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Abstract. We consider a mathematical model of nutrient-autotroph-herbivore interaction
with nutrient recycling from both autotroph and herbivore. Local and global stability
criteria of the model are studied in terms of system parameters. Next we incorporate the
time required for recycling of nutrient from herbivore as a constant discrete time delay. The
resulting DDE model is analyzed regarding stability and bifurcation aspects. Finally, we
assume the recycling delay in the oscillatory form to model the daily variation in nutrient
recycling and deduce the stability criteria of the variable delay model. A comparison of
the variable delay model with the constant delay one is performed to unearth the biological
relevance of oscillating delay in some real world ecological situations. Numerical simulations
are done in support of analytical results.
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1. Introduction

Understanding the relationship between producers and consumers is a long stand-

ing topic of interest in ecological food webs. Contemporary modeling studies in-

volving these interactions in the presence or absence of decomposers have occupied

a significant volume in mathematical ecology ([41], [35], [36], [13], [15], [23]). The

basic trophic levels of an ecological food chain consist of (i) primary producers and

(ii) primary consumers. The primary producers, commonly known as autotroph,

can manufacture their own organic requirement from inorganic materials indepen-

dent of other sources of organic substrates. These autotroph are either phototrophic

*The present research is performed under a project supported by the Department of Sci-
ence and Technology, Ministry of Human Resource Development, Govt. of India (Grant
No. SR/S4/MS:296/05).
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or chemoautotrophic—energy being derived either by photosynthesis, where chloro-

phyll is present, or from inorganic oxidation, where it is absent. Herbivores, that

feed on these autotroph, play the role of primary consumers. There are mainly

two types of autotroph-herbivore ecosystems: (i) terrestrial plant-herbivore systems

([21], [9], [12], [36], [37], [27], [13], [15], [6]), (ii) marine phytoplankton-zooplankton

systems ([16], [30], [2], [31]–[34], [19], [29], [24]–[26]). In the terrestrial environment,

photosynthetic organisms are the main producers. They provide the initial source

of food in the food chain as well as habitats for other organisms. They are the

primary agents in soil formation and in modifying the nonliving environment [8].

The herbivores are normally the insects or mammals. In the marine environment on

the other hand, the autotrophic phytoplankton are unicellular microscopic organisms

which play the key role at the base of the aquatic food chain. The animal species

zooplankton live on these phytoplankton. These aquatic organisms have a relatively

short life span. As soon as they get exposed to air, water diffuses and evaporates

quickly from their bodies and as a result the cellular metabolism is disrupted and

finally destroyed.

A salient feature of a natural ecosystem is the regeneration of nutrient due to

decomposition of dead biotic elements ([42], [30]). The effect of nutrient recycling

on food chain dynamics has been extensively studied. Nisbet et al. [28] studied

the effect of nutrient recycling for closed ecosystems. Usually, nutrient recycling is

considered as an instantaneous process and the time required to regenerate nutri-

ent from dead organic matter is neglected ([31], [11], [14]). However, in a natural

ecosystem, such a delay is always present. Beretta et. al. [5] considered an open

ecosystem with limiting nutrient which is partially recycled after death. They have

used a distributed delay in the recycling term and studied stability aspects around

the positive equilibrium. Bischi [7] considered the effect of recycling delay on re-

silience, namely, the rate at which a system returns to a stable steady state following

a perturbation [10]. Ruan [33] compared plankton models with nutrient recycling in

the presence and absence of time delay. Bandyopadhyay et. al. [1] studied a nutrient-

autotroph-herbivore system, where nutrient recycling is modeled by a discrete time

delay. They have performed a stability and bifurcation analysis of the system and

estimated an interval of recycling delay that preserves the stability of the system.

Finally they have shown the existence of a stability switch for the particular model.

From the above review, it is clear that the effect of nutrient recycling (both instan-

taneous and delayed) on nutrient-autotroph-herbivore dynamics has been studied in

great detail. In the context of delayed recycling, either discrete or distributed delays

has been used so far. However, nutrient recycling in a real world ecosystem does not

take place in a uniform fashion. As is pointed out by Whittaker [43], this recycling

delay increases as temperature decreases and hence the regeneration time is very
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likely to be shorter during daytime than at night as well as during summer than in

winter [38]. This has motivated us to study the impact of time varying recycling

delay on an ecological food chain. Consequently, we, in the present analysis, con-

sider a three species nutrient-autotroph-herbivore model with nutrient recycling. A

discrete time delay, both in constant and in variable form, is incorporated into the

term representing recycling of nutrient from dead herbivore.

The organization of the paper is as follows. Section 2 deals with the stability aspect

of the ODE model around different equilibrium points. In Section 3 we introduce

constant recycling delay and examine the role of delay on the stability aspects of

the system. Finally, in Section 4, we make the recycling delay time dependent and

analyze the impact of variable delay on the dynamical behavior of the system.

2. The basic model

We consider the following nonlinear nutrient-autotroph-herbivore model with nu-

trient recycling

dN

dt
= N(N0 − pN) − aNA + c1A + b1H,(2.1)

dA

dt
= a1NA − cA −

βAH

k + A
,

dH

dt
=

β1AH

k + A
− bH,

where N(t), A(t), and H(t) denote the density of nutrient, autotroph and herbivore

population respectively at time t. The initial conditions are N(0) > 0, A(0) > 0,

H(0) > 0, N0 is the external nutrient input into the system and p is the loss rate of

nutrient biomass due to leaching. It is assumed that the input of external nutrient to

the system is dependent on the amount of nutrient present in the system. Consump-

tion of nutrient by autotroph is assumed to follow the simple mass action kinetics with

a and a1 representing respectively the interaction and conversion rates. Autotroph

biomass is lost from the system at a rate c due to litter fall, grazing etc. Herbi-

vore grazing is modeled by using the Michaelis-Menten Holling type-II functional

response [18] which is an ecologically realistic interaction for an autotroph-herbivore

system. It is assumed that nutrient is regenerated from the dead biomass of both

autotroph and herbivore species and c1 and b1 represent the corresponding recycling

rates.

We first prove the biological validity of the model. For this, we consider W =

N + A + H . Then W (0) = N(0) + A(0) + H(0) > 0 and

Ẇ = N(N0 − pN) + (a1 − a)NA + (c1 − c)A + (b1 − b)H +
(β1 − β)AH

k + A
.
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As a1 < a, β1 < β we have Ẇ 6 N0N + c1A + b1H 6 kminW , where kmin =

min {N0, c1, b1}. So, W (t) 6 W (0)ekmint. Therefore, every solution of (2.1) starting

from R
+
3 will lie within this region; that is, every solution is defined on [0,∞) and it

is bounded on arbitrary compact sub-intervals of [0,∞).

The stationary points of the system (2.1) are

(i) the trivial equilibrium point ET ≡ (0, 0, 0);

(ii) the axial equilibrium point EA ≡ (N0/p, 0, 0);

(iii) the boundary equilibrium point

EB ≡
( c

a1
,
c(pc/a1 − N0)

a1c1 − ac
, 0

)

≡ (N1, A1, 0);

(iv) the interior equilibrium point E∗ ≡ (N∗, A∗, H∗), where A∗ = kb/(β1−b), N∗ is

the positive root of

(2.2) px2 +
[

aA∗ − N0 −
a1b1β1A

∗

βb

]

x + (cb1β1 − βc1b)
A∗

b
= 0,

and H∗ = [(a1N
∗ − c)(k + A∗)]/β.

The boundary equilibrium point exists if N0/p > c/a1 > c1/a or N0/p < c/a1 <

c1/a. The interior equilibrium point exists if the following conditions hold

b < β1 <
c1bβ

cb1
, N0 <

(abβ − a1b1β1)k

β(β1 − b)
, N∗ > N1.(2.3)

So, we see that the input concentration of nutrient plays an important role in con-

trolling the dynamics of the system.

Next we perform the stability analysis around various stationary points. Clearly,

the trivial equilibrium pointET is unstable. Stability analysis of the axial equilibrium

point reveals that it is unstable if the boundary equilibrium point exists. The char-

acteristic equation of the Jacobian matrix at the boundary equilibrium point EB is

(2.4)
( β1A1

k + A1
− b − λ

)

[λ2 − λ(N0 − 2pN1 − aA1) + A1(a1c1 − ac)] = 0.

Now, all the roots of the equation (2.4) will have negative real parts if a1c1 > ac

and b > (β1A1)/(k + A1) as (N0 − 2pN1 − aA1) is always negative. Therefore, the

system will be locally asymptotically stable around EB if

(2.5) N0 <
pc

a1
<

pc1

a

and

(2.6) b >
β1(pc2 − N0ca1)

pc2 + ka2
1c1 − aa1kc − ca1N0

.

So for large b, the system will be stable around the boundary equilibrium point EB.
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Let us now study the most interesting interior equilibrium point E∗. The charac-

teristic equation in this case takes the form

(2.7) λ3 + P1λ
2 + P2λ + P3 = 0,

where

P1 = aA∗ + 2pN∗ − N0 − M,(2.8)

P2 = M(N0 − 2pN∗ − aA∗) +
kbM

A∗
− a1A

∗(c1 − aN∗),

P3 = − (N0 − 2pN∗ − aA∗)
kbM

A∗
−

a1b1kb2H∗

β1A∗
,

M =
b2βH∗

β2
1A∗

.

Next we state the stability criteria around this equilibrium point in the form of the

following theorem.

Theorem 2.1. The system (2.1) will be locally asymptotically stable around the

interior equilibrium point if

(i) P1 > 0,

(ii) P1P2 > P3 > 0,

where P1, P2 and P3 are given by (2.8).

After studying the local stability behavior we perform a global analysis around

the equilibrium point of coexistence. For this, we first consider the transformations

N = N∗ + N1, A = A∗ + A1, and H = H∗ + H1. With these transformations, the

model system (2.1) reduces to

dN1

dt
= N1(N0 − 2pN∗ − pN1) − α(N∗A1 + N1A

∗ + N1A1)(2.9)

+ c1A1 + b1H1,

dA1

dt
= α1(N

∗A1 + N1A
∗ + N1A1) − cA1

−
β

k + A∗

[

b(H1 + H∗)A1 + A∗H1

−
1

k + A∗
{A2

1(H1 + H∗) + A∗A1H1 + A1A
∗H∗}

]

,

dH1

dt
=

β1

k + A∗

[

A1(H + H∗) + A∗H1

−
1

k + A∗
{A2

1(H1 + H∗) + A∗A1H1 + A1H
∗A∗}

]

− bH1.
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Then, (0, 0, 0) is an equilibrium point of (2.9). Next we define

(2.10) U =
1

2
N2

1 +
σ1

2
A2

1 +
σ2

2
H2

1 > 0,

where σ1, σ2 > 0 are to be chosen. U will be a Lyapunov function if U̇ 6 0 when

(N1, A1, H1) 6= (0, 0, 0). Now,

U̇ = N2
1 (N0 − 2pN∗ − pN1 − αA∗ − αA1)(2.11)

+ A2
1

[

σ1

{

α1(N1 + N∗) − c

−
β

k + A∗

(

H1 + H∗ −
A1(H + H∗) + A∗(H1 + H∗)

k + A∗

)}

−
β1

(k + A∗)2
H1H

∗σ2

]

+ H2
1σ2

[β1(A1 + A∗)

k + A∗
−

β1

(k + A∗)2
A1(A1 + A∗) − b

]

+ N1A1(−αN∗ + c1 + α1A
∗σ1)

+ A1H1

[

−
βA∗σ1

k + A∗
+

β1H
∗A∗

(k + A∗)2
σ2

]

+ N1H1b1.

Using the inequality

(2.12) xy 6
1

2
εix

2 +
1

2εi
y2,

we have

U̇ 6 N2
1

[

N0 − p(2N∗ + N1) − αA∗ − αA1(2.13)

+
ε1

2
(σ1α1A

∗ + c1 − αN∗) +
ε3b1

2

]

+ A2
1

[

σ1α1(N1 + N∗) − c

−
βσ1

k + A∗

{

H + H∗ −
A1(H1 + H∗) + A∗(H1 + H∗)

k + A∗

}

−
β1H1H

∗

(k + A∗)2
σ2 +

1

2ε1
(−αN∗ + c1 + α1σ1A

∗)
]

+
ε2

2

[β1H
∗A∗σ2

(k + A∗)2
−

βA∗σ1

k + A∗

]

+ H2
1

[ σ2β1

(k + A∗)2
(A1 + A∗)(k + A∗ − A1) − bσ2 +

b1

2ε3

+
σ1ε2

2

{ β1H
∗A∗

(k + A∗)2
−

βA∗

k + A∗

}]

.
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Next we set

σ1 =
αN∗ − c1

α1A∗
− ξ1,(2.14)

ε1 =
αN∗ − c1 − α1A

∗σ1

2α1σ1(N1 + N∗)
,

ε2 = 1,

ε3 =
2(2pN∗ − N0)

b1
,

σ2 =
βσ1

k + A∗

A∗ + H∗ + H1 − (A1 + A∗)(H1 + H∗)(k + A∗)−1

β1H∗(H1 + A∗)(k + A∗)−2
− ξ2,

with ξ1, ξ2 > 0. By choosing ξ1, ξ2 properly it is possible to set σ1 and σ2 such that

U̇1 < 0, that is, we can choose ξ1 and ξ2 such that

σ2

[ β1

(k + A∗)2
(A1 + A∗)(k + A∗ − A1) − b

]

(2.15)

+
σ1

2

[ β1H
∗A∗

(k + A∗)2
−

βA∗

k + A∗

]

+
b1

2ε3
6 0.

We summarize the above analysis into the following:

Theorem 2.2. The model system (2.1) will be globally asymptotically stable if

(2.15) holds, where σ1, σ2, ε1, ε2, ε3 are given by (2.14).

From (2.15), it can be said that for small b, we can choose ξ1 and ξ2 sufficiently

large so that U̇ 6 0. Hence, for small values of b, the system will be globally asymp-

totically stable around the interior equilibrium point E∗. Interestingly, our analysis

of the boundary equilibrium point (EB) showed that stability around this point

is possible for large values of b (2.6). Thus, global stability around the equilibrium

point of coexistence implies instability around the boundary equilibrium of herbivore

extinction.

A numerical study of the model is performed using Matlab and the resulting stable

population time graph is shown in Fig. 1.

3. Constant recycling delay

In this section, we consider the basic model (2.1) with constant recycling delay. It

is well established that reconversion of dead biomass into nutrient is not an instanta-

neous process but is mediated by some time lag required for bacterial decomposition.

This delay will be present in reconversion of both autotroph and herbivore into nutri-

ent. However, the decomposition of herbivore will take much longer time than that
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Figure 1. Time evolution of nutrient, autotroph, and herbivore population for the ODE
model. Parameter values are N0 = 2.5, p = 1, a = 1, c1 = 0.12, b1 = 0.05,
a1 = 0.5, k = 0.95, c = 0.215, β = 0.4, β1 = 0.2, and b = 0.109. Initial conditions
are N∗ = 2.2, A∗ = 0.3, and H∗ = 2.8. The figure exhibits stable behavior for
all the populations.

of autotroph. So we consider the recycling delay in the term representing nutrient

regeneration from herbivore and assume autotroph recycling as instantaneous. The

effect of autotroph-nutrient recycling delay on a similar type model has already been

studied in a previous work [1]. With these assumptions, we write down the delay

model as

Ṅ = N(N0 − pN) − aNA + c1A + b1H(t − τ),(3.1)

Ȧ = a1NA − cA −
βAH

k + A
,

Ḣ =
β1AH

k + A
− bH,

where τ represents the constant recycling delay. The initial conditions are N(0) =

N > 0, A(0) = A > 0 and H(t) = H(t) > 0, where H(t) is a continuous nonnegative

function for −τ 6 t 6 0.

The characteristic equation corresponding to the interior equilibrium point of the

system (3.1) is given by

(3.2) λ3 + P1λ
2 + P2λ + P31 + P32e

−λτ = 0,
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where

P31 = −
(N0 − 2pN∗ − aA∗)ββ1A

∗H∗k

(k + A∗)3
,(3.3)

P32 =
a1β1A

∗H∗kb1

(k + A∗)2
.

The characteristic equation (3.2) is a transcendental equation and has infinitely

many eigenvalues. Consequently, the classical Routh-Hurwitz criteria can not be

used to analyze this equation. We shall study the distribution of the roots of (3.2)

analytically. For this, we consider a root of (3.2) in the form λ = u+ iv. The system

will undergo a stability change if the real part of the root is zero (namely if the

root is purely imaginary), that is, u = 0. We denote the corresponding v by v0.

Routine calculations show that the system will undergo a stability change for an

infinite number of values of τ given by

(3.4) τn =
1

v0

[

nπ + arctan
v0(P2 − v2

0)

P1v2
0 − P31

]

,

where n = 0,±1,±2, . . . and v0 is the largest positive root of

(3.5) Φ(v2
0) = v6

0 + v4
0(P

2
1 − 2P2) + v2

0(P 2
2 − 2P1P31) + P 2

31 − P 2
32 = 0.

The derivative of the real part of the root of (3.2) with respect to τ is given by

(3.6)
[du

dτ

]

τ=τ0, v=v0

=
v2
0

E2 + F 2

[ d

dv2
0

Φ(v2
0)

]

,

where

E = P2 − 3v2
0 − P32τ cos (v0τ),(3.7)

F = 2P1v0 + P32τ sin (v0τ).

Now for large v2
0 , Φ(v2

0) > 0 and hence dΦ/dv2
0 6= 0. Thus, the transversility condition

holds and consequently the system will undergo a Hopf-bifurcation [17].

From the above analysis it is seen that for τ = 0, the system remains stable if

the conditions of Theorem (2.1) are satisfied. For τ 6= 0, if 0 < τ < τ0, the delayed

system will remain stable. But for τ > τ0, the system will become unstable and

exhibit Hopf-bifurcation for an infinite number of values of the delay parameter τ .

A numerical study of the delay model is performed and the results are shown in

Figs. 2–5. Fig. 2 shows the graph when the delay lies in 0 < τ < τ0 exhibiting stable
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Figure 2. Time evolution of the populations for the DDE model. Parameter values are
N0 = 2.5, p = 1, a = 1, c1 = 0.12, b1 = 0.05, a1 = 0.5, k = 1, c = 0.215, β = 0.4,
β1 = 0.2, b = 0.09, and τ = 10. Initial conditions are N∗ = 2.2, A∗ = 0.3, and
H∗ = 2.8. The figure exhibits stable behavior for all the populations.

behavior. In Fig. 3 we demonstrate the onset of delay-induced instability for τ = 13

which numerically exemplifies the existence of τ0. Fig. 4 shows periodic oscillation in

population density for τ > τ0. In Fig. 5 we draw the phase portrait of the DDE model

showing the stable limit cycle arising from Hopf-bifurcation.

4. Time varying recycling delay

In this section, we consider time dependent recycling delay to model the day/night

variation in recycling. The model with time varying nutrient recycling takes the form

Ṅ = N(N0 − pN) − aNA + c1A + b1H(t − τ(t)),(4.1)

Ȧ = a1NA − cA −
βAH

k + A
,

Ḣ =
β1AH

k + A
− bH.
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Figure 3. Time evolution of the populations for the DDE model showing onset of delay
induced instability with τ = 13.

To start the analysis, we first introduce the linear operator

(4.2) L





u(t)

q(t)

w(t)



 ≡















du

dt
− a11u − a12q − b1w(t − τ0)

dq

dt
− a21u − a22q − a23w

dw

dt
− a32q















,

where

a11 = N0 − 2pN∗ − aA∗, a12 = c1 − aN∗ < 0,(4.3)

a21 = a1A
∗, a22 =

βA∗H∗

(k + A∗)2
, a23 = −

βA∗

k + A∗
,

a32 =
β1H

∗k

(k + A∗)2
, u = N − N∗, q = A − A∗, w = H − H∗,

and τ0 is defined by (3.4) with n = 0. The linearized version of (4.1) can then be

written in the form

(4.4) L





u(t)

q(t)

w(t)



 =





0

0

0



 .
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Figure 4. Time evolution of the populations for the DDE model. Parameter values are
N0 = 2.5, p = 1, a = 1, c1 = 0.12, b1 = 0.05, a1 = 0.5, k = 1, c = 0.215, β = 0.4,
β1 = 0.2, b = 0.09, and τ = 20. The figure exhibits unstable behavior for all the
populations.
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Figure 5. Phase portrait of the delay model with same parameter values as above.
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The solution of (4.4) is





u(t)

q(t)

w(t)



 = M





−(a32 + a22iv0 + v2
0)/a21

iv0

a32



 eiv0t + c.c.t.(4.5)

≡ M





ν1

ν2

ν3



 eiv0t + c.c.t.,

where c.c.t. denote the complex conjugate terms.

Next we study the stability criteria of the system around the interior equilibrium

point E∗ with oscillating delay

(4.6) τ(t) = τ0 + εf(t),

where ε is a small positive quantity and f(t) is a periodic function of t. The corre-

sponding linearized system is

du

dt
= a11u + a12q + b1w(t − τ(t)),(4.7)

dq

dt
= a21u + a22q + a23w,

dw

dt
= a32q.

We look for a solution of the type

(4.8)





u

q

w



 =

∞
∑

i=0

εi





ui(t, σ)

qi(t, σ)

wi(t, σ)



 ,

where σ = εt. Now from (4.7), collecting the coefficients of like powers of ε we find

that

(4.9) L





u0

q0

w0



 =





0

0

0



 .

So from (4.5) we can say that

(4.10)





u0

q0

w0



 = M(σ)





ν1

ν2

ν3



 eiv0t + c.c.t.
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Using (4.10), we have

(4.11) L





u1

q1

w1



 =





b1f(t)iv0M(σ)ν3 + b1τ0M
′(σ)ν3 − M ′(σ)ν1

−ν2M
′(σ)

−ν3M
′(σ)



 eiv0t + c.c.t.,

where M ′ = dM/dσ.

Next we consider the Fourier series expansion of f(t) in the form

(4.12) f(t) =

∞
∑

n=−∞

αn exp (iwnt).

Using (4.11) and (4.12), we obtain

L





u1

q1

w1



 =





b1iα0v0ν3M(σ) + M ′(σ)(b1τ0ν3 − ν1)

−ν2M
′(σ)

−ν3M
′(σ)



 eiv0t(4.13)

+
∑

n6=0





ib1αnv0ν3M(σ)

0

0



 ei(v0+wn)t + c.c.t.

To solve (4.13) we find a particular solution corresponding to each term on the right-

hand side. For n 6= 0, it is easy to find a particular integral. To find the solutions

when n = 0, we apply Fredholm theory.

We define the inner product in the space of periodic functions with period 2π/v0

by

(4.14) 〈u, v〉 =

∫ 2π/v0

0

ũ(t)ṽ(t) dt.

The adjoint operator L∗ of L is [20]

(4.15) L∗





u

q

w



 =















a11u + a21q −
du

dt

a12u + a22q + a32w −
dp

dt

b1u(t + τ0) + a23q −
dw

dt















,

and the kernel of this adjoint operator is given by

(4.16)





u∗(t)

q∗(t)

w∗(t)



 = B





d1

d2

d3



 eiv0t + c.c.t.,
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where

d1 = a12a32, d2 =
a2
12a32

iv0 − a11
,

d3 =
a12a32

(a11 − iv0)(a22 − iv0) − a12a21
.

The particular integral of (4.13) exists if the right-hand side of (4.13) is orthogonal,

which implies

(4.17)
M ′(σ)

M(σ)
=

d1b1α0v0ν3

ν1d1 + ν2d2 + ν3d3 − b1d1τ0ν3

2π

τ0
.

If v2
0 < v2

0
+
with α0 > 0 then M(σ) → 0 as t → ∞, and if v2

0 > v2
0
+
with α0 < 0

then M(σ) → 0 as t → ∞. But for v2
0 < v2

0
+
, M(σ) → ∞ as t → ∞ if α0 < 0. Here

(4.18) v2
0
+

=
a32 − a2

11 − a12a21 +
√

(a32 − a2
11 − a12a21)2 − 4a2

11a32

2
.

So it is seen that when the mean delay is less (greater) than τ0, the system may

become unstable (stable) depending on the system parameters and is controlled

by v2
0
+
.

Now, for large b, (a32 − a12a21) is large and N∗ is small. Consequently, v2
0
+
is

large. Thus, for large death rate of herbivore, the system with time varying delay

exhibits characteristics opposite to those of the system with constant delay.

Let us now study the case when α0 = 0. To this end, we use the two timing

method with σ = ε2t. This ensures that the analysis is sensitive to smaller rates of

growth or decay. Equating the like powers of ε, we get

L





u0

q0

w0



 =





0

0

0



 ,(4.19)

L





u1

q1

w1



 =





b1f(t)w0,t(t − τ0, σ)

0

0



 ,(4.20)

L





u2

q2

w2



 =





b1f(t)w1,t(t − τ0, σ) + b1τ0w0,σ(t − τ0, σ) + {f(t)}2

−q0,σ

−w0,σ



 .(4.21)

As α0 = 0, the Fourier series expansion of f(t) becomes

f(t) =

∞
∑

n=−∞, n6=0

αn exp (iwnt),
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and the solution of (4.20) is





u1(t)

q1(t)

w1(t)



 = b1iv0M(σ)(4.22)

×

∞
∑

n=−∞, n6=0

Bn









−
(wn + v0)

2 − a32a23 − a22i(wn + v0)

a21

i(wn + v0)

a32









,

where

Bn =
αn

ξ3 − (a11 + a22)ξ2 + (a11a22 − a21a23 − a12a21)ξ − a11a23 + b1a21e−iξτ0

with ξ = (wn + v0). Substituting (4.22) into (4.21), we get

L





u2

q2

w2



 =









∆M ′(σ) +
∞
∑

m,n=−∞, m,n6=0

αmαneiw(m+n)tMnM(σ)

−M ′(σ)ν2

−M ′(σ)ν3









eiv0t + c.c.t.,

where ∆ = (b1τ0ν3 − ν1) and Mn = b2
1iv0a32Bn exp (−iwnσ0) − ν3v

2
0 . To find the

non-secular solution, applying the Fredholm orthogonality condition, we get

(4.23) {(b1τ0ν3 − ν1)d1 − ν2d2 − ν3d3}M
′(σ) +

∑

n6=0

α−nαnMnM(σ) = 0.

Therefore,

(4.24)
M ′(σ)

M(σ)
=

∑

n6=0

|αn|
2Mn

d1ν1 + d2ν2 + d3ν3 − d1b1τ0ν3

.

Let us denote the right-hand side of (4.24) by K(w, b1). Then

(4.25) M(σ) = C exp [K(w, b1)ε
2t].

So the system will be linearly asymptotically stable if Re{K(w, b1)} < 0. We are

now in a position to summarize the analysis in the following:

Theorem 4.1. Consider the system (4.1), where the recycling delay τ(t) has the

form τ(t) = τ0 + εf(t), where τ0 is given by (3.4), ε is a small constant and f(t) is a

periodic function with the Fourier expansion f(t) =
∑

αnexp(iwnt). Then
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(i) If ε = 0, the interior equilibrium point is marginally stable according to the

linearized criteria.

(ii) If ε > 0, α0 > 0 (< 0) the system will be locally asymptotically stable around E∗

if v2
0 < v2

0
+

(> v2
0
+
). If v2

0 < v2
0
+

(> v2
0
+
) together with α0 < 0 (> 0), then the

system will become unstable.

(iii) If ε > 0 and α0 = 0, then the steady state will be locally asymptotically stable

if Re{K(w, b1)} < 0, where K(w, b1) is the right-hand side of (4.24).

5. Discussion

A real ecological food web is distinguished from the corresponding mathematical

model in a number of aspects. The factors that contribute to these deviations are

manifold, e.g., seasonal and/or daily variations, environmental fluctuations and so on.

The study of seasonal and daily variations in different ecological contexts has drawn

the attention of mathematical ecologists for a long time. For example, variation in

species dispersal using reaction-diffusion equations with variable diffusion coefficients

have been well studied ([22], [3], [4], [39], [40], [26]). Advanced mathematical tools

have been utilized for analyzing models that incorporate these ecologically realistic

characteristics of natural system.

In the present analysis, we have concentrated on such a practical aspect of an

ecological food chain, namely, the time variability in nutrient recycling. Unlike

most of the existing literature on ecological food chains, the external nutrient input

to the system is assumed to depend upon the existing nutrient concentration. In

Section 2, we studied the basic non-delayed model around the various steady states.

Our analysis around the boundary state of herbivore extinction demonstrated that a

high mortality rate of the herbivore population (together with a low external nutrient

input) has a stabilizing effect around this boundary state. On the contrary, our

investigation of the coexistent steady state revealed that a low value of this mortality

rate ensures global stability around this interior equilibrium. Thus, the herbivore

mortality rate plays a major role in controlling the local and global dynamics of the

basic model around the various stationary states; and there is a connection between

the boundary equilibrium stability and the global asymptotic stability of the interior

equilibrium in terms of this mortality rate.

Next we have studied the model with constant, discrete recycling delay in the term

modeling herbivore recycling. An initial interval of the delay parameter (namely,

(0, τ0)) is obtained that imparts stability to the system. However, when the delay

crosses this interval, the system becomes unstable through the occurrence of Hopf-

bifurcation. Thus a regeneration delay of sufficient magnitude (> τ0) is able to
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destabilize the system resulting in periodic fluctuation of various species. Finally,

we have made the recycling delay time dependent by allowing the delay to oscillate

around the constant value with small amplitude of oscillation. This ecologically ac-

commodates the daily variation in nutrient regeneration into the model equations.

We have derived the stability criteria in terms of the Fourier coefficients of f(t) to-

gether with different system parameters. It has been found that for large mortality

rate of the herbivore population, the system with oscillating delay exhibits stability

characteristics opposite to those of the model with constant delay. Thus with the

introduction of variable delay, the system becomes stable under the parameter re-

strictions for which the constant delay model exhibits oscillatory behavior. These

observations suggest that in a real world ecosystem, where the delay term undergoes

daily and/or seasonal fluctuation, use of models with constant delay as an approxi-

mation could give rise to conclusions that are inappropriate as well as unrealistic.

To end, we want to add a few lines. We have modeled only daily variation in

nutrient recycling by using small amplitude oscillating delay. It is worthwhile to

study the impact of seasonal fluctuation on nutrient regeneration through temporal

fluctuations of large amplitude. We leave these for future consideration.
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