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Abstract. The paper deals with the problem of finding the field of force that generates
a given (N − 1)-parametric family of orbits for a mechanical system with N degrees of
freedom. This problem is usually referred to as the inverse problem of dynamics. We
study this problem in relation to the problems of celestial mechanics. We state and solve
a generalization of the Dainelli and Joukovski problem and propose a new approach to
solve the inverse Suslov’s problem. We apply the obtained results to generalize the theorem
enunciated by Joukovski in 1890, solve the inverse Stäckel problem and solve the problem of
constructing the potential-energy function U that is capable of generating a bi-parametric
family of orbits for a particle in space. We determine the equations for the sought-for
function U and show that on the basis of these equations we can define a system of two
linear partial differential equations with respect to U which contains as a particular case
the Szebehely equation. We solve completely a special case of the inverse dynamics problem
of constructing U that generates a given family of conics known as Bertrand’s problem. At
the end we establish the relation between Bertrand’s problem and the solutions to the Heun
differential equation. We illustrate our results by several examples.

Keywords: ordinary differential equations, mechanical system, potential-energy function,
inverse problem of dynamics, orbit, Riemann metric, Stäckel system, Heun equation
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1. Introduction

One of the fundamental classical problems in celestial mechanics is to determine

the potential-energy function U such that every curve from a given family of curves

This work was partly supported by the Spanish Ministry of Education through projects
DPI2007-66556-C03-03, TSI2007-65406-C03-01 “E-AEGIS” and Consolider CSD2007-
00004 “ARES”.
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will be a possible trajectory of a particle moving under the action of potential forces F

admitting U ; i.e. F = gradU .

The importance of this problem was already acknowledged by Szebehely and

Bozis [20], [3].

The first inverse problem in celestial mechanics was stated and solved by New-

ton [14] and concerns the determination of the potential field of force that ensures

the planetary motion in accordance to the observed properties, namely to Kepler’s

laws.

Bertrand [2] proved that the expression for Newton’s force of attraction can be

obtained directly from Kepler’s first law to within a constant multiplier.

Bertrand stated also a more general problem of determining a positional force

under which a particle describes a conic section under any initial conditions.

If we denote by c the constant from Kepler’s second law (angular momentum,

sometimes referred to as the area integral) and consider the motion of the particle

in a circle as a relative equilibrium in accordance with V. Arnold [1], we have the

following Bertrand theorem:

Theorem 1.1 ([2]). Suppose that for some c 6= 0 there exists a stable relative

equilibrium and that the effective potential has the form

Uc = U(x, y) +
mc2

2r2

where m is the mass of the particle, r =
√
x2 + y2 and U is analytic for r > 0.

If all orbits that are sufficiently close to the given circular orbit are closed, then

either U = γr2 or U = −γ/r where γ > 0.

In the former case the system represents a harmonic oscillator and its orbits are

ellipses centered at the point r = 0. The latter case is that of gravitational attraction.

The problem of the motion of a point in a conservative force field with potential

U = −γ/r is usually called Kepler’s problem.

The ideas of Bertrand were developed by Dainelli [5], Suslov [19], Joukovski [9],

Ermakov [7], and Galiullin [8].

Dainelli in [5] essentially states a more general problem of how to determine the

most general field of force (the force being supposed to depend only on the position

of the particle on which it acts) under which a given family of planar curves is a

family of orbits of a particle.

The solution proposed by Dainelli is the following [22].
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The most general field of force F = (Fx, Fy) capable of generating a family of

planar orbits f(x, y) = const can be determine as follows [5], [22], [18]:

(1.1)

{
Fx = −λ2{f, ∂yf} − λ{f, λ}∂yf,

Fy = λ2{f, ∂xf} + λ{f, λ}∂xf

where λ is an arbitrary function which depends on the velocity with which the given

orbits are described. Considering that the components Fx and Fy are to be functions

of the position of the particle, we can take λ to be an arbitrary function of x and y.

The above expressions for the field of force under which the curves of the given

family are orbits were first given by Dainelli [5].

In [19], Suslov stated and solved a problem which was a further development of

Bertrand’s problem. He showed that, given an (N−1)-parametric family of orbits in

the configuration space of a holonomic system with N degrees of freedom and kinetic

energy T = 1
2

N∑
j,k=1

Gjk(x)ẋj ẋk, it is necessary to determine the potential field of force

under which any trajectory of the family can be traced by the representative point

of the system.

Suslov deduced the following system of linear partial differential equations with

respect to the required potential function:

∂θ

∂∆k

∂U

∂xN
−

∂θ

∂∆N

∂U

∂xk

=
U + h

θ

(
∂θ

∂∆N

∂θ

∂xk
−

∂θ

∂∆k

∂θ

∂xN
+

N∑

m=1

∆m
( ∂θ

∂∆k

∂2θ

∂∆N∂xm
−

∂θ

∂∆N

∂2θ

∂∆k∂xm

))
,

k = 1, 2, . . . , N − 1

where θ,∆1,∆2, . . . ,∆N are defined by

N∑

k1

∂fα

∂xk
∆k = 0, ∆k =

N∑

j=1

Gjk(x)∆j , k = 1, 2, . . . , N, α = 1, 2, . . . , N − 1,

θ =
1

2

N∑

k,j=1

Gkj(x)∆
k∆j ≡ θ(x1, x2, . . . , xN ,∆1,∆2, . . . ,∆N )

and proved that these equations represent necessary and sufficient conditions under

which the equations of motion of the studied mechanical system admit the given

N − 1 partial integrals.

Assuming that the given trajectories admit a family of orthogonal surfaces,

Joukovski in [9] constructed the potential-energy functions in explicit form for

systems with two and three degrees of freedom.
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The following theorem was enunciated by Joukovsky in 1890: If q = const is the

equation of a family of curves on a surface and p = const denotes the family of curves

orthogonal to them, then the curves q = const can be freely described by a particle

under the influence of forces derived from the potential-energy function

V = ∆1(p)

(
g(p) +

∫
h(q)

∂

∂q

( 1

∆1(p)

)
dq

)

where h and g are arbitrary functions and∆1 denotes the first differential parameter.

A new approach to the problem of constructing the potential field of force was

proposed by Ermakov in [7], who integrated the equations for the potential-energy

function for several particular cases.

In the most general form the inverse problem in dynamics was studied in [18], [16].

Applying the results presented in that work we propose the following new results:

1. Generalization of the Dainelli problem of a mechanical system with N degrees

of freedom.

2. Generalization of the Joukovski problem and extension of the Joukovski theorem

to mechanical system with N > 3 degrees of freedom.

3. Complete solution of the inverse Stäckel and Bertrand problems.

4. The relation between the Bertrand problem and solutions to a particular class

of the Heun equation.

2. Solution of the generalized Dainelli problem

First, we introduce the necessary notation and give a brief overview of the main

results obtained in [18].

Let X be a smooth manifold of dimension N with local coordinates x =

(x1, . . . , xN ) and equipped with the Riemann metric G = (Gkj(x)).

By ξ(X), Λ(X), ∇ we denote respectively the Lie algebra of vector fields on X ,

the algebra of the 1-form on X , and the Levi-Civita connection

∇ : ξ(X) × ξ(X) 7−→ ξ(X),

(u, v) 7−→ ∇uv

which is R lineal with respect to v and C∞ lineal with respect to v and is compatible

with the metric G, i.e., ∇uG(v, w) = 0, for all u, v, w ∈ ξ(X).

The vector field v ∈ ξ(X) is called an integral element of Ω ∈ Λ(X) if Ω(v) = 0.

We shall denote by K(Ω1,Ω2, . . .ΩM ), M 6 N the set of the integral elements of

independent 1-forms Ω1,Ω2, . . . ,ΩM .
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Proposition 2.1. The most general element of K(Ω1,Ω2, . . . ,ΩM ) admits the

representation

(2.1) v = det




Ω1(∂1) Ω1(∂2) . . . Ω1(∂N ) 0
...

...
. . .

...
...

ΩM (∂1) ΩM (∂2) . . . ΩM (∂N ) 0

ΩM+1(∂1) ΩM+1(∂2) . . . ΩM+1(∂N ) λM+1

...
...

. . .
...

...

ΩN (∂1) ΩN (∂2) . . . ΩN (∂N ) λN

∂1 ∂2 . . . ∂N 0




,

where ∂k = ∂/∂xk, Ω1,Ω2, . . . ,ΩM , M 6 N − 1 are given 1-forms, and ΩM+1,

ΩM+2, . . . ,ΩN , are arbitrary 1-forms on X . Furthermore, we assume that they are

pointwise independent, i.e.

Υ ≡ Ω1 ∧ Ω2 . . . ∧ ΩN (∂1, ∂2, . . . , ∂N ) 6= 0.

It is important to observe that the arbitrary 1-forms can be determined only from

the above condition. The functions λj , j = M + 1, . . . , N are arbitrary functions

on X .

Let σ be the 1-form associated with the vector field v, i.e.,

σ = (v(x), dx) ≡
N∑

j,k=1

Gjk(x)vj(x) dxk ≡
N∑

k=1

vk dxk.

Then the 2-form dσ is dσ = 1
2

N∑
j,k=1

ajk(x)Ωj ∧Ωk, where A = (ajk) is a matrix such

that

(2) ajk = (−1)j+k−1 1

Υ
dσ ∧ Ω1 ∧ . . . ∧ Ω̂k . . . ∧ Ω̂j . . . ∧ ΩN (∂1, ∂2, . . . , ∂N);

Ω̂j , Ω̂k means that these elements are omitted.

It is clear that the contraction of dσ along v is

(2.3) ιv dσ =

N∑

j=1

ΛjΩj , where Λ ≡ col(Λ1,Λ2, . . . ,ΛN ) = AT
λ.

We shall analyze the differential equations generated by the vector field v

(2.4) ẋ = v(x), x ∈ X
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under the conditions

(2.5)

{
Λj = 0, j = M + 1, . . . , N,

Υ = Ω1 ∧ Ω2 . . . ∧ ΩN (∂1, ∂2, . . . , ∂N ) 6= 0.

We denote by

M =

〈
X, T =

1

2
‖ẋ‖2, ω =

N∑

k=1

Fk(x, ẋ) dxk

〉

a mechanical system [10] with the configuration space X , whose dimension is N , and

with local coordinates x = (x1, . . . xN ). Consequently, the kinetic energy is expressed

as

T =
1

2
‖ẋ‖2 ≡

1

2

N∑

k,j=1

Gkj(x)ẋ
kẋj

and the field of force as

ω =

N∑

k=1

Fk dxk.

The equations of motion ofM are

(2.6)
d

dt

∂T

∂ẋk
−
∂T

∂xk
= ω

( ∂

∂xk

)
.

Proposition 2.2 ([16]). The differential equations (2.4)+(2.5) are invariant

relationship of the equations (2.6) with

(2.7) ω = d
1

2
‖v‖2 +

M∑

j=1

ΛjΩj .

Clearly, the differential equations (2.6)+(2.7) can be interpreted as the equations

of motion of nonholonomic mechanical systems with an active potential field of force

with potential 1
2‖v(x)‖2 and with the reactive forces which have components

(2.8)

( M∑

j=1

ΛjΩj(∂1),

M∑

j=1

ΛjΩj(∂2), . . . ,

M∑

j=1

ΛjΩj(∂N )

)

generated by the constraints

N∑

k=1

Ωj(∂k)ẋk = 0, j = 1, 2, . . . ,M.
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Corollary 2.1. Let us suppose that Ωj = dfj , j = 1, 2, . . . , N − 1. Then the

1-form (2.7) takes on the form

(2.9) ω = d
1

2
‖v‖2 +

N−1∑

j=1

λaNj dfj

where

{
aNj = (−1)N+j−1dσ ∧ df1 ∧ df2 ∧ . . . ∧ dfj−1 ∧ dfj+1 ∧ . . . ∧ dfN−1(∂1, . . . , ∂N )

aN1 = (−1)Ndσ ∧ df2 ∧ . . . ∧ dfN−1(∂1, . . . , ∂N ).

Definition (Generalized Dainelli’s problem). Given an (N −1)-parametric fam-

ily of orbits in the configuration space of a holonomic system with N degrees of

freedom and kinetic energy T , the generalized Dainelli problem is the problem of

determining the most general field of force that depends only on the position of the

system under which any trajectory of the family can be traced by a representative

point of the system.

Proposition 2.3 (Solution of the generalized Dainelli problem). Given a me-

chanical system M with a configuration space X and kinetic energy T , then the

most general field of force that depends only on the position of the system and is

capable of generating the given orbits

fj(x) = cj , j = 1, . . . , N − 1

is described by the equation (2.9).

Here f1, . . . , fN−1 are independent functions of class C
r(X̃ ⊆ X), r > 2, v is the

vector field

(2.10) v = λ

∣∣∣∣∣∣∣∣∣

df1(∂1) . . . df1(∂N )
...

. . .
...

dfN−1(∂1) . . . dfN−1(∂N )

∂1 . . . ∂N

∣∣∣∣∣∣∣∣∣

≡ λ{f1, . . . , fN−1, ∗},

λ is an arbitrary function, ∂j ≡ ∂/∂xj . Clearly, this result represents a generalization

of the ideas given by Dainelli in [5].

P r o o f of this proposition follows from Corollary 2.1. �
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Corollary 2.2. The field of force (2.9) assumes for a particle in R
2 and R

3

respectively the following forms:

ω = d
1

2
λ2

(
(∂xf)2 + (∂yf)2

)
+ λ

(
∂x(λfx) + ∂y(λfy)

)
df,(2.11)





ω = d

‖v‖2

2
+ λırotv(df1 ∧ f2)

v = λ(x, y, z) gradf1 × grad f2.

(2.12)

It is possible to show that (2.11) coincides with (1.1) [18].

In the next section we make use of the solution of the generalized Dainelli inverse

problem for studying particular cases of the Suslov and of the generalized Joukovski

problems.

3. Solution of the Suslov and generalized Joukovski problems

Definition (Suslov’s problem). Given an (N − 1)-parametric family of orbits in

the configuration space of a holonomic system with N degrees of freedom and kinetic

energy T , Suslov’s problem is the problem of determining the potential field of force

under which any trajectory of the family can be traced by a representative point of

the system.

If we assume that the field of force (2.9) is potential, then we obtain from Propo-

sition 2.3 the solution of Suslov’s problem [19].

Solution to Suslov’s problem

Proposition 3.1. The field of force (2.9) is potential, i.e., ω = −dU(x) if and

only if

(3.1) λ
N−1∑

j=1

aNj(x) dfj = −dh(f1, f2, . . . , fN−1).

The function U is given by

(3.2) U(x) =
1

2
‖v(x)‖2 − h(f1, f2, . . . , fN−1).

Another interesting application of the solution to the generalized Dainelli problem

is the determination of the solution of the generalized Joukovski problem.
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Definition (Generalized Joukovski problem). The generalized Joukovski prob-

lem is a particular case of the Suslov problem, which is obtained by assuming that

the vector field (2.10) has the form

(3.3) {f1, f2, . . . , fN−1, ∗} = ν(x)∇fN ,

where

∇fN =

N∑

j=1

Gjk(x)∂jfN∂k,

G−1 = (Gjk) is the inverse matrix of the Riemann metric G and ν is a function such

that

div (ν(x)∇fN ) = 0.

Clearly, from (3.3) we obtain that the 1-form associated with the vector field v is

such that

σ = Γ(x) dfN(x), Γ = νλ.

Taking into account the expression for the scalar product in the Riemann space

with the metric G, we obtain that

(grad fN , grad fα) ≡
∑

j,k

Gjk∂jfN∂kfα.

On the other hand, in view of the equalities

(grad fN ,grad fk) = {f1, f2, . . . , fN−1, fk} = 0, k = 1, . . . , N − 1

we deduce that the function fN is orthogonal to the given functions f1, f2, . . . , fN−1.

The stated problem coincides with the Joukovski problem when N = 3 [22], [9].

Solution of the generalized Joukovski problem

Proposition 3.2. The field of force expressed by equations (2.9) is potential if

and only if

(3.4) Γıgrad fN
(d(ΓdfN )

)
= −dh(f1, f2, . . . , fN−1).

Clearly, if Γ = Γ(fN ) then dh = 0 and the required potential-energy function U is

(3.5) U =
1

2
Γ(fN)‖∇fN‖2 − h0.

Let us illustrate this result by determining a solution of the inverse problem which

we will call the inverse Stäckel problem.
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Definition (Stäckel system). The Stäckel system is the triplet

M =

〈
X, T =

1

2

N∑

k=1

ẋ2
k

Ak(x)
, ω = dU(x)

〉
,

where A1, . . . , AN , U are the functions [4]

Ak(x) =
1

∆

∂∆

∂ϕk1(xk)
,(3.6)

U(x) =

N∑

k=1

Ψk(xk)Ak,(3.7)

∆ = det




dϕ1(∂1) . . . dϕ1(∂N )
...

. . .
...

dϕN (∂1) . . . dϕN (∂N )


 = dϕ1 ∧ . . . ∧ dϕN (∂1, . . . , ∂N ),

dϕα =

N∑

k=1

ϕkα(xk) dxk,

ϕkα, Ψk are arbitrary functions, k = 1, . . . , N , α = 2, . . . , N .

It is clear that the functions A1, . . . , AN can be represented as

Ak(x) =
(−1)k+1

∆
dϕ2 ∧ . . . ∧ dϕN (∂1, . . . , ∂̂k, . . . , ∂N ), k = 1, . . . , N,

where ∂̂k means that ∂k is omitted.

By using this notation we can prove that

U(x) =
1

∆
det




dΨ(∂1) . . . dΨ1(∂N )

dϕ2(∂1) . . . dϕ2(∂N )
...

. . .
...

dϕN (∂1) . . . dϕN (∂N )


 =

dΨ ∧ . . . ∧ dϕN (∂1, . . . , ∂N )

dϕ1 ∧ . . . ∧ dϕN (∂1, . . . , ∂N )
,

where dΨ =
N∑

k=1

Ψk(xk)dxk.

The trajectories of the Stäckel system are [4]

(3.8) fµ−1(x) ≡

n∑

k=1

∫
ϕkµ(xk)√
Kk(xk)

dxk = cµ, µ = 2, . . . , N,

where Kk(xk) = 2Ψk(xk) + 2
N∑

j=1

αjϕkj(x
k), αj , k = 1, 2, . . . , N , are constants.

We define the inverse Stäckel problem as follows [18].
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Definition (Inverse Stäckel problem). Let M be a mechanical system with a

configuration space X and kinetic energy

T =
1

2

N∑

k=1

ẋ2
k

Ak(x)
,

where A1, . . . , AN are functions determined by (3.6).

The problem of constructing the potential field of force

ω = dU(x, y)

which is capable of generating the orbits (3.8) is called the inverse Stäckel problem.

In this case the field of force (2.9) takes on the form [16]

ω = d

(
Γ2(x)

( N∑

n=1

AnΨ(xn) + α1

))
+ dΓ(v) dfN −

( N∑

n=1

AnΨ(xn) + α1

)
dΓ2,

where v = Γ∇fN =
N∑

k=1

ΓAk
√
Kk(xk)∂k.

It is clear that ω is potential if Γ = Γ(fN ). Under this restriction we obtain the

following expression for the potential-energy function:

U(x) = Γ2(fN )

( N∑

n=1

AnΨn(xn) + α1

)
− h0.

By choosing

Γ2(fN ) = 1, h0 = α1,

we deduce exactly the potential function (3.7).

Example. Let us consider a mechanical system M with kinetic energy T =

1
2

N∑
j,k=1

Gjk(x)ẋj ẋk and a configuration space X . Let us also suppose that the given

N − 1-parametric family of orbits is

xj = Cj , j = 1, 2, . . . , N − 1.

We are required to solve the Suslov problem under these conditions.

809



Noticing that for the given orbits the vector field v is

v = λ∂xN

we can easily see that (3.1) takes on the form

(3.9)
N−1∑

j=1

λ(∂N (λGNj) − ∂j(λGNN )) dxj = −dh(x1, x2, . . . , xN−1).

By determining the function λN as a solution of the equation

(3.10)

N−1∑

j=1

d(λ(∂N (λGNj) − ∂j(λGNN )) ∧ dxj = 0

we obtain the following form of the required function U :

U(x1, x2, . . . , xN ) =
1

2
λ2(x1, x2, . . . , xN )GNN (x1, x2, . . . , xN )(3.11)

− h(x1, x2, . . . , xN−1).

In particular, if the Riemann metric G is such that

GNj = 0, j = 1, 2, . . . , N − 1

then from (3.9)+(3.10) we obtain that the function λN can be determined as

λ2 =
2

G2
NN

(
g(xN ) + h(x1, x2, . . . , xN−1)(3.12)

−
N−1∑

j=1

∫
h(x1, x2, . . . , xN−1)

∂GNN (x1, x2, . . . , xN )

∂xj
dxj

)

where h and g are arbitrary functions.

By inserting (3.12) in (3.11) we prove the following proposition which represents

an extension of the Joukovski theorem for a mechanical system with N degrees of

freedom.
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Proposition 3.3. If xj = Cj = const, j = 1, 2, . . . , N − 1 are the equations of

an N − 1 parametric family of curves on X , and xN = const denotes the family of

curves orthogonal to them, then the curves xj = Cj = const can be freely described

by a particle under the influence of forces derived from the potential-energy function

U =
1

GNN (x1, x2, . . . , xN )

×

(
g(xN ) +

N−1∑

j=1

∫
h(x1, x2, . . . , xN−1)

∂GNN (x1, x2, . . . , xN )

∂xj
dxj

)

where h and g are arbitrary functions.

Clearly, for N = 2 we obtain exactly the Joukovski result given in the introduction.

4. The Suslov problem for a particle in R
3

In this section we study the Suslov problem for a particle in space.

Proposition 4.1. The field of force (2.11) for a particle in R2 is potential if and

only if

(4.1) λ
(
∂x(λfx) + ∂y(λfy)

)
df = −dh(f),

and in R
3 if and only if

(4.2) λırot v(df1 ∧ f2) = −dh(f1, f2)

where

(4.3) v = λ(x, y, z)grad f1 × grad f2.

P r o o f is easily obtained from Corollary 2.2 and Proposition 3.1.1. �

In 1974 Szebehely obtained a linear first-order partial differential equation for the

potential function U which gives rise to a one-parameter family of planar orbits with

a given total energy h. This result initiated many works on inverse problems (see for

instance [3]). The equation of Szebehely was generalized to a two-parameter family

of three-dimensional orbits by Erdi (1982), Bozis (1983) and Puel (1984).

Below we show that the results, presented in those works, can be obtained from

the solutions of the Suslov problem.
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Corollary 4.1. Equation (4.1) is equivalent to the equation

{∂xf∂xU + ∂yf∂yU + 2(U + h)‖gradf‖K(x, y) = 0,(4.4)

K = div
( grad f

‖gradf‖

)
, ‖gradf‖2 = f2

x + f2
y .

The equation (4.4) coincides with the Szebehely equation [21].

Proposition 4.2. The system of equations (4.2) and (4.3) is equivalent to the

system of partial differential equations for the potential-energy function U

(4.5) dU(grad fj) =
2(U + h(f1, f2))

‖grad f1 × grad f2‖
(df1 ∧ df2(rot t,grad fj)), j = 1, 2

where

t =
(grad f1 × grad f2)

‖grad, f1 × grad f2‖
.

Introducing the notation

Wfj
= grad fj · (t × rot t), j = 1, 2

we obtain from (4.5) the equations

grad fj · gradU = 2(U + h)Wfj
, j = 1, 2.

In particular, these equations were deduced in [15].

It is possible to determine the potential field of force for a particle in R
3 with a

complementary condition that (4.2) is such that dh = 0. This condition means that

rotv = ν(x, y, z)v.

5. The inverse Bertrand problem

In this section we study the problem of constructing the potential field of force

which is capable to generate given conics.

To solve this problem, we start with the following example, which represents a

particular case of Suslov’s problem:

Example (Particular case of Suslov’s problem). Let a particle with a configura-

tion space X = R
3 and kinetic energy T = 1

2 (ξ̇2 + η̇2 + ζ̇2) be given.
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Construct the potential field of force capable of generating the two-parametric

family of trajectories defined as intersections of two families of surfaces

(5.1)

{
ζ = c1,

H(ξ, η, ζ) = c2.

The solution of this problem can easily be derived from Corollary 4.3. The vector

field v, curlv and the field of force ω in this case are

(5.2)






v = λ
(∂H
∂η

∂

∂ξ
−
∂H

∂ξ

∂

∂η

)
,

rotv =
∂

∂ζ

(
λ
∂H

∂ξ

) ∂

∂ξ
+

∂

∂ζ

(
λ
∂H

∂η

) ∂

∂η
− µ

∂

∂ζ
,

ω =

[
∂

∂ξ

(λ2

2

(∂H
∂ξ

)2

+
(∂H
∂η

)2)
− λµ

∂H

∂ξ

]
dξ

+

[
∂

∂η

(λ2

2

(∂H
∂ξ

)2

+
(∂H
∂η

)2)
− λµ

∂H

∂η

]
dη

where

(5.3) µ =
∂

∂ξ

(
λ
∂H

∂ξ

)
+

∂

∂η

(
λ
∂H

∂η

)
.

Clearly, the field of force is potential if and only if

(5.4)






λµ = −
∂h

∂H
,

∂ζ

[
λ2

2

((∂H
∂ξ

)2

+
(∂H
∂η

)2)]
= −

∂h

∂ζ
.

We illustrate the above results by studying the following particular problem.

Definition (Bertrand’s problem). The problem of constructing the potential

field of force capable of generating the bi-parametric family of conics

(5.5)

{
f1 ≡ ζ = c1,

H ≡ r + bξ = p, r =
√
ξ2 + η2 + ζ2

where b is a positive constant, is well known as Bertrand’s problem.

First, we study this problem assuming that the function λ in (5.2), (5.3), (5.4) is

λ = λ(H).
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Under this restriction the system (5.3) yields the differential equations

(5.6)






ξ̈ = −λ2(H)H
ξ

r3
− λ2(H)

ζ2

r3
∂H

∂ξ
,

η̈ = −λ2(H)H
η

r3
− λ2(H)

ζ2

r3
∂H

∂η
,

ζ̈ = 0.

It is interesting to analyze this differential system in new coordinates x, y, z related

to the coordinates ξ, η, ζ by the orthogonal transformation

~r = A~R,

where ~r = (x, y, z), ~R = (ξ, η, ζ),

A =




b1
b

Bb3 − Cb2
ab

A

a
b2
b

Cb1 −Ab3
ab

B

a
b1
b

Ab2 −Bb1
ab

C

a



,

b =
√
b21 + b21 + b21, a =

√
A2 +B2 + C2, Ab1 +Bb2 + Cb3 = 0.

Orbits (5.5) in the new coordinates are written as

(5.7)

{
F1 ≡ Ax+By + Cz = c1,

F2 ≡
√
x2 + y2 + z2 + b1x+ b2y + b3z = p.

Note that if c1 = 0 then these families of conics appear in the unperturbed Kepler

movement [6].

Differential equations (5.6) in the Cartesian coordinates (x, y, z) assume the form

~̈r = −
λ2(F2)F2

r3
~r −

λ2(F2)F
2
1

r3
−−−−→
gradF2 −

λ2(F2)F
3
1

r3
−−−−→
gradF1

where r =
√
x2 + y2 + z2 =

√
ξ2 + η2 + ζ2.

Hence, if

F1(x, y, z) = 0, λ2(F2)F2 = µ = const

then we obtain the classical equations of the unperturbed Kepler movement [6]:

~̈r = −
µ~r

r3
.
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Now we will study the Bertrand problem under the conditions

{
λ = λ(ξ, η),

ζ = 0.

Introducing the notation






f = H
∣∣
ζ=0

=
√
ξ2 + η2 + bξ,

µ0 =
∂

∂ξ

(
λ(ξ, η)

∂f

∂ξ

)
+

∂

∂η

(
λ(ξ, η)

∂f

∂η

)

we can see that the field of force (5.3) capable of generating the given family of conics

(5.8)
√
ξ2 + η2 + bξ = p

is potential if and only if

(5.9)






λµ0 =
∂h

∂f
,

0 =
∂h

∂ζ
.

Introducing the polar coordinates ξ = r cos θ, η = r sin θ, we find that condi-

tion (5.9) takes on the form

(5.10) (1 + b cos θ)
∂λ2

∂r
−
b sin θ

r

∂λ2

∂θ
+

2λ2

r
= 2

∂h

∂f

or, equivalently,

(5.11)





(1 + bτ)

∂λ2

∂r
+
b(1 − τ2)

r

∂λ2

∂τ
+

2λ2

r
= 2

∂h

∂f
,

f = r(1 + bτ), τ = cos θ.

We embark now on the study of the case when b 6= 0 and h is such that

(5.12) h(f) = ν−1 ln |f | +
∑

j∈Z
j 6=−1

νj
f j+1

j + 1
,

where νj , j ∈ Z, are real constants and λ is determined in such a way that

(5.13) λ2 =
∑

j∈Z

ψj(r)Hj(τ).

It is clear that the series (5.12), (5.13) are formal series.
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By inserting (5.12), (5.13) into (5.11) we obtain

∑

j∈Z

[
(1 + bτ)

dψj(r)

dr
Hj(τ) + b(1 − τ2)

ψj(r)

r

dHj(τ)

dτ
+ 2

ψj(r)

r
− 2νjr

j(1 + bτ)j
]

= 0.

This equation holds if {
ψj(r) = ajr

j+1, j ∈ Z,

νj = −ajKj

and we determine Hj as a solution to the equation

(5.14)

{
b(1 − τ2)H ′

j(τ) +
(
(j + 1)bτ + j + 3

)
Hj(τ) + 2Kj(1 + bτ)j = 0,

j ∈ Z.

The general solution of this equation is





Hj(τ) = ξj(τ)

(
Cj −

2Kj

b

∫
(1 + bτ)j

(1 − τ2)ξj(τ)
dτ

)
,

ξj(τ) = (1 − τ)(j+1)/2+(j+3)/2b(τ + 1)(j+1)/2−(j+3)/2b

where Cj , j ∈ Z, are arbitrary constants.

Under these conditions, the potential-energy function U such that ω = dU(r, τ)

results in the form

U(r, τ) =
1

2
λ2(1 + b2 + 2bτ) − h(f) ≡

∑

j∈Z

ajUj(r, τ)

where





Uj(r, τ) =
1

2
rj+1Hj(τ)(1 + b2 + 2bτ) +

Kj

j + 1
f j+1 if j 6= −1,

U−1(r, τ) =
1

2
H−1(τ)(1 + b2 + 2bτ) +K−1 ln |f |.

We will study the subcase when b = 1 separately from the subcase when b 6= 1.

If b = 1, then

U(r, τ) = λ2(1 + τ) − h(f) =
∑

j∈Z

ajUj(r, τ)

where






Uj(r, τ) = rj+1(1 − τ)j+2
(
Cj − 2Kj

∫
(1 + τ)j

(1 − τ)j+3
dτ

)
+

Kj

j + 1
f j+1, if j 6= −1,

U−1(r, τ) = (1 − τ)
(
C−1 − 2K−1

∫
dτ

(1 − τ)2(1 + τ)

)
+K−1 ln |f |,

f = r(1 + τ).
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Evidently,

U−2 =
C−2

r
− 2

K−2

r

(∫
dτ

(1 + τ)2(1 − τ)
+

1

1 + τ

)
≡
C−2

r
+
K−2

r
g(τ)

where

g(τ) = ln

√
1 − τ

1 + τ
.

Therefore, if b = 1, then

U(r, τ) =
a−2C−2

r
+
a−2K−2g(τ)

r
+

∑

j∈Z
j 6=−2

ajUj(r, τ).

If b 6= 1, b 6= 0, it is easy to prove that






H−2(τ) =
(1 − τ)(1−b)/2b

(1 + τ)(1+b)/2b
C−2 −

2K−2

(bτ + 1)(1 − b2)
,

U−2(r, τ) =
H−2

2r
(1 + b2 + 2bτ) −

K−2

r(bτ + 1)
=

2K−2

r(b2 − 1)
+
C−2

r
G(τ)

where

G(τ) =
1

2

√(1 − τ

1 + τ

)1/b 1

1 − τ2
(1 + b2 + 2bτ).

Under these conditions, the potential function U takes on the form

U(r, τ) =
a−2C−2

r
G(τ) +

2a−2K−2

r(b2 − 1)
+

∑

j∈Z
j 6=−2

ajUj(r, τ).

Summarizing the above computations, we deduce that if b 6= 0 the function U is

represented as

(5.15) U(r, τ) =
α

r
+
β(τ)

r
+

∑

j∈Z
j 6=−2

ajUj(r, τ).

If b = 0, then f = r and condition (5.11) assumes the form

∂rλ
2 + 2

λ2

r
= 2∂fh(f).

Therefore,

r2λ2 = 2

∫
r2∂rh(r) dr + 2Ψ(τ),
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which rearranged results in the expression

λ2 =
2

r2

∫
r2∂rh(r) dr +

2Ψ(τ)

r2
= 2h(r) −

4

r2

∫
h(r)r dr +

2Ψ(τ)

r2

where Ψ is an arbitrary function.

Hence,

(5.16) U(r, τ) =
Ψ(τ)

r2
−

2

r2

∫
h(r) dr.

Finally, we obtain the following solution of the Bertrand problem:

Proposition 5.1. The potential-energy function capable of generating the one-

parameter family of conics (5.8) can be calculated by the formula (5.15) if the ec-

centricity b 6= 0 and by the formula (5.16) if b = 0.

6. The Heun differential equation in mechanics

In this section we establish the relation between the solution of the Bertrand

problem proposed above and the solution of the particular class of Heun’s equation.

The canonical form of Heun’s general equation will be taken as [17]

(6.1)
d2x

dz2
+

(γ
z

+
δ

z − 1
+

ε

z − a

)dx

dz
+

αβz −B

z(z − 1)(z − a)
x = 0.

In equation (6.1), x and z are regarded as complex variables and α, β, γ, δ, ε, a, b are

parameters, generally complex and arbitrary, with the only condition that a 6= 0, 1.

The first five parameters are linked by the relation α+ β + 1 = γ + δ + ε.

The equation is, therefore, of the Fuchsian type [11], with regular singularities

at the points z = 0, 1, a,∞. The exponents at these singularities are, respectively,

(0, 1 − γ), (0, 1 − ε), (0, 1 − δ), (α, β).

Now we establish the relation between equation (5.14) and Heun’s equation.

By replacing

z̃ =
1

2
(z + 1)

we can easily obtain the following representation for (5.14):

z̃(z̃ − 1)
dHj

dz̃
+

1

2b

(
(1 + e− 2bz̃)(j + 1) + 2

)
Hj(z̃) −

kj

b
(1 + b− 2bz̃)j = 0.
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Corollary 6.1. The function

Fj(z̃) =
(
z̃(z̃− 1)

dHj

dz̃
+

1

2b

(
(1 + e− 2bz̃)(j + 1)+ 2

)
Hj(z̃)

)
(1 + b− 2bz̃)−j (j ∈ Z)

is the first integral of the Heun equation.

By differentiating and performing some straightforward calculations, we deduce

the equation

d2Hj

dz̃2
+

(1 − a(1 + j) − 1/b

z̃
+
a(1 + j) + 1/b− j

z̃ − 1
+

−j

z̃ − a

)dHj

dz̃
(6.2)

+
(j2 − 1)z̃ − j/b− a(j2 − 1)

z̃(z̃ − 1)(z̃ − a)
Hj(z̃) = 0

where a = (1 + b)/2b.

By comparison with (6.1) we obtain






γj = 1 −
1 + b

2b
(1 + j) −

1

b
, δj =

1 + b

2b
(1 + j) +

1

b
− j, εj = −j,

αjβj = j2 − 1 = −(1 + εj)(2 − γj − δj),

Bj =
j

b
+

1 + b

2b
(j2 − 1) = −a(2 − γj − δj) − (1 − γj)εj .

Evidently, when the given conics are parabolas then in (6.2) we have the confluence

of singularities. In fact, in this case b = 1, so a = 1, and as a consequence Heun’s

equation is transformed into the hypergeometric differential equation

d2Hj

dz̃2
+

(−1 − j

z̃
+

2 − j

z̃ − 1

)dHj

dz̃
+

(j2 − 1)(z̃ − 1) − j

z̃(z̃ − 1)2
Hj(z̃) = 0, j ∈ Z.

Concluding, from the results given in Sections 5 and 6, we obtain

Proposition 6.1. The potential-energy function U capable of generating a one-

parameter family of conics with eccentricity b is the function

U = a−1H−1(cos θ −K−1 log r(1 + b cos θ))

+
∑

j∈Z\{−1}

ajr
j+1

(
Hj(cos θ) −

1 + b cos θ

j + 1

)
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where aj , j ∈ Z, K1 are real constants and Hj , j ∈ Z are solutions of the Heun

equations with singularities at the points

0, 1,
1 + b

b
, ∞

and with the exponents

(
0,
j + 3 + b(j + 1)

2b

)
;

(
0, j −

j + 3 + b(j + 1)

2b

)
; (0, j + 1); (−1 − j, 1 − j),

respectively.
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