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REMARKS ON DISCRETELY ABSOLUTELY

STAR-LINDELÖF SPACES

Yan-Kui Song, Nanjing

(Received August 26, 2006)

Abstract. In this paper, we prove the following statements:

(1) There exists a Hausdorff Lindelöf space X such that the Alexandroff duplicate A(X)
of X is not discretely absolutely star-Lindelöf.

(2) If X is a regular Lindelöf space, then A(X) is discretely absolutely star-Lindelöf.

(3) If X is a normal discretely star-Lindelöf space with e(X) < ω1, then A(X) is discretely
absolutely star-Lindelöf.

Keywords: countably compact space, star-Lindelöf space, absolutely star-Lindelöf space,
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1. Introduction

By a space, we mean a T1 topological space. Recall that a space X is countably

compact if every countable open cover of X has a finite subcover. Matveev defined

in [5] a space X to be absolutely countably compact (= acc) if for every open cover U

of X and every dense subspace D of X , there exists a finite subset F of D such that

St(F, U ) = X , where St(F, U ) =
⋃
{U ∈ U : U ∩F 6= ∅}. He also proved that every

Hausdorff acc space is countably compact (see [5]).

A space X is star-Lindelöf (see [3], [6] under different names) (discretely star-

Lindelöf ) (see [9], [15]) if for every open coverU ofX , there exists a countable subset

(a countable discrete closed subset, respectively) F ⊆ X such that St(F, U ) = X . It

is clear that every separable space and every discretely star-Lindelöf space are star-
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Lindelöf as well as every space of countable extent (in particular, every countably

compact space or every Lindelöf space).

In [2], a star-Lindelöf space is called * Lindelöf; in [3], a star-Lindelöf space is

called strongly star-Lindelöf, and in [15], a discretely star-Lindelöf space is called

space in countable web.

A space X is absolutely star-Lindelöf (see [1], [6]) (discretely absolutely star-

Lindelöf ) (see [10], [11]) if for every open cover U of X and every dense subset D

of X , there exists a countable subset F of D such that St(F, U ) = X (F is discrete

and closed in X and St(F, U ) = X , respectively).

From the above definitions, it is not difficult to see that every acc space is abso-

lutely star-Lindelöf, every absolutely star-Lindelöf space is star-Lindelöf, every dis-

cretely absolutely star-Lindelöf space is absolutely star-Lindelöf and every discretely

absolutely star-Lindelöf space is discretely star-Lindelöf.

Throughout the paper, the cardinality of a set A is denoted by |A|. The ex-

tent e(X) of a space X is the smallest infinite cardinal κ such that every discrete

closed subset of X has cardinality at most κ. For a cardinal κ, let κ+ denote the

smallest cardinal greater than κ. Let c denote the cardinality of the continuum, ω1

the first uncountable cardinal and ω the first infinite cardinal. For a pair of ordi-

nals α, β with α < β, we write (α, β) = {γ : α < γ < β}. Other terms and symbols

that we do not define will be used as in [4].

2. Some results on discretely absolutely star-Lindelöf spaces

For a space X , recall that the Alexandroff duplicate A(X) of X is constructed

in the following way: The underlying set of A(X) is X × {0, 1} and each point of

X × {1} is isolated; a basic neighbourhood of a point 〈x, 0〉 ∈ X × {0} is a set of

the form (U ×{0})∪ ((U ×{1}) \ {〈x, 1〉}), where U is a neighborhood of x of X . It

is well-known that A(X) is compact (countably compact, Lindelöf) iff so is X and

A(X) is Hausdorff (regular, Tychonoff, normal) iff so is X . Moreover, Vaughan [12]

proved that if X is countably compact, then A(X) is acc. In this section, we show

the statements stated in abstract.

Example 2.1. There exists a Hausdorff Lindelöf space X such that A(X) is not

discretely absolutely star-Lindelöf.

P r o o f. Let

A = {an : n ∈ ω} and B = {bm : m ∈ ω},

An = {〈an, bm〉 : m ∈ ω} and Y =
⋃

n∈ω

An
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and let

X = Y ∪ A ∪ {a} where a /∈ Y ∪ A.

We topologize X as follows: every point of Y is isolated; a basic neighborhood of a

point an ∈ A for each n ∈ ω takes the from

Uan
(m) = {an} ∪ {〈an, bi〉 : i > m} for m ∈ ω

and a basic neighborhood of a takes the from

Ua(F ) = {a} ∪
⋃

{〈an, bm〉 : an ∈ A \ F, m ∈ ω} for a finite subset F of A.

Clearly, X is a Hausdorff space by the construction of the topology on X , X is not

regular, since the point a can not be separated from the closed subset A by disjoint

open subsets of X . Moreover, X is Lindelöf, since |X | = ω.

We show that A(X) is not discretely absolutely star-Lindelöf.

Let us consider the open cover

U = {〈an, 1〉 : n ∈ ω} ∪ {〈a, 1〉} ∪ {〈a, 0〉 ∪ A(Y )} ∪ {〈an, 0〉 ∪ A(An) : n ∈ ω}

and the dense subset

D =
⋃

{A(An) : n ∈ ω} ∪ (A × {1}) ∪ {〈a, 1〉}

of A(X). Let F be any countable subset of D and F discrete closed in X . Then,

{n : F ∩ A(An) 6= ∅} is finite. In fact, if {n : F ∩ A(An) 6= ∅} is not finite, then

〈a, 0〉 is a limit point of F ∩ A(Y ) by the definition of the topology of X . This is a

contradiction, since F is discrete closed in A(X). Hence, there exists a n0 ∈ ω such

that F ∩ A(An0
) = ∅. Thus,

〈an0
, 0〉 /∈ St(F, U ),

since 〈an0
, 0〉∪A(An0

) is the only element of U containing 〈an0
, 0〉, which completes

the proof. �

Recall from [8] that a space X has property (a) if for every open cover U of X

and every dense subset D of X , there exists a subset F of D such that F is discrete

and closed in X and St(F, U ) = X . For a regular Lindelöf space X , we show that

A(X) is discretely absolutely star-Lindelöf. For the proof of the statement, we need

two lemmas:
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Lemma 2.2. Every T1 paracompact space has property (a).

P r o o f. Let X be T1 paracompact, and let U be an open cover of X and D a

dense subset of X . Then, there exists a locally finite open refinement V of U . Thus,

it is sufficient to show that there exists a subset F of D such that F is discrete closed

in X and X = St(F, V ). By transfinite induction, we define a sequence xα of X and

a sequence dα of D satisfying the following conditions (1) and (2) for each α.

(1) xα /∈ St({dβ : β < α}, V ), and

(2) dα ∈ D ∩
⋂
{V ∈ V : xα ∈ V }.

Pick d0 ∈ D, if St(d0, V ) = X , then we finish the transfinite induction. If not,

we pick x0 ∈ X \ St(d0, V ). Assume that we have defined xγ and dγ for γ < α.

If St({dγ : γ < α}, V ) = X , then we finish the induction. If not, we pick xα ∈

X \ St({dγ : γ < α}, V ) and dα ∈ D ∩
⋂
{V ∈ V : xα ∈ V }. We finish the induction

at some α such that

St({dβ : β < α}, V ) = X.

Put F = {dβ : β < α}. Since X is T1, then {dβ} is closed for each β < α. By the

choice of the sequences xα and dα, clearly,

St({xγ : γ < β}, V ) ⊆ St({dγ : γ < β}, V ) for each γ < α.

Thus,

xβ /∈ St({xγ : γ < β}, V ) for each β < α.

Hence, there is no element of V containing two distinct elements of {xβ : β < α}.

By our construction, for V ∈ V , if there is some β < α such that xβ ∈ V , then

V contains the only element dβ of {dγ : γ < α}. Thus F = {dβ : β < α} is discrete

in X . Since all one point subsets of F are closed and V is locally finite, F is closed

in X , which completes the proof. �

Since every regular Lindelöf space is paracompact, then we have the following

lemma by Lemma 2.2:

Lemma 2.3. Every regular Lindelöf space is discretely absolutely star-Lindelöf.

SinceA(X) is regular Lindelöf iffX regular Lindelöf, we have the following theorem

by Lemma 2.3.
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Theorem 2.4. If X is a regular Lindelöf space X , then A(X) is discretely

absolutely star-Lindelöf.

In the following, we give an example showing that A(X) need not be discretely

absolutely star-Lindelöf for a Tychonoff discretely absolutely star-Lindelöf space X .

Example 2.5. There exists a Tychonoff discretely absolutely star-Lindelöf

space X such that A(X) is not star-Lindelöf (hence, is not discretely absolutely

star-Lindelöf).

P r o o f. Let R be a maximal almost disjoint family of infinite subsets of ω with

|R| = c. Let

X = (c+ × ω) ∪ R.

We topologize X as follows: c
+ × ω has the usual product topology and is an open

subspace of X , and a basic neighborhood of r ∈ R takes the from

Gβ,K(r) = ((β, c+) × (r \ K)) ∪ {r} for β < c
+ and a finite subset K of ω.

Then, X is discretely absolutely star-Lindelöf and e(X) = c (see [8, Example 3.1]).

We show that A(X) is not star-Lindelöf. Let us consider the open cover

U = {〈r, 0〉 ∪ A(c+ × r)) : r ∈ R} ∪ {〈r, 1〉 : r ∈ R} ∪ {A(c+ × {n}) : n ∈ ω}.

Let F be a countable subset of A(X). Then there exists an r ∈ R such that

〈r, 1〉 /∈ F , since |R| = c. Hence, 〈r, 1〉 /∈ St(F, U ), since {〈r, 1〉 : r ∈ R} is open and

closed in A(X) and 〈r, 1〉 is isolated for every r ∈ R, which completes the proof. �

Remark 1. Since every discretely absolutely star-Lindelöf space is absolutely

star-Lindelöf and discretely star-Lindelöf, Example 2.5 shows that A(X) of an abso-

lutely star-Lindelöf (discretely star-Lindelöf) space X need not be absolutely star-

Lindelöf (discretely star-Lindelöf, respectively).

For a normal space, we have the following consistent example.

Example 2.6. Assuming 2ℵ0 = 2ℵ1 , there exists a normal discretely absolutely

star-Lindelöf space S1 with e(X) > ω such that A(X) is not star-Lindelöf (hence, is

not discretely absolutely star-Lindelöf).

P r o o f. Let S = L ∪ ω be the same space X (see [13, Example E]). Let κ be

regular and cf(κ) > |S|. We define

X = L ∪ (κ+ × ω)
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and topologize X as follows: a basic neighborhood of l ∈ L in X is a set of the from

GU,α(l) = (U ∩ L) ∪ ((α, κ+) × (U ∩ ω))

for a neighborhood U of l in X and for α < ω1, and a basic neighborhood of 〈α, x〉 ∈

κ+ × ω in S1 is a set of the form

GV (〈α, x〉) = V × {x},

where V is a neighborhood of α in κ+. Then, S1 is normal and discretely absolutely

star-Lindelöf (see [12, Example 2.2]). Similarly to the proof of Example 2.5, it is not

difficult to prove that X is not star-Lindelöf. �

Remark 2. The author does not know if there exists a normal discretely abso-

lutely star-Lindelöf space X such that A(X) is not discretely absolutely star-Lindelöf

in ZFC.

In Example 2.5, we note that the e(X) = c. In the following, we give an example

showing that A(X) of a discretely star-Lindelöf (or absolutely star-Lindelöf) space X

with e(X) = ω need not be discretely absolutely star-Lindelöf.

Example 2.7. There exist both a Tychonoff absolutely star-Lindelöf space and

a Tychonoff discretely star-Lindelöf space X with e(X) = ω such that A(X) is not

discretely absolutely star-Lindelöf.

P r o o f. Let X = ((ω1 + 1) × (ω + 1)) \ {〈ω1, ω〉} be the Tychonoff plank.

First, we show that X is absolutely star-Lindelöf. To this end, let U be an open

cover of X . Let S be the set of all isolated points of ω1 and let D = S × ω. Then,

D is dense in X and every dense subspace of X includes D. Thus, it is sufficient to

show that there exists a countable subset F of D such that St(F, U ) = X . Since

ω1 is countably compact, it follows from [5, Theorem 1.8] that ω1 is acc. By [5,

Theorem 2.3], we see that ω1 × (ω + 1) is acc. Hence, there exists a finite subset F1

of D such that

ω1 × (ω + 1) ⊆ St(F1, U ).

On the other hand, for each n ∈ ω, there exists a Un ∈ U such that 〈ω1, n〉 ∈ Un.

Pick dn ∈ Un ∩ D for each n ∈ ω, Then,

{ω1} × ω ⊆ St({dn : n ∈ ω}, U ).

If we put F = F1 ∪ {dn : n ∈ ω}, then F is a countable subset of D such that

X = St(F, U ), which shows that X is absolutely star-Lindelöf.

828



Next, we show that X is discretely star-Lindelöf. To this end, let U be an open

cover of X . Since ω1 × (ω + 1) is countably compact, then there exists a finite

subset F1 of X such that

ω1 × (ω + 1) ⊆ St(F1, U ).

We put F = F1 ∪ {〈ω1, n〉 : n ∈ ω}. Then, F is a countable discrete closed subset

of X such that St(F, U ) = X , which completes the proof.

Finally, we show that A(X) is not discretely absolutely star-Lindelöf, let us con-

sider the open cover

U = {A(ω1 × (ω + 1))}∪ {〈〈ω1, n〉, 0〉 ∪A(ω1 ×{n}) : n ∈ ω}∪ {〈〈ω1, n〉, 1〉 : n ∈ ω}

and the dense subset

D = A(ω1 × (ω + 1)) ∪ {〈〈ω1, n〉, 1〉 : n ∈ ω}

of A(X). Let F be a countable subset of D which is discrete closed in A(X). Since

A(ω1 × (ω +1)) is countably compact, then F ∩A(ω1 × (ω +1)) is finite, hence there

exists an n0 ∈ ω such that F ∩ A(ω1 × {n0}) = ∅, therefore

〈〈ω1, n0〉, 0〉 /∈ St(F, U ),

since 〈〈ω1, n0〉, 0〉 ∪ A(ω1 × {n0}) is the only element of U containing 〈〈ω1, n0〉, 0〉,

which completes the proof. �

Remark 3. In Example 2.7, it is not difficult to show that X is not discretely

absolutely star-Lindelöf. Thus, the author does not know if there exists a Tychonoff

discretely absolutely star-Lindelöf space X with e(X) = ω such that A(X) is not

discretely absolutely star-Lindelöf.

In the following, we give a positive result.

Theorem 2.8. IfX is a normal discretely star-Lindelöf spaceX with e(X) < ω1,

then A(X) is discretely absolutely star-Lindelöf.

P r o o f. We prove that A(X) is discretely absolutely star-Lindelöf. To this end,

let U be an open cover of A(X). Obviously every point of X × {1} is isolated. Let

B be the set of all isolated points of X , and let

D = (X × {1}) ∪ (B × {0}).
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Then, D is a dense subspace of A(X) and every dense subset of A(X) includes D.

Thus, it is sufficient to show that there exists a countable subset F ⊆ D such that

F is discrete closed in X and St(F, U ) = A(X). For each x ∈ X , choose an open

neighborhood Wx = (Vx × {0, 1}) \ {〈x, 1〉} of 〈x, 0〉 satisfying that there exists a

U ∈ U such that Wx ⊆ U , where Vx is an open subset of X containing x. Put

V = {Vx : x ∈ X}. Then, V is an open cover of X . Hence, there exists a countable

subset E0 ⊆ X such that E0 is discrete closed in X and X = St(E0, V ), since X is

discretely star-Lindelöf. For the collection = {Vx : x ∈ E0} of X , since E0 is discrete

closed, there exists a pairwise disjoint open family {Ux : x ∈ E0} in X such that

x ∈ Ux ⊆ Vx for each x ∈ E0, since E0 is a discrete closed subset of a normal

space X . By normality, there is an open subset U in X such that

E0 ⊆ U ⊆ U ⊆
⋃

x∈F0

Ux.

Clearly, {U ∩ Ux : x ∈ F0} is a discrete family of nonempty open subsets of X . Let

E′
1 = {x ∈ E0 : x is not isolated in X}.

For every x ∈ E′
1, pick yx ∈ U ∩ Ux such that x 6= yx. Then,

{{x} : x ∈ E} ∪ {{yx} : x ∈ E′
1}

is discrete closed in X and 〈yx, 1〉 ∈ Wx and 〈x, 0〉 ∈ Wx.

Put E1 = E0 × {1}. For every x ∈ X \ (E0 ∪ {Vx : x ∈ E′
1}), there exists x′ ∈ X

such that x ∈ Vx′ and Vx′ ∩ E0 6= ∅, hence Wx′ ∩ E1 6= ∅. Let

E2 = E1 ∪ {〈yx, 1〉 : x ∈ E′
1} ∪ ((E0 \ E′

1) × {0}).

Then, E2 is a countable discrete closed (in X) subset of D and X×{0} ⊆ St(E2, U ).

Let E3 = A(X) \ St(E2, U ). Then, E3 is a discrete and closed subset of A(X).

Since e(X) < ω1, then e(A(X)) < ω1. Thus we see that E3 is countable. If we

put F = E2 ∪ E3, then F is a countable discrete closed (in X) subset of D and

A(X) = St(F, U ), which completes the proof. �

We have the following corollary of Theorem 2.8.
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Corollary 2.9. Every normal discretely star-Lindelöf space X with e(X) < ω1

can be embedded in a normal discretely absolutely star-Lindelöf space as a closed

subspace.

References

[1] M. Bonanzinga: Star-Lindelöf and absolutely star-Lindelöf spaces. Quest. Answers Gen.
Topology 16 (1998), 79–104.

[2] M. Dai: A class of topological spaces which contains all Lindelöf spaces and all separable
spaces. Chin. Ann. Math. A4 (1983), 571–575. (In Chinese.)

[3] E.K. van Douwen, G.M. Reed, A.W. Roscoe, I. J. Tree: Star covering properties. Topol-
ogy Appl. 39 (1991), 71–103.

[4] R. Engelking: General Topology. Revised and completed edition. Heldermann Verlag,
Berlin, 1989.

[5] M.V. Matveev: Absolutely countably compact spaces. Topology Appl. 58 (1994), 81–92.
[6] M.V. Matveev: A Survey on Star-Covering Properties. Topological Atlas preprint
No 330, 1998.

[7] M.V. Matveev: Some questions on property (a). Quest. Answers Gen. Topology 15
(1997), 103–111.

[8] Y.-K. Song: On some questions on star covering properties. Quest. Answers Gen. Topol-
ogy 18 (2000), 87–92.

[9] Y.-K. Song: Discretely star-Lindelöf spaces. Tsukuba J. Math. 25 (2001), 371–382.
[10] Y.-K. Song: Remarks on star-Lindelöf spaces. Quest. Answers Gen. Topology 20 (2002),

49–51.
[11] Y.-K. Song: Closed subsets of absolutely star-Lindelöf spaces II. Commentat. Math.

Univ. Carol. 44 (2003), 329–334.
[12] Y.-K. Song: A solution of Matveev’s question. Quest. Answers Gen. Topology 20 (2002),

165–168.
[13] F.D. Tall: Normality versus collectionwise normality. In: Handbook of Set-Theoretic

Topology (K.Kunen, J. E.Vaughan, eds.). North-Holland, Amsterdam, 1984, pages
685–732.

[14] J.E. Vaughan: Absolute countable compactness and property (a). Talk at 1996 Praha
symposium on General Topology.

[15] Y. Yasui, Z.M. Gao: Spaces in countable web. Houston J. Math. 25 (1999), 327–335.

Author’s address: Y . - K . S o n g, Institute of Mathematics, School of Mathematics
and Computer Sciences, Nanjing Normal University, Nanjing, 210097, P.R. China, e-mail:
songyankui@njnu.edu.cn.

831


		webmaster@dml.cz
	2020-07-03T17:34:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




