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Abstract. The variance of the number of lattice points inside the dilated bounded set
rD with random position in Rd has asymptotics ∼ rd−1 if the rotational average of the
squared modulus of the Fourier transform of the set is O(̺−d−1). The asymptotics follow
from Wiener’s Tauberian theorem.
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1. Introduction

The number of lattice points in a set with random position can be used for esti-

mation of the volume of the set and its variance has been studied for a long time

[6], [7]. If T is a d-periodical point lattice of spatial intensity α in the d-dimensional

Euclidean space Rd then the mean value of

(card((Bd(r) + x) ∩ T) − αλd(Bd(r)))
2,

where λd is the Lebesgue measure, i.e. the variance of the lattice point count in the

ball Bd(r) of radius r with uniform random position, is

CTHd−1(∂Bd(r))Φ(r).

Here CT is a lattice constant, H
d−1 is the surface measure and the function Φ defined

by the above equality fulfills lim
t→∞

t−1
∫ t

0 Φ(t) dt = 1, is bounded, and lim sup
t→∞

Φ(t) 6 2

[4], [5]. Hence the variance of the lattice point count in the ball has asymptotics “in

the mean” CTHd−1(∂Bd(1))rd−1 and is O(rd−1), r → ∞.
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Let D be a compact body the isotropic covariogram γD (the rotational average of

γD = ID ⋆ I−D) of which is a fractional integral of the Weyl type of a finite signed

measure σ on R
+:

γD(t) =

∫ ∞

t

(s − t)(d+1)/2 dσ(s)

for t ∈ R
+. This means that the fractional derivative of γD of the order

1
2 (d + 1)

has bounded variation. Moreover, let the derivative of γD from the right fulfill

γD
′+(0) = −(κd−1/dκd)H

d−1(∂D). Then the asymptotics “in the mean” of the

form CTHd−1(∂D)rd−1 of the variance of the lattice point count inside randomly

rotated and shifted set rD follows easilly from Theorem 2.8 in [3].

The variance of the lattice point count inside a randomly rotated and shifted

bounded set D dilated by r > 0 is O(rd−1), r → ∞, if the rotational average of the

squared modulus of the Fourier transform of the set D, defined as
∫

Sd−1

|ÎD(̺ξ)|2 dξ,

is O(̺−d−1), ̺ → ∞ [12]; the later property was proved for convex sets and sets

with C3/2 (see below) boundary [2]. The aim of this paper is to prove that this

assumption on the growth of the modulus of the Fourier transform yields also the

asymptotics of the form CTHd−1(∂D)rd−1 for the variance of the lattice point count

inside randomly placed bounded full d-dimensional set rD with sufficiently regular

boundary (locally finite union of sets of finite reach [9]). The above asymptotics

can be thus used for compact bodies with piecewise C
2 smooth boundary and for

d-dimensional convex sets in R
d.

2. The variance of the lattice point count

Notation 2.1. Let T be a d-periodic lattice of points in the d-dimensional Eu-

clidean space Rd defined by a regular matrix A ∈ R
d×d as T(A) = AZ

d, where Zd is

the set of all points in R
d with integral coordinates. T has the fundamental region

FT = A[0, 1)d of volume λd(FT) = detA, where λd is the Lebesgue measure; hence

the spatial intensity of T is α = (detA)−1. The group dual to the group T(A) is

T
∗ = A−1

Z
d.

The Fourier transform of a function f ∈ L
1(Rd) is

(2.1) f̂(ξ) =

∫

Rd

f(x) exp(−2πix · ξ) dx.

If f is spherically symmetric then rd−1f(r) ∈ L
1(R+) and the Fourier transform

of f can be expressed as the Hankel transform

(2.2) f̂(̺) = 2π̺1−d/2

∫ ∞

0

rd/2Jd/2−1(2π̺r)f(r) dr,
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where Jd/2−1 is the Bessel function of the first kind. The inverse Hankel transform

is identical to the direct transform.

κd = π
d/2Γ(d/2 + 1)−1 is the volume of the unit ball Bd(1) in R

d, where Γ is the

Euler Gamma function.

ID is the characteristic function of the set D.

A function f(x) is O(g(x)), x → ∞ iff f/g is bounded in a neighbourhood of ∞.

Proposition 2.2. Let T be a d-periodic lattice of points and let D be a bounded

measurable set in R
d. Then

(2.3)

∫

FT

(card((D + x) ∩T))α dx = αλd(D),

and

(2.4)

∫

FT

(card((D + x) ∩ T) − αλd(D))2α dx =
∑

06=ξ∈T∗

|ÎD(ξ)|2,

where α is the spatial intensity of T.

P r o o f. Equation (2.3) can be proved by standard arguments and equation (2.4)

follows from the Parseval theorem, see Theorem 2.3 in [3]. �

Definition 2.3. Covariogram of a bounded measurable set D is the function

γD(x) = ID ⋆ I−D(x) =

∫

Rd

ID(y)ID(y − x) dy.

It follows from the properties of the Fourier transform that γ̂D = |ÎD|2 is a non-

negative function. The isotropic covariogram is γD(|x|) =
∫
SOd

γMD(x) dM , where

MD is the set D rotated by M ∈ SOd and the integration uses the invariant prob-

abilistic measure on SOd, the group of rotations in R
d; an equivalent definition is

γD(u) =
∫

Sd−1

γD(ux) dx. The Hankel transform of the isotropic covariogram is γ̂D.

Remark 2.4. As was already discussed in Remark 2.5 in [3], it follows from this

definition that γD is bounded and, as γ̂D > 0, the function γ̂D is integrable in R
d (see

[1] Theorem 9). Further, ̺d−1γ̂D(̺) > 0 is integrable in R+ by Fubini’s theorem. γD

is then the inverse Fourier transform of γ̂D ([1] Theorem 8) and γD is the (inverse)

Hankel transform (2.2) of γ̂D(̺). We have from (2.4) and (2.3) using the variance

decomposition lemma [8]

∫

SOd

∫

FT

(card((MD + x) ∩ T) − αλd(D))2α dxdM =
∑

06=ξ∈T∗

γ̂D(|ξ|).
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Lemma 2.5. Let r2f(r) > 0 be a bounded measurable function on R
+. Then

lim
R→∞

1

R

∫ R

0

r2f(r) dr = lim
h→0+

π
−3/2

h

Γ(d+1
2 )

Γ(d
2 )

∫ ∞

0

(
1 − Γ

(d

2

)Jd/2−1(2πhr)

(πhr)d/2−1

)
f(r) dr

whenever at least one of the two limits exists.

P r o o f. The case d = 1 was proved in [13] (Theorem 21) using Wiener’s

Tauberian theorem (see e.g. [11]): Let ϕ ∈ L
∞(R), K ∈ L

1(R), K̂ has no root and

K ⋆ ϕ(t) → aK̂(0) as t → ∞. Then for each g ∈ L
1(R) g ⋆ ϕ(t) → aĝ(0) as t → ∞.

What follows is an extension of this proof to higher dimensions.

By the substitution r = exp(t) and defining

R = exp(η) =
1

h
, r2f(r) = ϕ(t),

we obtain an equivalent formulation of the theorem suitable for a direct application

of Wiener’s Tauberian theorem

lim
η→∞

∫ ∞

−∞

K1(η − t)ϕ(t) dt = lim
η→∞

∫ ∞

−∞

K2(η − t)ϕ(t) dt

whenever at least one of the two limits exists. Here

K1(s) = I{s|s>0} exp(−s), K2(s) = exp(s)L(exp(−s)),

L(u) = π
−3/2 Γ(d+1

2 )

Γ(d
2 )

(
1 − Γ

(d

2

)Jd/2−1(2πu)

(πu)d/2−1

)
.

We can easily see that K̂1(τ) =
∫ ∞

0
exp(−s − 2πisτ) ds = (1 + 2πiτ)−1 has no real

root and K̂1(0) = 1. If moreover K̂2(0) =
∫ ∞

0
u−2L(u) du = 1 and the limit on the

left hand side exists, then also the limit on the right hand side exists and the equality

follows from Wiener’s Tauberian theorem. To prove the statement in the opposite

direction it remains to show that K̂2(τ) =
∫ ∞

0 u−2+2πiτL(u) du has no real root.

To complete the proof by establishing the validity of the assumptions concerning

the function K̂2, we will evaluate the integral

∫ ∞

0

u−2+2πiτ
(
1 − Γ

(d

2

)Jd/2−1(2πu)

(πu)d/2−1

)
du.

Using
∫

t−νJν+1(t) dt = −t−νJν(t) we get

2πΓ
(d

2

) ∫ ∞

0

u−2+2πiτ

∫ u

0

(πs)1−d/2Jd/2(2πs) ds du
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and integration by parts gives

2πΓ(d
2 )

1 − 2πiτ

(
−

[
u−1+2πiτ

∫ u

0

Jd/2(2πs)

(πs)d/2−1
ds

]∞

0

+ π
1−2πiτ

∫ ∞

0

Jd/2(2πu)

(πu)d/2−2πiτ
du

)
.

The first term is zero, as the limits at 0 and infinity are zero by the l’Hospital

formula and asymptotic properties of the Bessel function. From the formula∫ ∞

0 taJν(2t) dt = 1
2Γ(ν+a+1

2 )Γ(ν−a+1
2 )−1, valid if Re a < 1

2 , Rea + ν > −1, it

follows that

K̂2(τ) =
π
−2πiτ−1/2

1 − 2πiτ

Γ(d+1
2 )Γ(1

2 + πiτ)

Γ(d+1
2 − πiτ)

.

Now it is easy to see that K̂2(0) = 1 and K̂2 has no real root because the Gamma

function has none and because all poles of the Gamma function are negative.

Remark 2.6. If D is a bounded full-dimensional locally finite union of sets

of finite reach, then the derivative of the covariance from the right is γD
′+(0) =

−(κd−1/dκd)H
d−1(∂D) [9].

Theorem 2.7. Let T be a d-periodic lattice of points, r ∈ R
+, D a bounded

measurable set such that a finite γD
′+(0) exists and Φ the function on R

+ defined

by the equation

∫

SOd

∫

FT

(card((rMD + x) ∩T) − αλd(D))2α dλd(x) dM

=

( ∑

06=ξ∈T∗

|ξ|−d−1

)
Φ(r)rd−1.

Further, let ̺d+1γ̂D(̺) be bounded on R
+. Then Φ is bounded and

(2.5) lim
t→∞

1

t

∫ t

0

Φ(t) dt = 1.

If moreover lim
̺→∞

̺d+1γ̂D(̺) exists then

(2.6) lim
t→∞

Φ(t) = 1.

P r o o f. From Remark 2.4 we have

∫

SOd

∫

FT

(card((rMD + x) ∩ T) − αλd(D))2α dλd(x) dM =
∑

06=ξ∈T∗

γ̂D(r|ξ|)r2d.
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We shall prove first that the auxiliary function Ψ defined by the equation

−γD
′+(0)Ψ(t) = 2π

2κd−1t
d+1γ̂D(t)

has the property (2.5) and (2.6). It is easy to see that the function

Φ(t) =

∑

06=ξ∈T∗

|ξ|−d−1Ψ(t|ξ|)

∑

06=ξ∈T∗

|ξ|−d−1

is bounded and has then the same property (2.5) or (2.6) as the auxiliary function Ψ.

Let ̺d+1γ̂D(̺) be bounded measurable on R+. From Lemma 2.5, Proposition and

Remark 2.4 it follows that

lim
R→∞

1

R

∫ R

0

2π
2κd−1̺

d+1γ̂D(̺) d̺

= lim
h→0+

1

h

∫ ∞

0

( dκd − 2π(h̺)1−d/2Jd/2−1(2πh̺))̺d−1γ̂D(̺) d̺

= lim
h→0+

1

h
(γD(0) − γD(h)) = −γD

′+(0)

since the derivative exists by assumption, which proves (2.5). If moreover

lim
̺→∞

2π
2κd−1̺

d+1γ̂D(̺)

exists then it must be equal to

lim
R→∞

1

R

∫ R

0

2π
2κd−1̺

d+1γ̂D(̺) d̺,

which implies (2.6). �

Corollary 2.8. From Theorem 2.7 and Remark 2.6 it follows that if D is

a bounded full-dimensional locally finite union of sets of finite reach such that

̺d+1γ̂K(̺) is bounded (or has a limit in +∞), then

(2.7)

∫

SOd

∫

FT

(card((rMD + x) ∩ T) − αλd(D))2α dλd(x) dM

= CTHd−1(∂D)Φ(r)rd−1,

where

CT =
1

2π
2 dκd

∑

06=n∈Zd

|A−1n|−d−1

is a lattice constant and Φ fulfills (2.5) (or has limit 1).
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3. Discussion

The assumption of Theorem 2.7 and Corollary 2.8, that γ̂D(̺) is O(̺−d−1), ̺ → ∞,

hold for convex sets and sets with C3/2 boundary (the boundary of the set can be

decomposed into finitely many neighbourhoods such that given any pair of points P ,

Q in the neighbourhood, |(P −Q)n(Q)| 6 c|P −Q|3/2, where n(Q) is a unit normal

to the set in Q) [2]. The asymptotics ∼ rd−1 of the variance of the lattice point count

in the mean value (2.7) thus holds for sets with piecewise C
2 smooth boundary and

convex sets in R
d.

As was already said in the introduction, Theorem 2.7 gives results similar to Theo-

rem 2.8 in [3] for a compact body D with smooth isotropic covariogram γD. Slightly

different situation is studied in [3]: locally finite periodic measure is studied instead

of the point lattice and the size of the body is fixed while the scale s of the lattice

tends to zero and the counting measure is multiplied by the factor sd; consequently,

the asymptotics ∼ s−d−1 are obtained there. As in [3] we may generalize the results

of the present paper to locally finite periodic measures. In [3], lattice constants CT

in Equation 2.7 were calculated for some important point lattices.
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