Czechoslovak Mathematical Journal

Ján Jakubík
Affine completeness and wreath product decompositions of lattice ordered group

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 3, 717-723
Persistent URL: http://dml.cz/dmlcz/140416

Terms of use:

© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

AFFINE COMPLETENESS AND WREATH PRODUCT DECOMPOSITIONS OF LATTICE ORDERED GROUP

Ján Jakubík, Košice

(Received July 4, 2006)

Abstract

Let Δ and H be a nonzero abelian linearly ordered group or a nonzero abelian lattice ordered group, respectively. In this paper we prove that the wreath product of Δ and H fails to be affine complete.

Keywords: lattice ordered group, wreath product, affine completeness
MSC 2010: 06F15

1. Introduction

Affine completeness of algebraic structures was investigated in the monograph [6] by Kaarli and Pixley. A problem proposed in this monograph (and formulated also earlier in [2]) asks whether there exists a lattice ordered group $G \neq\{0\}$ which is affine complete; this problem remains open.

Some negative results in this direction (dealing with sufficient conditions under which G is not affine complete) were proved by Kaarli and Pixley [6], by Csontóová and the author [5] and by the author [2], [3], [4]. Cf. also Section 5 below.

In the present paper we prove
(*) Assume that a lattice ordered group G can be represented as a wreath product of a nonzero abelian linearly ordered group and a nonzero abelian lattice ordered group. Then G is not affine complete.

[^0]
2. PRELIMINARIES

For lattice ordered groups we apply the notation as in Conrad [1] (with some minor modifications). In particular, the group operation is always written additively, though it is not assumed to be commutative.

Let G be a lattice ordered group and let $P(G)$ be the set of all polynomials over G. If for each mapping $f: G^{n} \rightarrow G$ such that $n \in \mathbb{N}$ and f is compatible with all congruence relations on G the relation $f \in P(G)$ is valid then G is called affine complete.

We recall the definition of the wreath product (cf., e.g., [1]).
Let H be a lattice ordered group and let Δ be a linearly ordered group. For each $\delta \in \Delta \operatorname{let} G_{\delta}=H$. Consider the set-theoretical direct product

$$
D=\Delta \times \prod_{\delta \in \Delta} G_{\delta}
$$

Suppose that

$$
d_{1}=\left(\alpha ; \ldots, a_{\delta}, \ldots\right)_{\delta \in \Delta}, \quad d_{2}=\left(\beta ; \ldots, b_{\delta}, \ldots\right)_{\delta \in \Delta}
$$

are elements of D. We define the operation + on D by putting

$$
d_{1}+d_{2}=\left(\alpha+\beta ; c_{\delta}, \ldots\right)_{\delta \in \Delta}, \quad c_{\delta}=a_{\delta-\beta}+b_{\delta}
$$

Then $(D ;+)$ is a group. The partial order on D is defined by putting $d_{1} \geqslant 0$ if either $\alpha>0$, or $\alpha=0$ and $a_{\delta} \geqslant 0$ for each $\delta \in \Delta$. We obtain a lattice ordered group $(D ;+, \leqslant)$ which will be denoted by $\Delta W H$. We say that this lattice ordered group is a wreath product of Δ and of H.

In what follows we assume that both Δ and H are nonzero and abelian.

3. Auxiliary results

Assume that G is a nonzero lattice ordered group. Let $p(x)$ be a polynomial over G with one variable x. It is well-known that then there exists a finite subset C of G such that $p(x)$ can be expressed in the form

$$
\begin{equation*}
p(x)=\bigwedge_{i \in I} \bigvee_{j \in J(i)} a_{i j}, \quad a_{i j}=\sum_{t \in T(i, j)} b_{t}^{i j}, \tag{1}
\end{equation*}
$$

where $I \neq \emptyset$ is a finite set, $J(i) \neq \emptyset$ is a finite set for each $i \in I, T(i, j) \neq \emptyset$ is a finite set for each $i \in I$ and each $j \in J(i)$, and for each $i \in I, j \in J(i), t \in T(i, j)$ we have either $b_{t} \in C$ or $b_{t} \in\{x,-x\}$.

Let D be as in Section 2 and let $d_{1}=\left(\alpha ; \ldots, a_{\delta}, \ldots\right)_{\delta \in \Delta}$ be an element of D. We denote

$$
d_{1}^{0}=\left(\alpha ; \ldots, a_{\delta}^{0} \ldots\right)_{\delta \in \Delta},
$$

where $a_{\delta}^{0}=0$ for each $\delta \in \Delta$.
Further, we put

$$
\begin{gathered}
D^{0}=\left\{d_{1} \in D: d_{1}^{0}=0\right\} \\
d_{1}(\Delta)=\alpha, \quad d_{1}\left(G_{\delta}\right)=a_{\delta} \quad \text { for each } \delta \in \Delta .
\end{gathered}
$$

For each $d_{1} \in D$ we set

$$
f\left(d_{1}\right)=d_{1}^{0} .
$$

Let ϱ be a congruence relation on D and $d \in D$. We put $\varrho(d)=\left\{d^{\prime} \in D: d \varrho d^{\prime}\right\}$.
Lemma 3.1. Let $d_{1}, d_{2} \in D, d_{1} \varrho d_{2}$. Then $f\left(d_{1}\right) \varrho f\left(d_{2}\right)$.
Proof. For d_{1} and d_{2} we apply the notation as in Section 2. If $\alpha=\beta$, then $f\left(d_{1}\right)=f\left(d_{2}\right)$, whence $f\left(d_{1}\right) \varrho f\left(d_{2}\right)$.

Assume that $\alpha \neq \beta$. Then without loss of generality we can suppose that $\alpha<\beta$. Put $d_{3}=d_{2}-d_{1}$. We get $0 \varrho d_{3}$ and $0 \leqslant\left|d_{4}\right|<d_{3}$ for each $d_{4} \in D^{0}$. Hence $0 \varrho d_{4}$. This yields $d_{1}^{0} \varrho d_{1}$ and $d_{2}^{0} \varrho d_{2}$. Thus $d_{1}^{0} \varrho d_{2}^{0}$; hence $f\left(d_{1}\right) \varrho f\left(d_{2}\right)$.

We have proved that the mapping f is compatible with all congruence relations on D. Thus in order to prove the assertion ($*$) from Section 1 it remains to show that $f(x)$ does not belong to $P(G)$.

From the definition of the partial order in D we immediately obtain (under the notation as in Section 2)

Lemma 3.2. If $\alpha<\beta$, then $d_{1} \vee d_{2}=d_{2}$. If $\alpha=\beta$, then $d_{1} \vee d_{2}=d^{\prime}$, where $d^{\prime}=\left(\alpha ; \ldots, a_{\delta} \vee b_{\delta}, \ldots\right)_{\delta \in \Delta}$.

The analogous result holds for $d_{1} \wedge d_{2}$.
Let $p(x)$ and C be as above. For $d \in D$, the meanings of the expressions $p(d)$ and $a_{i j}(d)$ are obvious.

Lemma 3.3. Let h be any element of H. There exists $d_{0} \in D$ such that $d_{0}(\Delta)>0, d_{0}\left(G_{\delta}\right)=h$ for each $\delta \in \Delta$ and

$$
d_{0}>\sum_{i \in I, j \in J_{i}, t \in T^{0}(i, j)} b_{t}^{i j},
$$

where $T^{0}(i, j)$ is the set of those $t \in T(i, j)$, for which the element $b_{t}^{i j}$ belongs to C.
Proof. This is a consequence of the fact that the sets $I, J(i)$ and $T(i, j)$ are finite and that the linearly ordered group Δ is nonzero.

We will deal with the element $f\left(d_{0}\right)$ of D. Below, in Section 4, we will apply specific conditions for choosing in an appropriate way the corresponding element h of G.

Again, let $p(x)$ be as above and let $i \in I, j \in J_{i}$. We denote by $n_{i j}^{1}$ and $n_{i j}^{2}$ the number of those $t \in T_{i j}$ for which we have $b_{t}^{i j}=x$ or $b_{t}^{i j}=-x$, respectively. Put $n_{i j}=n_{i j}^{1}-n_{i j}^{2}$.

Lemma 3.4. Let us apply the notation as above. Put $d_{0}(\Delta)=\alpha_{0}$. Then we have (i) $\left(a_{i j}\left(d_{0}\right)\right)(\Delta)=n_{i j} \alpha_{0}+\sum_{t \in T^{0}(i, j)} b_{t}^{i j}(\Delta)$;
(ii) for each $\delta \in \Delta$,

$$
\left(a_{i j}\left(d_{0}\right)\right)\left(G_{\delta}\right)=n_{i j} h+c_{i j}^{\delta},
$$

where $c_{i j}^{\delta}$ is an element of C which is uniquely determined by $a_{i j}$ and does not depend on the choice of h.

Proof. This is a consequence of the definition of the operation + in D and of the fact that Δ and H are abelian.

4. Proof of (*)

In proving (*) we proceed by way of contradiction. Let $f(x)$ be as above. In view of 3.1, we have to prove that $f(x)$ does not belong to $P(D)$.

Suppose that there is $p(x) \in P(D)$ such that $p\left(x_{0}\right)=f\left(x_{0}\right)$ for each $x_{0} \in D$. For $p(x)$, we apply the notation as above.

Let d_{0} be as in Section 3.
Lemma 4.1. Let $i_{0} \in I$. Then there exists $j \in J_{i_{0}}$ such that $n_{i_{0} j} \geqslant 1$.
Proof. By way of contradiction, assume that $n_{i_{0} j}<1$ for each $j \in J_{i_{0}}$. Consider the element d_{0}^{0} (cf. Section 3). Then in view of 3.3 we have $a_{i_{0} j}\left(d_{0}\right)<d_{0}^{0}$ for each $j \in J_{i_{0}}$. By applying 3.2 we conclude that

$$
\bigvee_{j \in J_{i_{0}}} a_{i_{0} j}\left(d_{0}\right)<d_{0}^{0}
$$

This yields $p\left(d_{0}\right)<d_{0}^{0}=f\left(d_{0}\right)$, which is a contradiction.
Let $i \in I$. Put $J_{i}^{0}=\left\{j \in J_{i}: n_{i j} \geqslant 1\right\}$. In view of 4.1 we have $J_{i}^{0} \neq \emptyset$. Moreover, 3.2 yields

$$
\begin{equation*}
\bigvee_{j \in J_{i}} a_{i j}\left(d_{0}\right)=\bigvee_{j \in J_{i}^{0}} a_{i j}\left(d_{0}\right) \tag{1}
\end{equation*}
$$

Let us denote this element by $\bar{a}_{i}\left(d_{0}\right)$. Hence

$$
\begin{equation*}
p\left(d_{0}\right)=\bigwedge_{i \in I} \bar{a}_{i}\left(d_{0}\right) \tag{2}
\end{equation*}
$$

Denote $m_{i}=\max \left\{n_{i j}\right\}_{j \in J_{i}^{0}}$. Hence $m_{i} \geqslant 1$. Further, we put

$$
J_{i}^{0 m}=\left\{j \in J_{i}^{0}: n_{i j}=m_{i}\right\} .
$$

According to 3.2 we obtain

$$
\begin{gather*}
\left(\bar{a}_{i}\left(d_{0}\right)\right)(\Delta)=m_{i} \tag{3}\\
\left(\bar{a}_{i}\left(d_{0}\right)\right)\left(G_{\delta}\right)=\bigvee_{j \in J_{i}^{0 m}} a_{i j}\left(G_{\delta}\right) \tag{4}
\end{gather*}
$$

Lemma 4.2. Let $0<k \in H$ and $\delta_{0} \in \Delta$. There exists $h \in H$ such that $\left(a_{i j}\left(d_{0}\right)\right)\left(G_{\delta_{0}}\right) \geqslant k$ for each $i \in I$ and each $j \in J_{i}^{0 m}$.

Proof. Let $i \in I$ and $j \in J_{i}^{0 m}$. Then $n_{i j} \geqslant 1$. Let $c_{i j}^{\delta_{0}}$ be as in 3.4 (ii). Since the sets I and J_{i} are finite and $H \neq\{0\}$ there exists $h \in H$ such that

$$
h \geqslant k-c_{i j}^{\delta_{0}}
$$

for each $i \in I$ and $j \in J_{i}$; for such i and j we then have $h+c_{i j}^{\delta_{0}} \geqslant k$. In particular, if $j \in J_{i}^{0 m}$, then $n_{i j} h+c_{i j}^{\delta_{0}} \geqslant h+c_{i j}^{\delta_{0}} \geqslant k$.

In what follows let h be as in 4.2. Then according to (4) we obtain

$$
\begin{equation*}
\left(\bar{a}_{i}\left(d_{0}\right)\right)\left(G_{\delta_{0}}\right) \geqslant k . \tag{5}
\end{equation*}
$$

Now from the result analogous to 3.2 concerning the operation \wedge and by applying (2), (5) we get

$$
\left(p\left(d_{0}\right)\right)\left(G_{\delta_{0}}\right) \geqslant k .
$$

On the other hand, we have $f\left(d_{0}\right)=d_{0}^{0}$ and $d_{0}^{0}\left(G_{\delta}\right)=0$ for each $\delta \in A$. Therefore $f\left(d_{0}\right) \neq p\left(d_{0}\right)$ and we arrived at a contradiction, concluding the proof of the assertion (*).

5. On the relation between (*) and the Results of [2]-[6]

We denote by \mathcal{C}_{w} the class of all nonzero lattice ordered groups which can be represented as a nontrivial wreath product.

Assume that G is a nonzero lattice ordered group; the following conditions are sufficient for G nit to be affine complete:
$\left(\mathrm{a}_{1}\right) G$ is complete. (Cf. [2].)
$\left(\mathrm{a}_{2}\right) G$ is abelian and projectable. (Cf. [5].)
(a_{3}) G can be represented as a nontrivial direct product. (Cf. [3].)
$\left(\mathrm{a}_{4}\right) G$ is abelian and can be represented as a nontrivial lexicographic product. (Cf. [4].)
(a_{5}) G can be represented as direct product $A \times B$, where A is a nonzero subdirectly irreducible lattice ordered group and B is any lattice ordered group. (Cf. [6].)
For $i \in\{1,2,3,4\}$ let \mathcal{C}_{i} be the class of all nonzero lattice ordered groups satisfying the condition (a_{i}).

Now suppose that G is a lattice ordered group satisfying the assumption of (*). Then G is nonzero. Further, we have
(i) G fails to be complete.
(ii) G fails to be projectable.
(iii) G is directly indecomposable.

Therefore for any lattice ordered group G, the assertion (*) fails to be a consequence of $\left(a_{i}\right)$ for $i=1,2,3$.

Lemma 5.1. Let G be as in (*). Then G cannot be represented as a nontrivial lexicographic product.

Proof. By way of contradiction, assume that G can be represented as a nontrivial lexicographic product. Thus without loss of generality we can suppose that G is a lexicographic product

$$
G=\Gamma_{i \in I} K_{i},
$$

where I is a linearly ordered set having more than one element and all K_{i} are nonzero lattice ordered groups; moreover, if $i \in I$ and i is not the greatest element of I, then K_{i} is linearly ordered.

First suppose that I has no greatest element. Then G is linearly ordered. But since G satisfies the assumption of $(*)$ it is not linearly ordered, which is a contradiction. Hence I has the greatest element which will be denoted by i_{1}.

For each $i \in I$ let \bar{K}_{i} be the set of all $g \in G$ such that $g\left(K_{j}\right)=0$ whenever $j \in I$, $j \neq i$. If g_{1} is an element of G which is incomparable with 0 , then clearly $g_{1} \in \bar{K}_{i_{1}}$. If, moreover, $i \in I, i \neq i_{1}$ and $g_{2} \in \bar{K}_{i}$, then $g_{1}+g_{2}=g_{2}+g_{1}$.

Since G satisfies the assumption of $(*)$ we can suppose that $G=D$, where D is as above. Choose $\delta_{1} \in \Delta$; there exists $d \in D$ such that $d(\Delta)=0, d\left(G_{\delta_{1}}\right)>0$ and $d\left(G_{\delta}\right)=0$ if $\delta \in \Delta, \delta \neq \delta_{1}$. Further, there exists $\delta_{2} \in \Delta$ with $\delta_{2} \neq \delta_{1}$ and there is $d^{\prime} \in D$ with the properties analogous to those of d with the distinction that δ_{1} is replaced by δ_{2}. Put $d_{1}=d-d^{\prime}$. Then d_{1} is incomparable with 0 , whence $d_{1} \in \bar{K}_{i_{1}}$. Further, $d_{1} \vee 0=d$; since $\bar{K}_{i_{1}}$ is a sublattice of G, we obtain $d \in \bar{K}_{i_{1}}$.

Since $\Delta \neq\{0\}$, there exists $0<g_{1}^{\prime} \in D$ with $g_{1}^{\prime}(\Delta)>0$. Also, there exists $0<g_{2} \in D$ such that $g_{2}>g_{1}^{\prime}$ and $g_{2} \in \bar{K}_{i}$ for some $i \neq i_{1}$. Then from the properties of D we infer that $g_{1}+g_{2} \neq g_{2}+g_{1}$; we arrived at a contradiction.

Hence we have $\mathcal{C}_{w} \cap \mathcal{C}_{4}=\emptyset$. Therefore for any lattice ordered group G, the assertion (*) cannot be obtained as a consequence of (a_{4}).

The following example shows that a lattice ordered group satisfying the assumptions of $(*)$ can be subdirectly reducible. Let Z be the additive group of all integers with the natural linear order. Let $X=Y=\Delta=Z$ and put $G=\Delta W(X \times Y)$. Hence G satisfies the assumption of $(*)$. If $d \in G$ and (by using the notation as above)

$$
d=\left(\alpha ; \ldots, a_{\delta}, \ldots\right)_{\delta \in \Delta},
$$

then $\alpha \in \Delta$ and $a_{\delta}=\left(x_{\delta}, y_{\delta}\right)$ with $x_{\delta} \in X, y_{\delta} \in Y$.
We denote by A_{1} the set of all $d \in G$ such $\alpha=0$ and $y_{\delta}=0$ for each $\delta \in \Delta$. Similarly, let A_{2} be the set of all $d \in G$ such that $\alpha=0=x_{\delta}$ for each $\delta \in \Delta$. Then both A_{1} and A_{2} are ℓ-ideals of G. We have $A_{1} \cap A_{2}=\{0\}$. Moreover, $G / A_{1} \neq\{0\} \neq G / A_{2}$. Thus the lattice ordered group G is subdirectly reducible.

Therefore ($*$) is not a consequence of $\left(\mathrm{a}_{5}\right)$.

References

[1] P. Conrad: Lattice Ordered Groups. Tulane University, New Orleans, 1970.
[2] J. Jakubik: Affine completeness of complete lattice ordered groups. Czechoslovak Math. J. 45 (1995), 571-576.
[3] J. Jakubik: On the affine completeness of lattice ordered groups. Czechoslovak Math. J. 54 (2004), 423-429.
[4] J. Jakubik: Affine completeness and lexicographic product decompositions of abelian lattice ordered groups. Czechoslovak Math. J. 55 (2005), 917-922.
[5] J. Jakubik, M. Csontóová: Affine completeness of projectable lattice ordered groups. Czechoslovak Math. J. 48 (1998), 359-363.
[5] K. Kaarli, A. F. Pixley: Polynomial Completeness in Algebraic Systems. Chapman-Hall, London-New York-Washington, 2000.

Author's address: Ján Jakubík, Matematický ústav SAV, Grešákova 6, 04001 Košice, Slovakia.

[^0]: Supported by VEGA grant 2/4134/24.
 This work has been partially supported by the Slovak Academy of Sciences via the project Center of Excellence-Physics of Information, grant I/2/2005.

