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(Received June 27, 2006)

Abstract. The actual construction of the Szász-Mirakyan operators and its various modi-
fications require estimations of infinite series which in a certain sense restrict their usefulness
from the computational point of view. Thus the question arises whether the Szász-Mirakyan
operators and their generalizations cannot be replaced by a finite sum. In connection with
this question we propose a new family of linear positive operators.
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1. Introduction

Approximation properties of the Szász-Mirakyan operators

(1) Sn(f ; x) := e−nx
∞
∑

k=0

(nx)
k

k!
f
(k

n

)

, x ∈ R0 = [0, +∞), n ∈ N := {1, 2, . . .},

in polynomial weighted spaces Cp were examined in [2]. The space Cp, p ∈ N0 :=

{0, 1, 2, . . .}, considered in [2] is associated with the weight function

(2) w0(x) := 1, wp(x) := (1 + xp)−1 if p > 1,

and consists of all real-valued functions f continuous on R0 and such that wpf is
uniformly continuous and bounded on R0. The norm on Cp is defined by

(3) ‖f‖p ≡ ‖f(·)‖p := sup
x∈R0

wp(x)|f(x)|.

These operators are very interesting approximation processes and have many nice
properties.
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For f the results on the degree of approximation were studied in [2] for the usual
Szász-Mirakyan operators (1). From these theorems it was deduced that

(4) lim
n→∞

Sn(f ; x) = f(x)

for every f ∈ Cp, p ∈ N0 and x ∈ R0. Moreover, the above convergence is uniform
on every interval [x1, x2], x1 > 0.
Recently, in many papers various modifications of Sn were introduced and exam-

ined. They have been studied intensively in connection with different branches of
analysis such as convex and numerical analysis. We refer the reader to P. Gupta and
V. Gupta [9], V. Gupta [10], N. Ispir and C. Atakut [1], [18], V. Gupta, V. Vasishtha
and M.K. Gupta [13], G. Feng [7], [8], A. Ciupa [5], N. Ispir [17], S. Li [21], X. Linsen
and Z. Xiaoping [22]. Their results improve other related results in literature.

The actual construction of the Szász-Mirakyan operators (the Baskakov operators,
the Favard operators, the Meyer-König and Zeller operators) and its many various
modifications (see, for example, the works cited above) requires estimations of infinite
series which in a certain sense restrict their usefulness from the computational point
of view. Thus the question arises whether the Szász-Mirakyan operators and their
generalizations cannot be replaced by a finite sum. In connection with this question,
in [33] certain positive linear operators were considered, namely

(5) Ln(f ; x) :=
1

(1 + (x + n−1)2)n

n
∑

k=0

(

n

k

)

(x + n−1)2kf
(k

n
·
1 + (x + n−1)2

x + n−1

)

,

x ∈ R0, n ∈ N, for a function of one variable.
In [33] it was proved that if f ∈ Cp, p ∈ N0, then

(6) lim
n→∞

‖Ln(f ; ·) − f(·)‖p = 0.

The operators Ln are defined in terms of a sample of the given function f on the
points (k/n) · (1 + (x + n−1)2)/(x + n−1) for k ∈ N0, n ∈ N and x ∈ R0.
Thus new questions arise whether the knots (k/n) · (1 + (x + n−1)2)/(x + n−1)

cannot be replaced by a given subset of points which are independent of x, provided
this would not change essentially the approximation properties.
In connection to these questions we propose a new family of linear positive oper-

ators. This together with the simple form of the operator makes the results given in
the present paper more helpful from the computational point of view.

This note was inspired by the results obtained in our previous papers. In the
papers [34], [29] and [36], for each function f of polynomial type defined on R0, the
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following operators were considered:

A{1}
n (f ; r; x) =

1

g(nx; r)

∞
∑

k=0

(nx)k

(k + r)!
f
(k + r

n

)

, x ∈ R0,(7)

A{2}
n (f ; r; x) =

1

g((nx + 1)2; r)

∞
∑

k=0

(nx + 1)2k

(k + r)!
f
( k + r

n(nx + 1)

)

,(8)

and

(9) A{3}
n (f ; p, r, s; x) =

1

g(nsx; r)

∞
∑

k=0

(nsx)k

(k + r)!

p
∑

j=0

f (j)
(

k+r
ns

)

j!

(

x −
k + r

ns

)j

,

where n, r, p ∈ N, s > 0 and

(10) g(t; r) =

∞
∑

k=0

tk

(k + r)!
, t ∈ R0,

i.e.

g(0; r) =
1

r!
, g(t, r) =

1

tr

(

et −

r−1
∑

j=0

tj

j!

)

if t > 0.

Similar results in exponential weighted spaces can be found in [28], [30].

In this paper we will use the same method to obtain a new operator.

We introduce the following class of operators in Cp, p ∈ N.

Definition 1. We introduce a class of new operators defined by

(11) Bn(f ; r; an; x) :=
1

g(nx; r)

[n(x+an)]
∑

k=0

(nx)k

(k + r)!
f
(k + r

n

)

, x ∈ R0, n ∈ N,

where r is a fixed natural number and (an)∞1 is a sequence of positive numbers such
that lim

n→∞
n1/2an = ∞ and [n(x + an)] denotes the integral part of n(x + an).

Observe that the operator Bn is linear and positive.

Moreover, we will introduce certain linear positive operators in polynomial
weighted spaces of functions of two variables.

Let p, q ∈ N0 and let

(12) wp,q(x, y) := wp(x)wq(y), (x, y) ∈ R
2
0 := R0 × R0,
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where wp(·) is defined by (2). Denote by Cp,q the weighted space of all real-valued
functions f continuous on R

2
0 for which wp,qf is uniformly continuous and bounded

on R
2
0. The norm on Cp,q is defined by

(13) ‖f‖p,q ≡ ‖f(·, ·)‖p,q := sup
(x,y)∈R2

0

wp,q(x, y)|f(x, y)|.

Approximation properties of linear positive operators

Lm,n(f ; x, y) =
1

(1 + (x + m−1)2)m(1 + (y + n−1)2)n

m
∑

j=0

n
∑

k=0

(

m

j

)(

n

k

)

(14)

×(x + m−1)2j(y + n−1)2kf
(j(1 + (x + m−1)2)

m(x + m−1)
,
k(1 + (y + n−1)2)

n(y + n−1)

)

,

A{1}
m,n(f ; r, s; x, y) =

1

g(mx; r)g(ny; s)

×

∞
∑

j=0

∞
∑

k=0

(mx)j

(j + r)!

(ny)k

(k + s)!
f
(j + r

m
,
k + s

n

)

, r, s ∈ N,

in polynomial weighted spaces of functions of two variables were examined in [31]
and [34].

In this paper we will give some properties of the following operators.

Definition 2. Fix r, s ∈ N and p, q ∈ N. We define the class of operators Bm,n

by

Bm,n(f ; r, s; am, bn; x, y) :=
1

g(mx; r)g(ny; s)
(15)

×

[m(x+am)]
∑

j=0

[n(y+bn)]
∑

k=0

(mx)j

(j + r)!

(ny)k

(k + s)!
f
(j + r

m
,
k + s

n

)

, f ∈ Cp,q, (x, y) ∈ R
2
0,

where (am)∞1 and (bn)∞1 are given sequences of positive numbers such that

lim
m→∞

m1/2am = ∞ and lim
n→∞

n1/2bn = ∞.

Observe that the operator Bm,n is linear and positive.

In this paper, by Ki(α, β), i = 1, 2, . . ., we denote suitable positive constants
depending only on the parameters α and β.
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2. Preliminaries

In this section we will give some properties of the above operators which we will
apply to the proofs of the main theorems.
It is known ([2]) that

Sn(1; x) = 1, Sn(t − x; x) = 0,(16)

Sn((t − x)q+1; x) =
x

n
{S′

n((t − x)q; x) + qSn((t − x)q−1; x)},(17)

for x ∈ R0, n ∈ N and q ∈ N.
Using (16), (17) and mathematical induction on q ∈ N we can prove the following

lemma.

Lemma 1 ([25]). For every 2 6 q ∈ N we have

Sn((t − x)q; x) =

[q/2]
∑

j=1

cj,q
xj

nq−j
, x ∈ R0, n ∈ N,

where cj,q are positive numerical coefficients depending only on j and q ([y] denotes

the integral part of y ∈ R0).

In the paper [34] the following results were proved for A
{1}
n (f) defined by (7).

Lemma 2. A
{1}
n defines a positive linear operator Cp → Cp.

Theorem 1. For every fixed r ∈ N and f ∈ Cp, p ∈ N0, we have

(18) lim
n→∞

{A{1}
n (f ; r; x) − f(x)} = 0, x ∈ R0.

Moreover, (18) holds uniformly on every interval [x1, x2], x2 > x1 > 0.

In [34] it was proved that if f ∈ Cp,q, p, q ∈ N0, then A
{1}
m,n is a positive linear

operator Cp,q → Cp,q. Moreover, we derived

Theorem 2. Suppose that f ∈ Cp,q, p, q ∈ N0. Then there exists a positive

constant K3(p, q, r, s) such that for all (x, y) ∈ R
2
0

wp,q(x, y)|A{1}
m,n(f ; r, s; x, y) − f(x, y)|(19)

6 K3(p, q, r, s)ω

(

f, Cp,q;

√

x + 1

m
,

√

y + 1

n

)

,
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m, n ∈ N, r, s ∈ N, where

(20) ω(f, Cp,q; t, s) := sup
06h6t, 06δ6s

‖∆h,δf(·, ·)‖p,q, t, s > 0,

∆h,δf(x, y) := f(x+h, y+δ)−f(x, y), (x+h, y+δ) ∈ R
2
0 is the modulus of continuity

of f ∈ Cp,q.

From (20) it follows that

(21) lim
t,s→0+

ω(f, Cp,q; t, s) = 0

for every f ∈ Cp,q, p, q ∈ N0. This implies that

(22) lim
m,n→∞

A{1}
m,n(f ; r, s; x, y) = f(x, y), (x, y) ∈ R

2
0

uniformly on every rectangle 0 6 x 6 x0, 0 6 y 6 y0.

3. Main results

Now we give an approximation theorem for Bn.

Theorem 3. Fix p, r ∈ N. Then for Bn defined by (11) we have

(23) lim
n→∞

{Bn(f ; r; an; x) − f(x)} = 0, f ∈ Cp

uniformly on every interval [x1, x2], x2 > x1 > 0.

P r o o f. We first suppose that f ∈ Cp, p ∈ N. From (11) and (7) we obtain

Bn(f ; r; an; x) − f(x) =
1

g(nx; r)

[n(x+an)]
∑

k=0

(nx)k

(k + r)!
f
(k + r

n

)

− f(x)

=
1

g(nx; r)

∞
∑

k=0

(nx)k

(k + r)!
f
(k + r

n

)

− f(x)

−
1

g(nx; r)

∞
∑

k=[n(x+an)]+1

(nx)k

(k + r)!
f
(k + r

n

)

= A{1}
n (f ; r; x) − f(x) − Mn(f ; r; x), x ∈ R0, n, r ∈ N.

By our assumption, using the elementary inequality (a+b)k 6 2k−1(ak+bk), a, b > 0,
k ∈ N0, we get

(24) |f(t)| 6 K1(1 + tp) 6 K1(1 + (|t − x| + x)p) 6 K1(1 + 2p−1(|t − x|p + xp)).
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Observe that

|Mn(f ; r; x)| 6
1

g(nx; r)

∞
∑

k=[n(x+an)]+1

(nx)k

(k + r)!

∣

∣

∣
f
(k + r

n

)∣

∣

∣

6
1

g(nx; r)

∞
∑

k=[n(x+an)]+r+1

(nx)k−r

k!

∣

∣

∣
f
(k

n

)∣

∣

∣

6
1

(nx)rg(nx; r)

∞
∑

k=[n(x+an)]+1

(nx)k

k!

∣

∣

∣
f
(k

n

)
∣

∣

∣
.

This together with (10), (24) and (1) yields

|Mn(f ; r; x)| 6
1

(nx)rg(nx; r)

∞
∑

k=[n(x+an)]+1

(nx)k

k!
K1

(

1 + 2p−1
(∣

∣

∣

k

n
− x

∣

∣

∣

p

+ xp
))

6
enx

enx −
r−1
∑

j=0

(nx)j/j!

K1

×

(

(1 + 2p−1xp)e−nx
∞
∑

k=[n(x+an)]+1

(nx)k

k!
+ 2p−1e−nx

∞
∑

k=0

(nx)k

k!

∣

∣

∣

k

n
− x

∣

∣

∣

p
)

=
enx

enx −
r−1
∑

j=0

(nx)j/j!

K1

×

(

(1 + 2p−1xp)e−nx
∞
∑

k=[n(x+an)]+1

(nx)k

k!
+ 2p−1Sn(|t − x|p; x)

)

.

We remark that
et

et −
r−1
∑

j=0

tj/j!

= O(1)

and

e−nx
∞
∑

k=[n(x+an)]+1

(nx)k

k!
6 e−nx

∞
∑

an<|k/n−x|

(nx)k

k!

6 e−nx
∞
∑

an<|k/n−x|

(nx)k

k!

∣

∣

∣

k

n
− x

∣

∣

∣

p 1

ap
n

6
1

ap
n

e−nx
∞
∑

k=0

(nx)k

k!

∣

∣

∣

k

n
− x

∣

∣

∣

p

=
1

ap
n
Sn(|t − x|p; x).
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This implies that

|Mn(f ; r; x)| 6 K2

(

(1 + 2p−1xp)

ap
n

+ 2p−1

)

Sn(|t − x|p; x).

Consequently, in view of Lemma 1, the Hölder inequality and (16), we further have

|Mn(f ; r; x)| 6 K2

(

(1 + 2p−1xp)

ap
n

+ 2p−1

)

{Sn((t − x)2p; x)Sn(1; x)}1/2

= K2

(

(1 + 2p−1xp)

ap
n

+ 2p−1

){ p
∑

j=1

cj,2p
xj

n2p−j

}1/2

6
K2

np/2

(

(1 + 2p−1xp)

ap
n

+ 2p−1

){ p
∑

j=1

cj,2px
j

}1/2

.

The relation
lim

n→∞
n1/2an = ∞

implies that
lim

n→∞
Mn(f ; r; x) = 0

uniformly on every interval [x1, x2], x2 > x1 > 0. In view of Theorem 1 this yields

lim
n→∞

{Bn(f ; r; an; x) − f(x)} = 0,

uniformly on every interval [x1, x2], x2 > x1 > 0. This completes the proof of (23).
�

Applying Theorem 2, we can prove the basic property of Bm,n.

Theorem 4. Fix p, q, r, s ∈ N. Then for Bm,n defined by (15) we have

(25) lim
m,n→∞

Bm,n(f ; r, s; am, bn; x, y) = f(x, y), f ∈ Cp,q.

Moreover, (25) holds uniformly on every rectangle 0 6 x 6 x0, 0 6 y 6 y0.

P r o o f. Suppose that f ∈ Cp,q, p, q ∈ N and r, s ∈ N. This implies that

|f(t, z)| 6 K4(1 + tp)(1 + zq) 6 K4(1 + 2p−1(|t− x|p + xp))(1 + 2q−1(|z − y|q + yq)).

From (15) and (14) we have

Bm,n(f ; r, s; am, bn; x) − f(x, y) = A{1}
m,n(f ; r, s; x, y) − f(x, y) − Mm,n(f ; r, s; x, y)

712



where

Mm,n(f ; r, s;x, y) =
1

g(mx; r)g(ny; s)

×

∞
∑

j=[m(x+am)]+1

∞
∑

k=[n(y+bn)]+1

(mx)j

(j + r)!

(ny)k

(k + s)!
f
(j + r

m
,
k + s

n

)

,

(x, y) ∈ R
2
0.

Observe that

|Mm,n(f ; r, s; x, y)| 6
1

g(mx; r)g(ny; s)

×

∞
∑

j=[m(x+am)]+1

∞
∑

k=[n(y+bn)]+1

(mx)j

(j + r)!

(ny)k

(k + s)!

∣

∣

∣
f
(j + r

m
,
k + s

n

)
∣

∣

∣

6 K4
1

g(mx; r)

∞
∑

j=[m(x+am)]+r+1

(mx)j−r

j!

(

1 + 2p−1
(∣

∣

∣

j

m
− x

∣

∣

∣

p

+ xp
))

×
1

g(ny; s)

∞
∑

k=[n(y+bn)]+s+1

(ny)k−s

k!

(

1 + 2q−1
(∣

∣

∣

k

n
− y

∣

∣

∣

q

+ yq
))

.

Arguing as in the second part of Theorem 3 we derive

1

g(mx; r)

∞
∑

j=[m(x+am)]+r+1

(mx)j−r

j!

(

1 + 2p−1
(
∣

∣

∣

j

m
− x

∣

∣

∣

p

+ xp
))

6
K5

mp/2

( (1 + 2p−1xp)

ap
m

+ 2p−1
)

{ p
∑

j=1

cj,2px
j

}1/2

,

1

g(ny; s)

∞
∑

k=[n(y+bn)]+s+1

(ny)k−s

k!

(

1 + 2q−1
(∣

∣

∣

k

n
− y

∣

∣

∣

q

+ yq
))

6
K5

nq/2

( (1 + 2q−1yq)

bq
n

+ 2q−1
)

{ q
∑

j=1

cj,2qy
j

}1/2

.

This yields in view of Definition 2

lim
m,n→∞

Mm,n(f ; r, s; x, y) = 0

uniformly on every rectangle 0 6 x 6 x0, 0 6 y 6 y0. Applying Theorem 2 and (26)
we immediately obtain (25). �
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It is similarly verified that analogous approximation properties hold for the two
operators

Tn(f ; r; x) :=
1

g(nx; r)

nr
∑

k=0

(nx)k

(k + r)!
f
(k + r

n

)

,

f ∈ C[0,2r], x ∈ [0, r), n, r ∈ N,

Tm,n(f ; r, s; x, y) :=
1

g(mx; r)g(ny; s)

×

mr
∑

j=0

ns
∑

k=0

(mx)j

(j + r)!

(ny)k

(k + s)!
f
(j + r

m
,
k + s

n

)

,

f ∈ C[0,2r],[0,2s], (x, y) ∈ [0, r) × [0, s), m, n, r, s ∈ N.
Observe that the operators Tn, n ∈ N, are obtained from (11) for an = r − x,

x ∈ [0, r), r ∈ N.
Analogously we obtain

Bm,n(f ; r, s; r − x, s − y; x, y) = Tm,n(f ; r, s; x, y),

(x, y) ∈ [0, r) × [0, s), m, n, r, s ∈ N.

The methods used to prove the Theorems are similar to those used in the con-
struction of the modified Szász-Mirakyan operators [19], [31], [34], [38].

Acknowledgment. The author would like to thank the referee for his valuable
comments and proposals.
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