u〉 (s ∈ ∆(A)), where 〈·, ·〉 denotes the duality pairing be-

tween A′ (the topological dual of A) and A. The topology on ∆(A) is the relative

weak∗ topology on A′. With this topology, ∆(A) is a metrizable compact space,

and the Gelfand transformation is an isometric isomorphism of the C∗-algebra A

onto the C∗-algebra C(∆(A)). For further details concerning the Banach algebras

theory we refer to [16]. The basic measure on ∆(A) is the so-called M -measure

for A, namely the positive Radon measure β (of total mass 1) on ∆(A) such that

M(u) =
∫

∆(A)
G(u) dβ for u ∈ A (see [19, Proposition 2.1]).
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For the benefit of the reader, we recall the following well-known fact: If Σ is the

periodic H-structure ΣZN represented by the network Z
N of RN , then ∆(A) can

be identified with the period Y = [−1/2, 1/2]N. In the case when Σ is an almost

periodic H-structure ΣR on R
N represented by some countable subgroup R of RN ,

then ∆(A) is a compact topological group homeomorphic to the dual group R̂ of R

consisting of the characters γk (k ∈ R) of RN , defined by γk(y) = exp(2iπk · y)

(y ∈ R
N ) (see [22, Propositions 2.2 and 2.6] for details).

The partial derivative of index i (1 6 i 6 N) on ∆(A) is defined to be the mapping

∂i = G◦Dyi
◦G−1 (usual composition) of D1(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A1}

into C(∆(A)), where A1 = {ψ ∈ C1(RN ) : ψ,Dyi
ψ ∈ A (1 6 i 6 N)} with Dyi

ψ =

∂ψ/∂yi. Higher order derivatives are defined analogously. At the same time, let

A∞ be the space of ψ ∈ C∞(RN
y ) such that Dα

y ψ = ∂|α|ψ/(∂yα1

1 . . . ∂yαN

N ) ∈ A for

every α = (α1, . . . , αN ) ∈ N
N , and let D(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞}.

Endowed with a suitable locally convex topology (see [19]), A∞ (resp. D(∆(A))) is a

Fréchet space and further, G viewed as defined on A∞ is a topological isomorphism

of A∞ onto D(∆(A)).

Any continuous linear form on D(∆(A)) is referred to as a distribution on ∆(A).

The space of all distributions on ∆(A) is then the dual, D′(∆(A)), of D(∆(A)). We

endow D′(∆(A)) with the strong dual topology. If we assume that A∞ is dense

in A (this condition is always fulfilled in practice), which amounts to assuming that

D(∆(A)) is dense in C(∆(A)), then Lp(∆(A)) ⊂ D′(∆(A)) (1 6 p 6 ∞) with

continuous embedding (see [19] for more details). Hence we may define

W 1,p(∆(A)) = {u ∈ Lp(∆(A)) : ∂iu ∈ Lp(∆(A)) (1 6 i 6 N)}

where the derivative ∂iu is taken in the distribution sense on ∆(A) (exactly as the

Schwartz derivative is taken in the classical case). We equip W 1,p(∆(A)) with the

norm

‖u‖W 1,p(∆(A)) =

[

‖u‖p
Lp(∆(A)) +

N
∑

i=1

‖∂iu‖
p
Lp(∆(A))

]1/p

(u ∈ W 1,p(∆(A))),

which makes it a Banach space. However, we will be mostly concerned with the

space

W 1,p(∆(A))/C =

{

u ∈W 1,p(∆(A)) :

∫

∆(A)

u(s) dβ(s) = 0

}

provided with the seminorm

‖u‖W 1,p(∆(A))/C =

( N
∑

i=1

‖∂iu‖
p
Lp(∆(A))

)1/p

(u ∈W 1,p(∆(A))/C).
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With this seminorm, W 1,p(∆(A))/C is in general nonseparated and noncomplete.

We denote by W 1,p
# (∆(A)) the separated completion of W 1,p(∆(A))/C and by J the

canonical mapping of W 1,p(∆(A))/C into its separated completion. W 1,p
# (∆(A)) is

a Banach space and W 1,2
# (∆(A)) is a Hilbert space. Furthermore, as pointed out

in [19], the distribution derivative ∂i viewed as a mapping of W
1,p(∆(A))/C into

Lp(∆(A)) extends to a unique continuous linear mapping, still denoted by ∂i, of

W 1,p
# (∆(A)) into Lp(∆(A)) such that ∂iJ(v) = ∂iv for v ∈ W 1,p(∆(A))/C and

‖u‖W 1,p

#
(∆(A)) =

( N
∑

i=1

‖∂iu‖
p
Lp(∆(A))

)1/p

for u ∈ W 1,p
# (∆(A)).

To enhance the comprehension of the space W 1,p
# (∆(A)), let us note that in

the case of a periodic H-structure ΣZN , W 1,p
# (∆(A)) stands for the well-known

space W 1,p
# (Y ) (Y = (−1/2, 1/2)N) of Y -periodic functions in W 1,p

loc (RN ) of zero

mean value.

However, the notion of a productH-structure (see [19]) needs a few further details.

To that end, we define the product action H∗ of the preceding two actions (2.1) and

(2.2) by

H∗ = (H∗
ε )ε>0 : H∗

ε (x, x′) =
(x

ε
,
x′

ε2

)

((x, x′) ∈ R
N × R

N ).

There is no difficulty in checking that the action H∗ has the properties (H)1–(H)3. In

the sequel, the action (2.2) will be denoted by H′ = (H ′
ε)ε>0, that is, H

′
ε(x) = x/ε2

(x ∈ R
N ).

Now, if Σ1 (resp. Σ2) is an H-structure on R
N (resp. RN) for H (resp. H′),

then [19, Proposition 3.1] carries over to the present setting, so that the product

Σ = Σ1 × Σ2 is well defined as an H-structure on R
2N for the product action H∗.

Moreover, Proposition 3.2, Theorem 3.2 and Corollaries 3.1–3.2 of [19] carry over

mutatis mutandis to the present context.

In the sequel, we will denote by the same letter M the mean value on R
N for H

and for H′, and on R
2N for H∗ as well. An H-structure Σ (of image A) will be

termed of class C∞ if A∞ is dense in A.

This being so, let Σy and Σz be two H-structures of class C
∞ on R

N
y (for H) and

R
N
z (for H

′), respectively, and let Σ = Σy × Σz be their product, which is an H-

structure of class C∞ on R
2N = R

N × R
N for the product action H∗. We introduce

their respective images Ay = J (Σy), Az = J (Σz) and A = J (Σ), and we use the

same letter, G, to denote the Gelfand transformation on Ay , Az and A, as well.

Points in ∆(Ay) (resp. ∆(Az)) are denoted by s (resp. r). The compact space ∆(Ay)

(resp. ∆(Az)) is equipped with the M -measure βy (resp. βz) for Ay (resp. Az). It is
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important to recall that ∆(A) = ∆(Ay)×∆(Az) (Cartesian product) and further the

M -measure for A, with which ∆(A) is equipped, is precisely the product measure

β = βy ⊗ βz (see [19]). We have the following proposition.

Proposition 2.1. For each ψ in A we have, as ε→ 0,

ψε →M(ψ) in L∞(RN
x )-weak*,

where ψε is defined in an obvious way by ψε(x) = ψ(x/ε, x/ε2) for x ∈ R
N andM is

the mean value on R
2N = R

N × R
N for the product action H∗.

P r o o f. One needs to prove the following:

for each ψ ∈ A, ψε →M(ψ) in L∞(RN
x )-weak*,

where ψε(x) = ψ(x/ε, x/ε2) for x ∈ R
N .

It is sufficient to check this for ψ = u ⊗ v, where u ∈ Ay and v ∈ Az . To that end,

let η > 0. For such ψ and for a fixed ϕ in L1(RN
x ) we have

∣

∣

∣

∣

∫

(uεvεϕ−M(u⊗ v)ϕ) dx

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

[uεϕ−M(u)ϕ]vε dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

[vεϕ−M(v)ϕ]M(u) dx

∣

∣

∣

∣

6 ‖v‖∞

∣

∣

∣

∣

∫

[uεϕ−M(u)ϕ] dx

∣

∣

∣

∣

+ |M(u)|

∣

∣

∣

∣

∫

[vεϕ−M(v)ϕ] dx

∣

∣

∣

∣

,

where uε(x) = u(x/ε) and vε(x) = v(x/ε2) for x ∈ R
N . The result follows at once

by the convergence results
∫

[uεϕ−M(u)ϕ] dx→ 0 and
∫

[vεϕ−M(v)ϕ] dx→ 0. �

We can now introduce the concepts of reiterated weak and strong Σ-convergence.

The letter E throughout will denote a family of positive real numbers admitting 0

as an accumulation point. In particular if E = (εn) (with integers n > 0) with

0 < εn 6 1 and εn → 0 as n→ ∞, then E is referred to as a fundamental sequence.

Definition 2.1. A sequence (uε)ε∈E ⊂ Lp(Ω) (1 6 p <∞) is said to:

(i) weakly Σ-converge reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω × ∆(A)) if as

E ∋ ε→ 0, we have

(2.3)

∫

Ω

uεv
ε dx→

∫∫

Ω×∆(A)

u0v̂ dxdβ

for every v ∈ Lp′

(Ω;A) (1/p′ = 1 − 1/p), where vε is given by vε(x) =

v(x, x/ε, x/ε2) for x ∈ Ω (see [18]), and v̂ = G ◦ v;
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(ii) strongly Σ-converge reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω × ∆(A)) if the

following condition is fulfilled:

given η > 0 and v ∈ Lp(Ω;A) with ‖u0 − v̂‖Lp(Ω×∆(A)) 6 1
2η,(SC)

there is some α > 0 such that ‖uε − vε‖Lp(Ω) 6 η provided

E ∋ ε 6 α.

We express this by writing uε → u0 reit. in L
p(Ω)-weak Σ in case (i), and uε → u0

reit. in Lp(Ω)-strong Σ in case (ii).

There is no difficulty in verifying the following results.

(1) Suppose u0 = v̂0 with v0 ∈ Lp(Ω;A). Then uε → u0 reit. in L
p(Ω)-strong Σ if

and only if ‖uε − vε
0‖Lp(Ω) → 0 as E ∋ ε→ 0.

(2) For u ∈ Lp(Ω;A) we have uε → û reit. in Lp(Ω)-strong Σ.

(3) If uε → u in Lp(Ω) (strong) as E ∋ ε→ 0, then uε → u reit. in Lp(Ω)-strong Σ.

Also, the proof of the next proposition is a simple exercise left to the reader.

Proposition 2.2. Suppose a sequence (uε)ε∈E ⊂ Lp(Ω) (1 6 p < ∞) weakly

Σ-converges reiteratively in Lp(Ω) to some u0 ∈ Lp(Ω×∆(A)). Define u∗0 ∈ Lp(Ω×

∆(Ay)) as u∗0(x, s) =
∫

∆(Az) u0(x, s, r) dβz(r) (x ∈ Ω, s ∈ ∆(Ay)), and ũ ∈ Lp(Ω) as

ũ(x) =
∫

∆(Az)

∫

∆(Ay)
u0(x, s, r) dβy(s) dβz(r) (x ∈ Ω). Then, as E ∋ ε→ 0,

(i) uε → u∗0 in L
p(Ω)-weak Σy [19, Definition 4.1],

(ii) uε → ũ in Lp(Ω)-weak.

The results of the Σ-convergence setting [19] carry over mutatis mutandis, together

with their proofs, to the present setting. Let us state the most important of such

results.

Proposition 2.3. Assume that 1 < p < ∞. Given a fundamental sequence E

and a sequence (uε)ε∈E which is bounded in L
p(Ω), a subsequence E′ can be ex-

tracted from E such that the sequence (uε)ε∈E′ weakly Σ-converges reiteratively

in Lp(Ω).

Proposition 2.4. Suppose a sequence (uε)ε∈E strongly Σ-converges reiteratively

in Lp(Ω) to some u0 ∈ Lp(Ω × ∆(A)). Then as E ∋ ε→ 0,

(i) uε → u0 reit. in L
p(Ω)-weak Σ,

(ii) ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×∆(A)).

Conversely, if p = 2 and if the assertions (i)–(ii) hold, then uε → u0 reit. in

Lp(Ω)-strong Σ.
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Proposition 2.5. Suppose the three real numbers σ, p, q > 1 are such that

1/σ = 1/p + 1/q 6 1. Let u0 ∈ Lp(Ω × ∆(A)) and v0 ∈ Lq(Ω × ∆(A)), and let

uε ∈ Lp(Ω) and vε ∈ Lq(Ω) for ε ∈ E. Finally, assume that uε → u0 reit. in

Lp(Ω)-strong Σ and vε → v0 reit. in L
p(Ω)-weak Σ. Then uεvε → u0v0 reit. in

Lσ(Ω)-weak Σ.

The notion of a W 1,p(Ω)-proper H-structure will play a fundamental role in the

present study.

Definition 2.2. The H-structure Σ = Σy×Σz is termedW
1,p(Ω)-proper (where

p is a given real number with p > 1) if the following two conditions are satisfied.

(PR1) For ζ ∈ {y, z}, Σζ is total for p, i.e., D(∆(Aζ)) is dense in W
1,p(∆(Aζ )).

(PR2) Given a fundamental sequence E and a sequence (uε)ε∈E which is bounded

in W 1,p(Ω), there are a subsequence E′ from E and three functions

u0 ∈ W 1,p(Ω), u1 ∈ Lp(Ω;W 1,p
# (∆(Ay))) and u2 ∈ Lp(Ω;Lp(∆(Ay);

W 1,p
# (∆(Az)))), such that, as E′ ∋ ε→ 0,

uε → u0 in W 1,p(Ω)-weak,

∂uε

∂xj
→

∂u0

∂xj
+ ∂ju1 + ∂ju2 reit. in Lp(Ω)-weak Σ (1 6 j 6 N).

We give here below a few examples of W 1,p(Ω)-proper H-structures.

E x am p l e 2.1. Let ΣZN be the periodic H-structure on R
N represented

by ZN [19, Example 3.2]. Then ΣZN is an H-structure on R
N for H and H′. It can

be shown that Σ isW 1,p(Ω)-proper for any arbitrary real p > 1 [18, Proposition 2.8].

E x am p l e 2.2. Let R be a countable subgroup of RN , and let ΣR be the almost

periodic H-structure on R
N represented by R [19, Example 3.3]. Then ΣR is an

H-structure on R
N for H and H′. This being so, let Ry and Rz be two countable

subgroups of RN . Then the H-structure Σ = ΣRy
× ΣRz

is W 1,2(Ω)-proper [18,

Proposition 2.9].

E x am p l e 2.3. Let Σ∞ be the H-structure of the convergence at infinity

on R
N [19, Example 3.4]. This is an H-structure on R

N for H and H′. The

H-structure Σ = ΣRy
× Σ∞ where Ry and ΣRy

are as in Example 2.2, is W 1,2(Ω)-

proper [18, Example 2.10].

E x am p l e 2.4. Let Σ = Σ∞,Ry
×ΣRz

where Ry and Rz are as in Example 2.2,

and Σ∞,Ry
is the H-structure on R

N
y for H defined in [19, Example 3.5]. Then

the H-structure Σ is W 1,2(Ω)-proper. If in particular, Ry = Z
N = Rz, then Σ =

Σ∞,ZN × ΣZN is W 1,p(Ω)-proper for any real p > 1 [18, Example 2.9].
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2.2. Abstract structure hypothesis and preliminary results

Let 1 6 p < ∞. We denote by Ξp(RN
y ;B(RN

z )), or simply Ξp when there is no

danger of confusion, the space of those functions u ∈ Lp
loc(R

N
y ;B(RN

z )) for which

‖u‖Ξp = sup
0<ε61

(
∫

BN

(

ess supzu
(x

ε
, z

))p

dx

)1/p

<∞,

BN being the unit ball in R
N
x . In this norm Ξp is a Banach space.

Now, let Σ = Σy × Σz be an H-structure on R
N
y × R

N
z for H∗. We define

X
p
Σ(RN

y ;B(RN
z )) or simply, X

p
Σ if there is no danger of confusion, to be the clo-

sure of A = J (Σ) in Ξp. Provided with the Ξp-norm, Xp
Σ is a Banach space. All of

the results collected in the framework of [19] are still valid in the present context.

Let us especially draw attention to the following two fundamental results:

1) The mean valueM on RN ×R
N forH∗, viewed as defined on A = J (Σ), extends

by continuity to a positive continuous linear form (still denoted by M) on X
p
Σ.

Furthermore, for each u ∈ X
p
Σ, we have u

ε → M(u) in Lp(Ω)-weak as ε → 0,

where uε ∈ Lp(Ω) is defined by uε(x) = u(x/ε, x/ε2) for x ∈ Ω [18, Section 2],

and Ω is a bounded open set in R
N
x .

2) The Gelfand transformation G : A→ C(∆(A)) extends by continuity to a unique

continuous linear mapping, still denoted by G, of Xp
Σ into L

p(∆(A)).

Before we can state the abstract problem, let us, however, state another defini-

tion: we define the space X
p
Σz

(RN
z ) to be the closure of Az = J (Σz) in the Banach

space Ξp(RN
z ) of functions u ∈ Lp

loc(R
N
z ) such that

‖u‖Ξp(RN
z ) = sup

0<ε61

(
∫

BN

∣

∣

∣
u
( x

ε2

)∣

∣

∣

p

dx

)1/p

<∞.

Let G = R
N
z \Θ with Θ =

⋃

k∈S

(k+T ). Since T is compact, the set Θ is closed and

therefore G is an open set in R
N
z . We denote by χG the characteristic function of G

in R
N
z .

We are now in a position to state the so-called abstract homogenization problem

for (1.4). For that, let Σ be as above, A = J (Σ) its image and AR = A ∩ C(RN ×

R
N ;R). We denote by ai (1 6 i 6 N) the ith component of the function a. Our goal

is to investigate the limiting behavior of uε (the solution of (1.4) for fixed ε > 0),

when ε→ 0, under the hypotheses

χG ∈ X
r
Σz

(RN
z ) with r > max(p, p′),(2.4)

M(χG) > 0,(2.5)

ai(·,Ψ) ∈ X
p′

Σ (RN
y ;B(RN

z )) for all Ψ ∈ (AR)N (1 6 i 6 N),(2.6)
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where the function ai(·,Ψ) is defined in the sense of [18] by ai(·,Ψ)(y, z) =

ai(y,Ψ(y, z)) (y, z ∈ R
N ). This problem is solvable provided we give some pre-

liminary results.

Lemma 2.6. Under the hypothesis (2.4), there exists a βz-measurable set Ĝ ⊂

∆(Az) such that χĜ = χ̂G a.e. in ∆(Az), where χ̂G = G(χG), and χĜ denotes the

characteristic function of Ĝ in ∆(Az).

P r o o f. Observe that χG ∈ X
1
Σz

(RN
z ), since χG ∈ X

p
Σz

(RN
z ) ∩ X

p′

Σz
(RN

z ) (recall

that r > max(p, p′)) and proceed exactly as in the proof of [23, Lemma 2.1]. �

R em a r k 2.1. According to Lemma 2.6, we have χε
G → χ̂G reit. in L

p(Ω)-

weak Σ as ε → 0, where 1 < p < ∞, χε
G(x) = χG(x/ε2) (x ∈ Ω). Furthermore,

βz(Ĝ) =
∫

∆(Az)
χ̂G(r) dβz(r) = M(χG) (see [19, Section 2.3]).

Now, let Qε = Ω \ ε2Θ. This is an open set in R
N . We have the following result

(see [23]).

Lemma 2.7. Let K ⊂ Ω be a compact set independent of ε. There is some

ε0 > 0 such that Ωε \Qε ⊂ Ω \K for any 0 < ε 6 ε0.

The next classical extension result will prove very important in the homogenization

process.

Proposition 2.8. For each real ε > 0, there exists an operator Pε of Vε (the

space defined in Section 1) into W 1,p
0 (Ω;R) with the following properties:

(i) Pε sends continuously and linearly Vε into W
1,p
0 (Ω;R),

(ii) (Pεv)|Ωε = v for all v ∈ Vε,

(iii) ‖D(Pεv)‖Lp(Ω)N 6 c‖Dv‖Lp(Ωε)N for all v ∈ Vε,

where the constant c > 0 is independent of ε, and D denotes the usual gradient

operator with respect to x.

The proof of the preceding proposition being classical, is therefore omitted.

Now, let X
p,∞
Σ ≡ X

p
Σ ∩ L∞(RN

y ;B(RN
z )) be provided with the L∞(RN

y ;B(RN
z ))-

norm. Then, for u ∈ X
p,∞
Σ , we have G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) 6

‖u‖L∞(RN
y ;B(RN

z )); see [18].

Let 1 6 i 6 N be fixed. For ϕ = (ϕj)16j6N in CR(∆(A))N let

(2.7) bi(ϕ) = G(ai(·,G
−1

ϕ)),

where G−1
ϕ = (G−1ϕj)16j6N . Then, by the hypothesis (2.6), we see that ai(·,G

−1
ϕ)

lies in X
p′,∞
Σ , and hence (2.7) defines a mapping bi of CR(∆(A))N into L∞(∆(A)).

As in [18] we have the following proposition and corollary.
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Proposition 2.9. Let 1 < p <∞. Let Ω be a bounded open set in RN
x . Suppose

(2.6) holds. Then the following assertions are true:

(i) Let the index 1 6 i 6 N be fixed. For Ψ = (ψj)16j6N in C(Ω; (AR)N ), the

function bi ◦ Ψ̂ (usual composition) of Ω into L∞(∆(A)) lies in C(Ω;L∞(∆(A)))

and further aε
i (·,Ψ

ε) → bi ◦ Ψ̂ reit. in Lp′

(Ω)-weak Σ as E ∋ ε → 0, where

Ψε = (ψε
j )16j6N (with ψ

ε
j defined by ψ

ε
j (x) = ψj(x, x/ε, x/ε

2) (x ∈ Ω)).

(ii) The mapping Φ → b(Φ) = (bi ◦ Φ)16i6N of C(Ω; (AR)N ) into Lp′

(Ω × ∆(A))N

extends by continuity to a mapping, still denoted by b, of Lp(Ω;Lp(∆(A);R)N )

into Lp′

(Ω × ∆(A))N such that

‖b(u) − b(v)‖Lp′(Ω×∆(A))N

6 c1‖|u| + |v|‖p−1−α1

Lp(Ω×∆(A))‖u− v‖α1

Lp(Ω;Lp(∆(A))N)

and

(2.8) (b(u) − b(v)) · (u − v) > (|u| + |v|)p−α2 |u− v|α2

for all u,v ∈ Lp(Ω;Lp(∆(A);R)N ).

Corollary 2.10. Let the hypotheses be those of Proposition 2.9. For each real

ε > 0, let Φε ∈ DR(Ω) = C∞
0 (Ω;R) be given by Φε = ψ0 + εψε

1 + ε2ψε
2, i.e.,

(2.9) Φε(x) = ψ0(x) + εψ1

(

x,
x

ε

)

+ ε2ψ2

(

x,
x

ε
,
x

ε2

)

(x ∈ Ω)

with ψ0 ∈ DR(Ω), ψ1 ∈ DR(Ω) ⊗ RA
∞
y , ψ2 ∈ DR(Ω) ⊗ RA

∞
y ⊗ RA

∞
z , where RA

∞
y =

A∞
y ∩ C(RN ;R) and a similar definition for RA

∞
z . Let the index 1 6 i 6 N be fixed.

Then as ε→ 0,

aε
i (·, DΦε) → bi(Dψ0 + ∂sψ̂1 + ∂rψ̂2) reit. in Lp′

(Ω)-weak Σ,

where: ∂sψ̂1 = (∂jψ̂1)16j6N with ∂jψ̂1 = ∂j ◦ ψ̂1, the partial derivative ∂j being here

taken on ∆(A) = ∆(Ay) ×∆(Az) with respect to ∆(Ay); ∂rψ̂2 = (∂jψ̂2)16j6N with

∂jψ̂2 = ∂j ◦ ψ̂2, ∂j being taken on ∆(A) with respect to ∆(Az); and the functions ψ̂1

and ψ̂2 are viewed as defined on Ω with values in D(∆(A)).

Furthermore, if (vε)ε∈E is a sequence in L
p(Ω) such that vε → v0 reit. in L

p(Ω)-

weak Σ as E ∋ ε→ 0, then, as E ∋ ε→ 0,

∫

Ω

aε
i (·, DΦε)vε dx→

∫∫

Ω×∆(A)

bi(Dψ0 + ∂sψ̂1 + ∂rψ̂2)v0 dxdβ.
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The basic notation being as above, let 1 < p <∞, and let

F
p
0 = W 1,p

0 (Ω;R) × Lp(Ω;W 1,p
# (∆(Ay);R)) × Lp(Ω;Lp(∆(Ay);W 1,p

# (∆(Az);R))),

where for ζ ∈ {y, z},

W 1,p
# (∆(Aζ);R) = {u ∈W 1,p

# (∆(Aζ)) : ∂ju ∈ Lp(∆(Aζ);R) (1 6 j 6 N)}.

Endowed with the norm

‖u‖Fp
0

=

N
∑

i=1

[‖Dxi
u0‖Lp(Ω) + ‖∂iu1‖Lp(Ω×∆(Ay)) + ‖∂iu2‖Lp(Ω×∆(A))],

u = (u0, u1, u2) ∈ F
p
0,

F
p
0 is a Banach space. Furthermore, assuming that the H-structure Σ = Σy ×

Σz is W
1,p(Ω)-proper, the space F∞

0 = DR(Ω) × [DR(Ω) ⊗ Jy(D(∆(Ay);R)/C)] ×

[DR(Ω) ⊗ D(∆(Ay);R) ⊗ Jz(D(∆(Az);R)/C)] is dense in F
p
0, where, for ζ ∈ {y, z},

D(∆(Aζ );R)/C = {ϕ ∈ D(∆(Aζ );R) :
∫

∆(Aζ)
ϕdβζ = 0} and Jζ denotes the canon-

ical mapping of W 1,p(∆(Aζ))/C into its separated completion W
1,p
# (∆(Aζ)).

We end this subsection with an existence result.

Lemma 2.11. Assume the hypotheses (2.4)–(2.5) hold true. Assume also that

there exists a triplet u = (u0, u1, u2) ∈ F
p
0 solving the variational problem

∫∫∫

Ω×∆(Ay)×Ĝ

b(Du) ·Dv dxdβ = M(χG)

∫

Ω

fv0 dx(2.10)

for all v = (v0, v1, v2) ∈ F
p
0,

where, for each v = (v0, v1, v2) ∈ F
p
0, we denote Dv = Dv0 + ∂sv1 + ∂rv2 with

∂sv1 = (∂jv1)16j6N and ∂rv2 = (∂jv2)16j6N . Then, u0 and u1 are unique, and u2

is unique up to an additive function g ∈ Lp(Ω × ∆(Ay);W 1,p
# (∆(Az);R)) such that

∂jg(x, s, r) = 0 a.e. in Ω × ∆(Ay) × Ĝ (1 6 j 6 N).

P r o o f. If u = (u0, u1, u2) and v = (v0, v1, v2) are two solutions of (2.10), then

we have

∫∫∫

Ω×∆(Ay)×Ĝ

(b(Du) − b(Dv)) · Dw dxdβ = 0 ∀w ∈ F
p
0.
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Taking in particular w = u−v, and by a classical argument using the reverse Hölder

inequality and (2.8), we obtain

∫∫∫

Ω×∆(Ay)×Ĝ

(b(Du) − b(Dv)) · D(u− v) dxdβ

> c1(‖Du‖p

Lp(Ω×∆(Ay)×Ĝ)
+ ‖Dv‖p

Lp(Ω×∆(Ay)×Ĝ)
)(p−α2)/p

× ‖D(u− v)‖α2

Lp(Ω×∆(Ay)×Ĝ)
,

and hence ‖D(u − v)‖Lp(Ω×∆(Ay)×Ĝ) = 0, which amounts to saying that u0 = v0

a.e. in Ω, u1 = v1 a.e. in Ω × ∆(Ay) and ∂j(v2 − u2) = 0 a.e. in Ω × ∆(Ay) × Ĝ

(1 6 j 6 N), from which the lemma follows. �

2.3. The abstract homogenization result

We can now state and prove the main result of the paper. The basic notation is

as in Subsection 2.2.

Theorem 2.12. Let 1 < p < ∞. Suppose (2.4)–(2.6) hold true and further the

H-structure Σ is W 1,p(Ω)-proper. For each real ε > 0, let uε ∈ W 1,p(Ωε;R) be the

solution of (1.4), and Pε the extension operator of Proposition 2.8. Then, as ε→ 0,

(2.11) Pεuε → u0 in W 1,p
0 (Ω)-weak,

where u0 is the unique function in W
1,p
0 (Ω) with the following property:

(P) There exists a unique u1 ∈ Lp(Ω;W 1,p
# (∆(Ay);R)) and there is some u2 ∈

Lp(Ω×∆(Ay);W 1,p
# (∆(Az);R)) such that the triplet u = (u0, u1, u2) is a solu-

tion of (2.10).

P r o o f. For fixed ε > 0, we have uε ∈ Vε and

(2.12)

∫

Ω

aε(·, Duε) ·Dv dx =

∫

Ω

fv dx ∀ v ∈ Vε.

Taking in particular v = uε, we arrive at sup
ε>0

‖uε‖Vε
< ∞. Using Proposition 2.8,

it follows that (Pεuε)ε>0 is bounded in W
1,p
0 (Ω). Let E be a fundamental sequence.

Σ being W 1,p(Ω)-proper, there exist a subsequence E′ from E and a triplet u =

(u0, u1, u2) ∈ F
p
0 such that, as E

′ ∋ ε→ 0, we have (2.11) and

(2.13)
∂Pεuε

∂xj
→ Dju =

∂u0

∂xj
+ ∂ju1 + ∂ju2 reit. in L

p(Ω)-weak Σ (1 6 j 6 N).
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It remains to show that u = (u0, u1, u2) satisfies (2.10). Here u0 being the sole

function satisfying (2.10), (2.11) holds for all E with E ∋ ε→ 0, hence for 0 < ε→ 0.

Let us now verify that u satisfies (2.10). To that end, let Φ = (ψ0, Jy ◦ ψ̂1, Jz ◦ ψ̂2) ∈

F∞
0 with ψ0 ∈ DR(Ω), ψ1 ∈ DR(Ω)⊗(RA

∞
y /C) and ψ2 ∈ DR(Ω)⊗(RA

∞
y )⊗(RA

∞
z /C),

where RA
∞
y /C = {ψ ∈ RA

∞
y : M(ψ) = 0} (M being the mean value on R

N
y for H),

RA
∞
z /C = {ψ ∈ RA

∞
z : M(ψ) = 0} (M being the mean value on R

N
z for H′),

RA
∞
y = A∞

y ∩ C(RN
y ;R) and similar definition for RA

∞
z , ψ̂1 = G ◦ ψ1 is viewed as

a mapping of Ω into D(∆(Ay)), and ψ̂2 = G ◦ ψ2 as a mapping of Ω × ∆(Ay) into

D(∆(Az)). Define Φε (ε > 0) as in (2.9). Then Φε ∈ DR(Ω) and further all the

functions Φε (ε > 0) have their supports contained in a fixed compact set K ⊂ Ω.

In view of Lemma 2.7, there is some ε0 > 0 such that

Φε = 0 in Ωε \Qε (0 < ε 6 ε0).

This being so, we choose in (2.12) v = Φε|Qε (the restriction of Φε to Q
ε) with

0 < ε 6 ε0. We use the decomposition Ωε = Qε ∪ (Ωε \ Qε) and the equality

Qε = Ω ∩ ε2G to obtain

∫

Ω

aε(·, D(Pεuε)) ·DΦεχ
ε
G dx =

∫

Ω

fΦεχ
ε
G dx (0 < ε 6 ε0),

since
∫

Ω

aε(·, D(Pεuε)) ·DΦεχ
ε
G dx

=

∫

Ω

aε(·, D(Pεuε)) ·DΦεχQε dx =

∫

Qε

aε(·, D(Pεuε)) ·DΦε dx

=

∫

Qε

aε(·, Duε) ·DΦε dx =

∫

Ωε

aε(·, Duε) ·DΦε dx.

We make use of (1.5) to obtain

(2.14)

∫

Ω

(aε(·, D(Pεuε)) − aε(·, DΦε)) ·D(Pεuε − Φε)χ
ε
G dx > 0.

But ∫

Ω

aε(·, D(Pεuε)) ·D(Pεuε − Φε)χ
ε
G dx =

∫

Ω

f(Pεuε − Φε)χ
ε
G dx

and
∫

Ω

f(Pεuε − Φε)χ
ε
G dx→M(χG)

∫

Ω

f(u0 − ψ0) dx when E′ ∋ ε→ 0

with 0 < ε 6 ε0

480



(observe that χε
Gf →M(χG)f in Lp′

(Ω)-weak and (Pεuε−Φε) → (u0−ψ0) in L
p(Ω)

because of the compactness of the embedding W 1,p
0 (Ω) →֒ Lp(Ω)).

Let us evaluate lim
E′∋ε→0, 0<ε6ε0

∫

Ω
aε(·, DΦε) ·D(Pεuε − Φε)χ

ε
G dx. First of all, let

us show that as E′ ∋ ε→ 0,

Dxj
(Pεuε − Φε)χ

ε
G → Dj(u − Φ)χĜ reit. in L

p(Ω)-weak Σ (1 6 j 6 N).

For this purpose, let g ∈ C(Ω;A); then χGg ∈ C(Ω; Xp′

Σ ∩ L∞(RN
y ;B(RN

z ))), since

r > p′ (see (2.4)), and so, as E′ ∋ ε→ 0, 0 < ε 6 ε0 [18, Proposition 3.3],

(2.15)

∫

Ω

Dxj
(Pεuε − Φε)χ

ε
Gg

ε dx→

∫∫

Ω×∆(A)

Dj(u − Φ)χĜĝ dxdβ.

The sequence (Dxj
(Pεuε −Φε))ε∈E′ is bounded in Lp(Ω), and the function χε

G is the

characteristic function of Qε in Ω, so, belongs to L∞(Ω). We therefore deduce that

the sequence (Dxj
(Pεuε − Φε)χ

ε
G)ε∈E′ is bounded in Lp(Ω), hence the existence of

a subsequence from E′, still denoted by E′, and a function vj ∈ Lp(Ω × ∆(A)) such

that for E′ ∋ ε→ 0, we have Dxj
(Pεuε − Φε)χ

ε
G → vj reit. in L

p(Ω)-weak Σ. Thus,

for the above g, we have, as E′ ∋ ε→ 0,

(2.16)

∫

Ω

Dxj
(Pεuε − Φε)χ

ε
Gg

ε dx→

∫∫

Ω×∆(A)

vj ĝ dxdβ.

Taking the particular g in K(Ω;A) and comparing (2.15) with (2.16), we are imme-

diately led to vj = Dj(u− Φ)χĜ. Consequently, Corollary 2.10 yields

∫

Ω

aε(·, DΦε) ·D(Pεuε − Φε)χ
ε
G dx→

∫∫∫

Ω×∆(Ay)×Ĝ

b(DΦ) ·Dj(u − Φ)dxdβ

for E′ ∋ ε → 0, 0 < ε 6 ε0. Finally, by passing to the limit as E
′ ∋ ε → 0 with

0 < ε 6 ε0 in (2.14), we obtain

(2.17) M(χG)

∫

Ω

f(u0 − ψ0) dx−

∫∫∫

Ω×∆(Ay)×Ĝ

b(DΦ) · Dj(u− Φ)dxdβ > 0

for all Φ ∈ F∞
0 . The relation (2.17) still holds for Φ ∈ F

p
0 (this follows by the density

of F∞
0 in F

p
0). Then choosing in (2.17) the particular functions Φ = u − tv with

v ∈ F
p
0 and t > 0, and then dividing by t, and finally changing v into −v leads

to (2.10). This completes the proof. �
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3. Some concrete homogenization problems for (1.4)

This section deals with the study of a few concrete homogenization problems

for (1.4). Before we proceed any further, however, we need some preliminary results.

3.1. Preliminaries

The basic notation and hypotheses are as in Section 2. The holes (k+ T ) (k ∈ S)

being pairwise disjoint, the characteristic function χΘ of the set Θ in RN
z is given by

χΘ =
∑

k∈S

χk+T (a locally finite sum) or more suitably

(3.1) χΘ =
∑

k∈ZN

θ(k)χk+T ,

where χk+T is the characteristic function of the set k + T in R
N
z and θ is that of S

in Z
N . We shall refer to θ as the distribution function of the holes [23].

We end this subsection with two very useful results (see [23] for the proofs).

Proposition 3.1. Let Σz be an H-structure on R
N
z (for H

′) with image Az.

Assume that the distribution function of the holes belongs to the space of essential

functions on Z
N , ES(ZN ) (see [20]). On the other hand, assume that for every ϕ

in K(Z) (the space of all continuous complex functions on RN
z with compact supports

contained in Z = (− 1
2 ,

1
2 )N ), the function

∑

k∈ZN

θ(k)τkϕ (where τkϕ(z) = ϕ(z − k)

for z ∈ R
N ) lies in Az . Then χΘ ∈ X

p
Σz

(RN
z ) (1 6 p <∞) and further

(3.2) M(χΘ) = M(θ)λ(T ),

where λ is the Lebesgue measure on R
N and M(θ) the essential mean of θ [21].

Corollary 3.2. Let the hypotheses be those of Proposition 3.1. Then (2.4) and

(2.5) hold true.

We are now in a position to state and solve some concrete homogenization prob-

lems.

3.2. The holes are equidistributed

The holes are equidistributed means that each cell k+Y contains a hole k+T . In

this case the distribution function of the holes is given by θ(k) = 1 for all k ∈ Z
N ,

which concretely means that S = Z
N . With that hypothesis, it is established in [23,

Section 3.2] that

(3.3) χG ∈ X
r
ΣZN (RN

z ) (1 6 r <∞) and M(χG) > 0,

where ΣZN is the periodic H-structure represented by ZN .
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Under the preceding perforation hypothesis, we are going to solve the following

problems.

3.2.1. Problem I (Periodic setting). We intend to solve the homogenization

problem for (1.4) under the periodicity hypothesis

(3.4) a(y + k, λ) = a(y, λ) a.e. in y ∈ R
N , for all k ∈ Z

N and all λ ∈ R
N .

The suitable H-structures are Σy = Σz = ΣZN , and so, Σ = ΣZN × ΣZN , a

W 1,p(Ω)-proper H-structure with image A = Cper(Y × Z) (the space of Y × Z-

periodic continuous complex functions on R
N
y × R

N
z ), where Y = Z = (− 1

2 ,
1
2 )N .

The homogenization process of (1.4) will be ended as soon as (2.6) will be proved.

To that end, fix 1 6 i 6 N and Ψ ∈ (AR)N . By repeating the argument used in [18,

Subsection 4.2] we see that:

(i) For fixed z in R
N , the function y → ai(y,Ψ(y, z)) is measurable from R

N to R.

(ii) For almost all y in RN , the function z → ai(y,Ψ(y, z)) (denoted by ai(y,Ψ(y, ·)))

is continuous on R
N and lies in Cper(Z) (the Z-periodic continuous complex

functions on R
N
z ).

(iii) Taking account of (3.4), the function y → ai(y,Ψ(y, ·)) (denoted by ai(·,Ψ)) is

measurable from R
N into Cper(Z).

We deduce from all this, that ai(·,Ψ) ∈ L∞
per(Y ; Cper(Z)) (also use (1.2) and

(1.3)). But L∞
per(Y ; Cper(Z)) ⊂ Lp′

per(Y ; Cper(Z)), where L∞
per(Y ; Cper(Z)) (resp.

Lp′

per(Y ; Cper(Z))) denotes the space of Y -periodic functions in L∞(RN
y ; Cper(Z))

(resp. Lp′

loc(R
N
y ; Cper(Z))). Therefore, (2.6) follows by the fact that A = Cper(Y ×Z)

is dense in Lp′

per(Y ; Cper(Z)) and the latter space is continuously embedded in

Ξp′

(RN
y ;B(RN

z )).

3.2.2. Problem II (Almost periodic setting). We denote by Lp
AP(RN

y ) the

space of functions in Lp
loc(R

N
y ) that are almost periodic in the sense of Stepanov [3],

[13], [22]. Lp
AP(RN

y ) is a Banach space with the norm

‖u‖p,∞ = sup
k∈ZN

(
∫

k+Y

|u(y)| dy

)1/p

(u ∈ Lp
AP(RN

y )).

It is worth noting that the space AP(RN
y ) is a dense vector subspace of Lp

AP(RN
y ),

AP(RN
y ) being the space of all continuous complex almost periodic functions

on R
N
y [16], [22].

After these preliminaries, our aim here is to homogenize the problem (1.4) under

the hypotheses

(3.5) ai(·, λ) ∈ L2
AP(RN

y ) for all λ ∈ R
N (1 6 i 6 N)
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and

for Ψ ∈ AP(RN
y × R

N
z ;R)N we have(3.6)

sup
k∈Z2N

∫

k+Y ×Z

|ai(y − t,Ψ(y, z)) − ai(y,Ψ(y, z))|2 dy dz → 0 as |t| → 0.

By a simple argument (see [25]) we may consider a countable subgroup R of RN
y

such that ai(·, λ) ∈ L2
AP,R(RN

y ) for all λ ∈ R
N (1 < i 6 N), where L2

AP,R(RN
y ) is

the space of those u ∈ L2
AP(RN

y ) with spectrum Sp(u) = {k ∈ R
N : M(γku) 6= 0}

(where γk is defined on R
N by γk(y) = exp(2iπk ·y)) contained in R. This suggests to

put Σy = ΣR (the almost periodic H-structure on R
N
y represented by R) and then,

Σ = ΣR × ΣZN . It can be easily proven that (see [19]) Σ = ΣR, where R = R× Z
N

and ΣR is the almost periodic H-structure on R
N
y ×R

N
z represented by the countable

subgroup R of RN × R
N . Moreover, Σ is W 1,2(Ω)-proper (see Example 2.2). With

all this in mind, we see that to solve the homogenization problem for (1.4) under

the preceding hypotheses, it suffices to check (2.6). For that purpose, let (θn)n>1 be

a mollifier on R
N
y , i.e., (θn)n>1 ⊂ C∞

0 (RN
y ) with θn > 0,

∫

θn(y) dy = 1, θn having

support contained in 1
nBN , where BN is the closed unit ball in R

N
y . Let n be freely

fixed in N
∗. For 1 6 i 6 N set

qi
n(y, λ) =

∫

θn(t)ai(y − t, λ) dt (y, λ ∈ R
N ).

It can easily be proven that qi
n(·, λ) lies in APR(RN

y ) = {u ∈ AP(RN
y ) : Sp(u) ⊂ R}

(the image of ΣR) for all λ ∈ R
N . Let A = APR(RN

y × R
N
z ) (the image of Σ); we

will first prove the following:

(3.7) qi
n(·,Ψ) ∈ A for all Ψ ∈ (AR)N .

To do this, fix Ψ in (AR)N . Let K be a compact set in RN such that Ψ(y, z) ∈ K for

all (y, z) ∈ R
N ×R

N . According to the fact that qi
n(·, λ) lies in RAy = APR(RN

y ;R),

we may view qi
n as a function λ → qi

n(·, λ) of RN into RAy, which function lies in

C(RN ; RAy) (it is a fact that qi
n has properties identical to (1.2)–(1.3)). Still calling q

i
n

the restriction of the latter function to K, we have qi
n ∈ C(K; RAy). C(K;R) ⊗ RAy

being dense in C(K; RAy), there exists a sequence (gm)m>1 in C(K;R) ⊗ RAy such

that

sup
(y,λ)∈RN×K

|gm(y, λ) − qi
n(y, λ)| → 0 as m→ ∞.

Hence, gm(·,Ψ) → qi
n(·,Ψ) in B(RN

y × R
N
z ) as m → ∞. Thus, (3.7) is proved if we

can check that each gm(·,Ψ) lies in A. However, it is enough to verify that we have
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g(·,Ψ) ∈ A for any g : R
N
y × R

N
λ → R of the form

g(y, λ) = χ(λ)φ(y) (y, λ ∈ R
N ) with χ ∈ C(K;R) and φ ∈ RAy.

For such g, the Stone-Weierstrass theorem reveals that there is a sequence (fm) of

polynomials in λ = (λ1, . . . , λN ) ∈ K such that fm → χ in C(K) as m → ∞, hence

fm(Ψ) → χ(Ψ) in B(RN
y × R

N
z ) as m → ∞, where fm(Ψ) stands for fm ◦ Ψ (usual

composition) and χ(Ψ) stands for χ ◦ Ψ. We deduce that χ(Ψ) lies in AR, since the

same is true of each fm(Ψ) (recall that AR is an algebra). Thus, we have g(·,Ψ) ∈ AR,

since RAy ⊂ AR. This proves (3.7).

Finally by mere computations (using the definition of qi
n and the hypothesis (3.6))

we are led to (2.6).

3.2.3. Problem III. Our goal here is to investigate, under the equidistributed

perforation, the asymptotic behavior as ε→ 0 of uε, under the structure hypothesis

(3.8) ai(·, λ) ∈ B∞,ZN (RN
y ) (1 6 i 6 N) for any λ ∈ R

N ,

where B∞,ZN (RN
y ) denotes the closure in B(RN

y ) of the space of finite sums

∑

finite

ϕiui (ϕi ∈ B∞(RN
y ), ui ∈ Cper(Y )),

B∞(RN
y ) being the space of continuous complex functions on R

N
y that converge

finitely at infinity. B∞,ZN (RN
y ) is an H-algebra and the associated H-structure is

denoted by Σ∞,ZN . Set Σ = Σ∞,ZN × ΣZN ; Σ is W 1,p(Ω)-proper for any real p > 1

(Example 2.4), and its image is A = Cper(Z;B∞,ZN (RN
y )) (the space of complex con-

tinuous periodic functions of RN
z into B∞,ZN (RN

y )), since A coincides with the closure

of B∞,ZN (RN
y ) ⊗ Cper(Y ) in B(RN

y × R
N
z ). Repeating the proof of (3.7), we obtain

that ai(·,Ψ) lies in A for all Ψ ∈ (AR)N , from which we get the homogenization

of (1.4) under the hypothesis (3.8) and for any real p > 1.

R em a r k 3.1. The hypothesis

ai(·, λ) ∈ B∞(RN
y ) (1 6 i 6 N) for all λ ∈ R

N

is a particular case of (3.8).

3.3. The holes are periodically distributed

We assume that the function θ is periodic, that is, there exists a networkR1 in R
N
z

with R1 ⊂ Z
N such that

θ(k + r) = θ(k) for all k ∈ Z
N and all r ∈ R1.
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Let ΣR1
be the periodic H-structure on R

N
z represented by R1. Then χG lies in

X
r
ΣR1

(RN
z ) (1 6 r <∞) (see [23, Subsection 3.3]), and hence (3.3) holds. Therefore,

Problems I–III carry over without slightest change to the present situation.

3.4. The holes are distributed in an almost periodic fashion

We assume that the function θ is almost periodic, i.e., the translates τhθ (h ∈ Z
N )

form a relatively compact set in ℓ∞(ZN ). Then we have (see [23, Subsection 3.4])

the existence of a countable subgroup R0 of R
N such that

χG ∈ X
r
ΣR0

(RN
z ) (1 6 r <∞) with M(χG) > 0.

The conclusion of Problem II still holds when R is replaced by R′ = R × R0. In

particular, under the periodicity hypothesis on a(·, λ), we are also led to a result of

the same type as that of Problem II. It is also possible to work out the homogenization

of (1.4) under other structure hypotheses.

3.5. The holes are concentrated in a neighborhood of the origin in R
N

We assume that Ω contains the origin of RN . Let B∞(ZN ) be the space of all map-

pings u : Z
N → C that converge finitely at infinity. We assume that θ ∈ B∞(ZN ).

Then, proceeding as in [20] we can prove that

χG ∈ X
r
Σ0

∞

(RN
z ) (1 6 r <∞) with M(χG) > 0,

where the H-structure Σ0
∞ is defined in [20]. Before we go any further, however,

let us briefly define the H-structure Σ0
∞: let F be the set of all continuous complex

functions f on RN
z of the form f =

∑

k∈ZN

d(k)τkϕ with d ∈ B∞(ZN ) and ϕ ∈ K(Z) (Z

and K(Z) being as in Proposition 3.1), and let B0
∞(RN

z ) be the closure in B(RN
z ) of

the space of all functions of the form ψ = c+
∑

finite

fi with c ∈ C and fi ∈ F . The space

B0
∞(RN

z ) is an H-algebra on R
N
z [20, Proposition 3.3]. We set B

0
∞(RN

z ) = J (Σ0
∞).

With this in mind, let us illustrate the preceding setting with two problems.

3.5.1. Problem IV. We intend to study the homogenization of (1.4) under the

above perforation hypothesis and the periodicity hypothesis

(3.9) ai(·, λ) ∈ Cper(Y ) (1 6 i 6 N) for each λ ∈ R
N .
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Proposition 3.3. Under the above hypotheses we have (2.6) with Σ = ΣZN ×

Σ0
∞, where 1 < p <∞ is arbitrarily fixed.

P r o o f. Set A = Cper(Y ;B0
∞(RN

z )); since Cper(Y ) can be identified with the

space C(TN ) of continuous complex functions on the N -dimensional torus TN , A co-

incides with the closure of Cper(Y )⊗B0
∞(RN

z ) in B(RN
y ×R

N
z ). Hence, it follows that

A is the image of the H-structure Σ = ΣZN ×Σ0
∞. Thus, the proposition is proved if

we can check that ai(·,Ψ) lies in A for all Ψ ∈ (AR)N and all 1 6 i 6 N . But then,

by repeating the proof of (3.7) we are led to the result. �

Now, put Σ1
z = Σ0

∞+ΣZN and Σ1 = ΣZN ×Σ1
z. It can be shown, using a procedure

similar to that followed in [18, Example 2.9], that Σ1 is aW
1,p(Ω)-properH-structure

on R
N
y × R

N
z (for H

∗), for any real p > 1. Furthermore, we have X
p′

Σ ⊂ X
p′

Σ1
, where

Σ is the H-structure of Proposition 3.3, and

ai(·,Ψ) ∈ X
p′

Σ1
for all Ψ ∈ (AR)N (1 6 i 6 N),

where A is as in the proof of Proposition 3.3. Hence, the conclusion of Theorem 2.12

follows from the above proposition.

3.5.2. Problem V. Our aim here is to solve the homogenization problem for (1.4)

under the perforation hypothesis of the current subsection and the structure hypoth-

esis

(3.10) ai(·, λ) ∈ B∞(RN
y ) for all λ ∈ R

N (1 6 i 6 N).

Proposition 3.4. Under these hypotheses, we have (2.6) with Σ = Σ∞ × Σ0
∞

and p = 2.

P r o o f. The hypothesis (3.10) suggests to take Σy = Σ∞, and so Σ = Σ∞×Σ0
∞

with image A = B∞(RN
y ;B0

∞(RN
z )), the space of all complex continuous functions

u : R
N
y → B0

∞(RN
z ) such that u(y) has a limit in B0

∞(RN
z ) as |y| → ∞.

This being so, define the function q on R
N
y × R

N
z × R

N
λ by

q(y, z, λ) = a(y, z) (y, z, λ ∈ R
N ).

Then q satisfies all the properties (1.2)–(1.4) of [18] so that the proof of the above

proposition is quite similar to that of [18, Proposition 4.4]. �

One can also show that the H-structure Σ1 = Σ∞×(Σ0
∞+ΣZN ) isW 1,2(Ω)-proper

and satisfies X
2
Σ ⊂ X

2
Σ1
(where Σ is the H-structure of the above proposition), so
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that the problem (1.4), (3.10) is solvable under the perforation hypothesis of the

present subsection.

3.6. Concluding remarks

The problem (1.4) has just been solved under many hypotheses on the perforation

(of the open set Ω) and on the structure of the function a(·, λ) (for fixed λ). One may

also consider other perforation hypotheses (see, e.g., [23, Subsection 3.5]) and other

structure hypotheses on a(·, λ). Equally, the study carried out in this paper can, to a

certain extent, be easily applied to the homogenization in perforated domains (with

holes of size ε or ε2) of the problem studied in [18].

If Ω is a domain in R
4, the equidistributed perforation considered here leads to

the holes of critical size [10] up to a multiplicative positive constant. However, we

do not have in this case the appearance of the “strange term” [10]. This is perhaps

due to the reiteration property.
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