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Abstract. Let m be an infinite cardinal. We denote by Cm the collection of all m-
representable Boolean algebras. Further, let C0m be the collection of all generalized Boolean
algebras B such that for each b ∈ B, the interval [0, b] of B belongs to Cm. In this paper
we prove that C0m is a radical class of generalized Boolean algebras. Further, we investigate
some related questions concerning lattice ordered groups and generalized MV -algebras.
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1. Introduction

In the present paper we deal with some types of radical classes of generalized

Boolean algebras, lattice ordered groups and generalized MV -algebras.

Let m be an infinite cardinal. The m-representability of Boolean algebras was

investigated by Chang [1], Scott [16], Pierce [14], Smith [17] and Sikorski [18], [19];

cf. also the monograph Sikorski [20].

The notion of radical class of generalized Boolean algebras was studied by the

author [9]; for the analogous notion concerning lattice ordered groups cf. the author

[8], Conrad [2], Darnel [4] and Ton [21]; for MV -algebras cf. the author [10].

The collection of all m-representable Boolean algebras will be denoted by Cm. Let

C0
m
be the collection of all generalized Boolean algebras B such that for each b ∈ B,

the interval [0, b] of B is an element of Cm.

This work was supported by Science and Technology Assistance Agency under the con-
tract No. APVT-51-032002.
This work has been partially supported by the Slovak Academy of Sciences via the project
Center of Excellence-Physics of Information.
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In the present paper we prove that C0
m
is a radical class of generalized Boolean

algebras.

For dealing with the m-representability of Boolean algebras in Theorem 29.3 of

[20], several equivalent conditions concerning a Boolean algebra A and the infinite

cardinal m have been considered. Each of these conditions is necessary and sufficient

for the m-representability of A.

Only two from these conditions (namely, (r1) nad (r2)) are expressed in terms of

elements of A; the other conditions deal with filters of A or with topological notions

related to the Stone space of A.

The detailed definitions of (r1) and (r2) are given in Section 2 below. According

to the mentioned result of Sikorski, we have

(1) (r1) ⇔ (r2)

for each Boolean algebra A.

The conditions (r1) and (r2) can be applied also for generalizedMV -algebras. We

prove that (1) is valid for projectable generalizedMV -algebras. This is a generaliza-

tion of the mentioned Sikorski’s result, since each Boolean algebra is the underlying

lattice of some projectableMV -algebra; cf. Section 6 for a more detailed description

of this fact.

We prove that the collection of all generalized MV -algebras satisfying the con-

dition (r1) is a radical class. The analogous assertion concerning (r2) fails to be

valid.

Some related questions concerning lattice ordered groups are studied.

2. Preliminaries

For Boolean algebras we apply the terminology and the notation as in Sikorski

[20] with the distinctions that 0 and 1 denote the least and the greatest element of

a Boolean algebra, respectively, and that symbols ∧,∨ are used for denoting lattice

operations.

We recall some definitions which will be frequently used in the sequel. Let m be

an infinite cardinal.

A Boolean algebra A is m-representable if it is isomorphic to a quotient algebra

F/∆, where F is an m-field of sets and ∆ is an m-ideal of F.

We remark that the classical result proved independently by Loomis [13] and

Sikorski [18] can be formulated as follows:

(LS) Each Boolean σ-algebra is σ-representable.
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It was remarked in [20] that in the case m = ℵ0, Theorem 29.3 (dealing with the

conditions (r1) and (r2)) yields the following generalization of Theorem (LS):

(LS0) (Cf. [20], 29.4.) Every Boolean algebra is σ-representable.

The detailed formulations of the conditions (r1) and (r2) concerning a Boolean

algebra A and an infinite cardinal m are as follows:

(r1) If (at,s)t∈T,s∈S is anm-indexed set of elements of A (i.e., cardT = cardS = m)

such that

(1) there exist all joins
∨

s∈S

at,s and the meet
∧

t∈T

∨

s∈S

at,s,

and if

(2)
∧

t∈T

∨

s∈S

at,s 6= 0,

then there exists a function ϕ ∈ ST with

(3)
∧

t∈T ′

at,ϕ(t) 6= 0 for each finite subset T ′ of T .

(r2) If (at,s)t∈T,s∈S is an m-indexed set of elements of A such that (1) is valid and

if

(4)
∧

t∈T

∨

s∈S

at,s = 1,

then for each a ∈ A with a 6= 0 there exists ϕ ∈ ST such that

(5) a ∧
∧

t∈T ′

at,ϕ(t) 6= 0 for each finite subset T ′ of T .

Theorem 2.1 (Cf. [20], 29.3.). Let A be a Boolean algebra and i ∈ {1, 2}. Then

A is m-representable if and only if the condition (ri) is satisfied.

Lemma 2.2. Assume that A is a Boolean algebra satisfying the condition (r1).

Let b1, b2 ∈ A, b1 6 b2. Then the interval [b1, b2] of A also satisfies the condition

(r1).

P r o o f. From the definition of (r1) we immediately obtain that if x ∈ A, then

the interval [0, x] of A satisfies the condition (r1). Let b3 be the complement of b1

in A. Then the interval [b1, b2] is isomorphic to the interval [0, b2 ∧ b3]. Thus [b1, b2]

satisfies (r1). �

Lemma 2.3. Assume that A is a Boolean algebra which does not satisfy the

condition (r1). Then there is b ∈ A such that

(∗) if b′ ∈ [0, b], b′ > 0, then the interval [0, b′] does not satisfy (r1).

P r o o f. In view of the assumption there exists anm-indexed system (at,s)s∈T,s∈S

of elements of A such that (1) and (2) are valid and, moreover, there does not exist
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any function ϕ ∈ ST satisfying (3). Hence for each ϕ ∈ ST there exists a finite

subset T ′ of T such that

(3′)
∧

t∈T ′

at,ϕ(t) = 0.

We put b =
∧

t∈T

∨

s∈S

at,s and

a′

t,s = b′ ∧ at,s for each t ∈ T, s ∈ S,

where b′ ∈ [0, b], b′ > 0.

Since A is infinitely distributive, for each t ∈ T we have

b′ ∧

(

∨

s∈S

at,s

)

=
∨

s∈s

(b′ ∧ at,s) =
∨

s∈S

a′

t,s,

b′ = b′ ∧ b = b′ ∧

(

∧

t∈T

∨

s∈S

at,s

)

=
∧

t∈T

∨

s∈S

(b′ ∧ at,s) =
∧

t∈t

∨

s∈S

a′

t,s.

Moreover, according to (3′) for each ϕ ∈ ST ,

0 = b′ ∧ (∧t∈T ′at,ϕ(t)) =
∧

t∈T ′

(b′ ∧ at,ϕ(t)) =
∧

t∈T ′

∨

s∈S

a′

t,ϕ(t).

Thus the interval [0, b′] does not satisfy the condition (r1). �

3. Generalized Boolean algebras

A lattice L with the least element 0 is a generalized Boolean algebra if for each

x ∈ L, the interval [0, x] of L is a Boolean algebra.

For a generalized Boolean algebra L we denote by I (L) the system of all ideals

of L. This system is partially ordered by the set-theoretical inclusion. Then I (L)

is a complete lattice.

If {Li}i∈I is a nonempty system of elements of I (L), then

a)
∧

i∈I

Li =
⋂

i∈I

Li

and

b)
∨

i∈I

Li is the set of all x ∈ L such that there exist i(1), . . . , i(n) ∈ I and

xi(1) ∈ Li(1), . . . , xi(n) ∈ Li(n) with x = xi(1) ∨ . . . ∨ xi(n).
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Definition 3.1. A nonempty collection C of generalized Boolean algebras is a

radical class of generalized Boolean algebras if it satisfies the following conditions:

(i) C is closed under isomorphisms;

(ii) if L ∈ C and L1 is an ideal of L, then L1 ∈ C;

(iii) if L is a generalized Boolean algebra and {Li}i∈I ⊆ I (L) ∩ C, then
∨

i∈I

Li

belongs to C.

Let m be an infinite cardinal and let C0
m
be as in Section 1.

Proposition 3.2. C0
m
is a radical class of generalized Boolean algebras.

P r o o f. It is obvious that C0
m
is closed with respect to isomorphisms. If L ∈ C0

m

and if L1 ∈ I (L), then in view of 2.2 we obtain L1 ∈ C0
m
. Hence the conditions (i)

and (ii) from 3.1 are satisfied.

By way of contradiction, assume that the condition (iii) from 3.1 fails to be valid.

Hence there exists a generalized Boolean algebra L and a system {Li}i∈I ⊆ I (L) ∩

C0
m
such that

∨

i∈I

Li does not belong to C0
m
. Then there exixts 0 < x ∈

∨

i∈I

Li with

[0, x] /∈ Cm. Thus there is 0 < b ∈ [0, x] satisfying the condition (∗) from 2.3.

In view of the relation b ∈
∨

i∈I

Li there are i(1), . . . , i(n) ∈ I and xi(1) ∈

Li(1), . . . , xi(n) ∈ Li(n) such that b = xi(1) ∨ . . . ∨ xi(n). Without loss of gener-

ality we can suppose that xi(1) > 0, . . . , xi(n) > 0.

Since xi(1) ∈ Li(1), by applying 2.2 we obtain that [0, xi(1)] satisfies (r1). Since (∗)

is valid for b, we arrived at a contradiction. �

4. Lattice ordered groups

The group operation in a lattice ordered group will be written additively, though

we do not assume the commutativity of this operation. Let G be a lattice ordered

group. As usual, we set G+ = {g ∈ G : g > 0}.

Let m be an infinite cardinal.

Definition 4.1. We say that a lattice ordered group G satisfies (r′1) if it fulfils

the same conditions as in (r1) with the distinction that instead of A we have now

the set G+.

Let u ∈ G+. The element u is a weak unit of G if for each g ∈ G with g > 0 the

relation g ∧ u > 0 is valid. If for each g ∈ G there is a positive integer n such that

g 6 nu, then u is a strong unit of G. Every strong unit is a weak unit.
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Definition 4.2. Assume that u is a weak unit of a lattice ordered group G. We

say that G satisfies (r′2) if it fulfils the same conditions as in (r2) with the distinctions

that

1) instead of A we have the set G+;

2) the condition (4) is replaced by

(4′) the element
∧

t∈T

∨

s∈S

at,s is a weak unit of G.

Proposition 4.3. Assume that G is a lattice ordered group having a weak unit.

Then (r′1) ⇒ (r′2).

P r o o f. Suppose that (r′1) is valid. By way of contradiction, assume that (r
′

2)

fails to hold. Then there exists an m-indexed set (at,s)t∈T,s∈S of elements of G
+ such

that (4′) is valid; moreover, there exists 0 < a ∈ G having the property that for each

ϕ ∈ ST ,

(5′) a ∧
∧

t∈T ′

at,ϕ(t) = 0 for some finite subset T ′ of T .

Put a0 = a ∧ u. Then a0 > 0. Further, for each t ∈ T and s ∈ S we set

a′

t,s = a0 ∧ at,s. Consider the m-indexed set (a′

t,s)t∈T,s∈S .

All elements a′

t,s belong to G+. In view of the infinite distributivity of G and

according to the condition (1) in (r1) we conclude that all the joins
∨

s∈S

a′

t,s and the

meet
∧

t∈T

∨

s∈S

a′

t,s exist in G. Put u =
∧

t∈T

∨

s∈S

at,s. From (4′) we obtain

0 < u ∧ a0 =
∧

t∈T

∨

s∈S

(at,s ∧ a0) =
∧

t∈T

∨

s∈S

a′

t,s.

Applying (r′1) to the m-indexed system (a′

t,s)t∈T,s∈S we conclude that there exists

ϕ ∈ ST with

(+)
∧

t∈T ′

a′

t,ϕ(t) 6= 0 for each finite subset T ′ of T .

But according to (5′) we have

u ∧ a ∧
∧

t∈T ′

at,ϕ(t) = 0 for some finite T ′ ⊆ T ,

whence
∧

t∈T ′

a′

t,ϕ(t) = 0 for some finite T ′ ⊆ T .

In view of (+), we have arrived at a contradiction. �
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For X ⊆ G we put

Xδ = {y ∈ G : |x| ∧ |y| = 0 for each x ∈ X};

Xδ is a polar of G. The lattice ordered group G is projectable if for each x ∈ G we

have a direct product decomposition

G = {x}δδ × {x}δ.

In such a case, x is a weak unit of the lattice ordered group {x}δδ.

Proposition 4.4. Assume that G is a projectable lattice ordered group having

a weak unit. Then (r′2) ⇒ (r′1).

P r o o f. Suppose that (r′2) is valid. By way of contradiction, assume that (r
′

1)

does not hold.

Thus there exists an m-indexed set (at,s)t∈T,s∈S of elements of G
+ such that

(i) all the joins
∨

s∈S

at,s exist in G;

(ii) there is v ∈ G such that v > 0 and v =
∧

t∈T

∨

s∈S

at,s;

(iii) for each ϕ ∈ ST and for each finite subset T ′ of T we have

∧

t∈T ′

ut,ϕ(t) = 0.

Since G is projectable, the relation

(6) G = {v}δδ × {v}δ

is valid; moreover, v is a weak unit of the lattice ordered group {v}δδ.

For each z ∈ G we denote by z({v}δδ) the component of z in the direct factor

{v}δδ of G; the meaning of z({v}δ) is analogous.

In particular, for z = v we have

v({v}δδ) = v, v({v}δ) = 0.

For each t ∈ T and x ∈ S we put a′

t,s = v ∧ at,s. Then, in view of the infinite

distributivity of G, we obtain

v =
∧

t∈T

∨

s∈S

a′

t,s.

Since 0 6 a′

t,s 6 v, we get

a′

t,s({v}
δδ) = a′

t,s, a′

t,s({v}
δ) = 0.
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For each t ∈ T and s ∈ S we denote

a′′

t,s = a′

t,s + u({v}δ).

Then we have

a′′

t,s({v}
δδ) = a′

t,s, a′′

t,s({v}
δ) = u({v}δ).

This yields that there exist all joins
∨

s∈S

a′′

t,s and

(7)
∧

t∈T

∨

s∈S

a′′

t,s = v + u({v}δ).

Let u be a weak unit in G; we infer that u({v}δ) is a weak unit in the direct factor

{v}δ. Moreover, v is a weak unit in the direct factor {v}δδ. Therefore in view of (6)

and (7),
∧

t∈T

∨

s∈S

a′′

t,s is a weak unit of the lattice ordered group G.

Looking at the m-indexed system (a′

t,s)t∈T,s∈S and at the definition of (r
′

2) we

conclude that for each a ∈ G with a > 0 there exists ϕ ∈ ST such that

(8) a ∧
∧

t∈T ′

a′′

t,ϕ(t) 6= 0 for each finite subset T ′ of T .

From the definition of a′

t,s and from (iii) we infer that for each ϕ ∈ ST and for

each finite subset T ′ of T the relation

(9)
∧

t∈T ′

a′

t,ϕ(t) = 0

is valid.

Since a′

t,s ∈ {v}δδ and u({v}δ) ∈ {v}δ, we get

a′

t,s ∧ u({v}δ) = 0,

hence

a′′

t,s = a′

t,s ∨ (u({v}δ)).

Also, v ∧ (u({v})) = 0.

In view of v > 0 we can take a = v in (8) and we obtain for each finite T ′ ⊆ T ,

a ∧
∧

t∈T ′

a′′

t,ϕ(t) = v ∧
∧

t∈T ′

(a′

t,ϕ(t) ∨ (u({v}δ))

=
∧

t∈T ′

((v ∧ a′

t,ϕ(t)) ∨ (v ∧ (u({v}δ))) =
∧

t∈T ′

(v ∧ a′

t,ϕ(t))

= v ∧
∧

t∈T ′

a′

t,ϕ(t) = 0

for each finite T ′ ⊆ T (according to (9)). In view of (8), we have arrived at a

contradiction. �
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From 4.3 and 4.4 we obtain

Theorem 4.5. Assume that G is a projectable lattice ordered group having a

weak unit. Then (r′1) ⇔ (r′2).

5. The radical class C1
m

For a lattice ordered group G we denote by c(G) the system of all convex ℓ-

subgroups of G; the system c(G) is partially ordered by the set-theoretical inclu-

sion. Then c(G) is a complete lattice. If {Gi}i∈I is a nonempty subset of c(G),

then
∧

i∈I

Gi =
⋂

i∈I

Gi. Further,
∨

i∈I

Gi is the set of all g ∈ G such that there exist

x1, . . . , xn ∈
⋃

i∈I

Gi with g = x1 + . . . + xn. If, moreover, g > 0, then without loss of

generality we can suppose that x1 > 0, . . ., xn > 0.

Definition 5.1. A nonempty collection X of lattice ordered groups is a radical

class if it satisfies the following conditions:

(i) X is closed with respect to isomorphisms;

(ii) if G1 ∈ X and G2 ∈ c(X), then G2 ∈ X ;

(iii) if G is a lattice ordered group and ∅ 6= {Gi}i∈I ⊆ c(G)∩X , then
∨

i∈I

Gi ∈ X .

Let m be an infinite cardinal. We denote by C1
m
the class of all lattice ordered

groups which satisfy the condition (r′1).

The following assertion is easy to verify; the proof will be omitted.

Lemma 5.2. Let G be a lattice ordered group and let G1 ∈ c(G).

(i) Let {xi}i∈I ⊆ G1 and p, q ∈ G1. If the relation p =
∧

i∈I

xi is valid in G1, then

this relation holds also in G. Similarly, if q =
∨

i∈i

xi is valid in G1, then the

same holds in G.

(ii) Let {yi}i∈I ⊆ G+
1 , y ∈ G. If the relation

∧

i∈I

yi = y is valid in G, then y ∈ G+
1

and the mentioned relation holds also in G1.

Lemma 5.3. Let G and G1 be as in 5.2. If G satisfies the condition (r
′

1), then

G1 satisfies the condition as well.

P r o o f. This is a consequence of the definition of (r′1) and of 5.2. �

Definition 5.4. Let G be a lattice ordered group and g ∈ G+. The interval

[0, g] of G is said to be regular with respect to (r′1) if the assertion of (r
′

1) is valid

whenever (at,s)t∈T,s∈S is an m-indexed set of elements of the interval [0, g].
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Lemma 5.5. Let G be a lattice ordered group which fails to satisfy the condition

(r′1). Then there is 0 < b ∈ G+ such that

(∗) if 0 < b′ ∈ [0, b], then the interval [0, b′] is not regular with respect to (r′1).

P r o o f. It suffices to apply analogous steps as in the proof of 2.3. �

Let m be an infinite cardinal. We denote by C1
m
the class of all lattice ordered

groups which satisfy the condition (r′1).

Proposition 5.6. C1
m
is a radical class of lattice ordered groups.

P r o o f. Consider the conditions (i), (ii) and (iii) from 5.1. The validity of (i) is

obvious. The validity of (ii) follows from 5.3.

By way of contradiction, suppose that (iii) fails to be valid. Then there exists a

nonempty system {Gi}i∈I ⊆ c(G) ∩ C1
m
such that the lattice ordered group

∨

i∈I

Gi

does not satisfy the condition (r′1). Then according to 5.5 there exists 0 < b ∈
∨

i∈I

Gi

such that the condition (∗) from 5.5 is satisfied.

The element b can be expressed in the form b = x1 + . . . + xn, where x1, . . . , xn

are elements of the set
⋃

i∈I

G+
i . Therefore all intervals [0, x1], . . . , [0, xn] are regular

with respect to (r′1). Without loss of generality we can suppose that x1 > 0. Then

in view of (∗), this interval fails to be regular with respect to (r′1); we have arrived

at a contradiction. �

Let us denote by C2
m
the class of all lattice ordered groups which satisfy the

condition (r′2).

C2
m
fails to be a radical class since it does not fulfil the condition (iii) from 5.1.

Example: Let R be the set of all reals with the operation + and with the natural

linear order. Let I be an infinite set of indices and for each i ∈ I let Ri = R; put

G =
∏

i∈I

Ri. For i0 ∈ I let Ri0 be the set of all g ∈ G such that gi = 0 whenever

i ∈ I and i 6= i0. Then Ri0 ∈ c(G) and Ri0 ∈ C2
m
for any infinite cardinal m. But

∨

i∈I

Ri has no weak unit, whence it does not belong to C2
m
. Therefore the condition

(iii) from 5.1 does not hold for C2
m
.

Let C02
m
be the class of all lattice ordered groups G such that for each 0 < g ∈ G,

the convex ℓ-subgroup Gg of G generated by the element g belongs to C2
m
. Without

a proof, we present the following result

(∗) C02
m
is a radical class of lattice ordered groups.
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6. Generalized MV -algebras

The notion of generalizedMV -algebra was introduced independently by Georgescu

and Iorgulescu [6], [7] and by Rach̊unek [15] (in [6] and [7], the term ‘pseudo MV -

algebra’ was used).

An MV -algebra A = (A;⊕, ¬,∼, 0, 1) is an algebraic system of type (2,1,1,0,0)

such the axioms (A1)–(A8) from [15] are satisfied.

Let G be a lattice ordered group with a strong unit u. The pair (G, u) is called

a unital lattice ordered group. If no misunderstanding can occur we speak about G

instead of (G, u).

Given (G, u), we put A = [0, u] and for x, y ∈ A we define

x ⊕ y = (x + y) ∧ u, x¬ = u − x, x∼ = −x + u, 1 = u.

Then A = (A;⊕, ¬,∼, 0, u) is a generalized MV -algebra; we set A = Γ(G, u).

Dvurečenskij [5] proved that for each MV -algebra A there exists a unital lattice

ordered group (G, u) such that the relation

(1) A = Γ(G, u)

is valid.

Below, when speaking about a generalizedMV -algebra A we always assume that

(1) holds.

We consider the partial order 6 on the set A which is induced by the partial order

on G.

Now we can apply for a generalized MV -algebra A the conditions (r1) and (r2)

from Section 2 with the distinction that we take A instead of the Boolean algebra A.

Thus we obviously have

Lemma 6.1. A generalizedMV -algebraA satisfies (r1) if and only if the interval

[0, u] of G is regular with respect to (r′1).

Lemma 6.2. Let (G, u) be a unital lattice ordered group. The following condi-

tions are equivalent:

(i) G satisfies (r′1);

(ii) The interval [0, u] of G is regular with respect to (r′1).

P r o o f. The validity of the implication (i) ⇒ (ii) is obvious. Assume that (ii)

holds. By way of contradiction, suppose that (i) fails to be valid.

In view of 5.5, there is 0 < b ∈ G such that, whenever b′ ∈ G, 0 < b′ 6 b, then the

interval [0, b′] is not regular with respect to (r′1). Put b′ = b ∧ u. We have 0 < b′,

hence the mentioned assertion for b′ holds. Therefore (ii) is not valid, which is a

contradiction. �
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Proposition 6.3. Let A and (G, u) be as above. Then the following conditions

are equivalent:

(i) G satisfies (r′1);

(ii) A satisfies (r1).

P r o o f. This is a consequence of 6.1 and 6.2. �

Proposition 6.4. Let A be a generalized MV -algebra. Then (r1) ⇒ (r2).

P r o o f. It suffices to apply the same idea as in the proof of 6.4; we also use the

fact that u is the greatest element of A . �

As above, let A be the underlying set of A . For a ∈ A we put Aa = [0, a] and for

each x1, x2 ∈ A1 we set

x1 ⊕a x2 = (x1 + x2) ∧ a x¬a

1 = a − x1, x∼a

1 = −x1 + a, 1a = a.

Then the algebraic structure Aa = (Aa,⊕a, ¬a ,∼a , 0, 1a) is a generalized MV -

algebra. It will be called an interval subalgebra of A .

Let a be as above and let b ∈ A such that a∧ b = 0, a∨ b = 1. For each x ∈ A we

put ϕ(x) = (x ∧ a, x ∧ b). Then ϕ is an isomorphism of A onto the direct product

Aa × Ab (cf. [11]). In this situation we will write A = Aa × Ab.

For ∅ 6= X ⊆ A we put

Xδ1 = {y ∈ A : y ∧ x = 0 for each x ∈ X}.

The generalized MV -algebra A is projectable it for each x ∈ A, the relation

A = {x}δ1δ1 × {x}δ1

is valid (meaning that {x}δ1δ1 has a greatest element a, {x}δ1 has a greatest element

b and A = Aa × Ab).

It is easy to verify that there exists a one-to-one correspondence between polars

of A and polars of G. From this and from Theorem 6.4 in [11] we can deduce by a

simple argument

Lemma 6.5. Let A and (G, u) be as above. Then A is projectable if and only

if G is projectable.
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Lemma 6.6. Let us apply the notation as above. The following conditions are

equivalent:

(i) G satisfies (r′2);

(ii) A satisfies (r2).

P r o o f. The case G = {0} being trivial we assume that G 6= {0}.

a) The validity of the implication (i)⇒ (ii) is obvious (since u = 1 is a strong unit

of G).

b) Assume that (ii) is valid. By way of contradiction, suppose that (i) fails to

hold. Hence there is an m-indexed set (at,s)t,∈T,s∈S of elements of G
+ such that

α) the element
∧

t∈T

∨

s∈S

at,s = v

exists in G;

β) v is a weak unit in G;

γ) there exists 0 < a ∈ G such that for each ϕ ∈ ST ,

a ∧
∧

t∈T ′

at,ϕ(t) = 0 for each finite subset T ′ of T .

We denote by G1 the convex ℓ-subgroup of G generated by the element v. We

have v > 0, thus G1 6= {0}. For each t ∈ T and x ∈ S we put a′

t,s = at,s ∧ v. Then

(a′

t,s)t∈T,s∈S is an m-indexed set of elements of the interval [0, v] such that

α1)
∧

t∈T

∨

s∈S

a′

t,s = v,

β1) v is the greatest element of the generalized MV -algebra Γ(G, v) = A1.

The underlying set A1 of A1 is an interval of the underlying lattice of A . From this

and from the fact that A satisfies (r′2) we conclude that A1 satisfies (r
′

2) as well.

Let 0 < a ∈ A. Then 0 < a ∧ v and a∧ v ∈ G1. Put a∧ v = a1. Since G1 satisfies

(r′2), there exists ϕ ∈ ST such that

(1) a1 ∧
∧

t∈T ′

a′

t,ϕ(t) > 0 for each finite subset T ′ of T .

Let the element a be as in γ). We have

a ∧
∧

t∈T ′

at,ϕ(t) > a1 ∧
∧

t∈T ′

a′

t,ϕ(t) > 0,

which contradicts γ1). Therefore (i) must hold. �
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Proposition 6.7. Let A be a generalized MV -algebra. Suppose that A is

projectable. Then the relation (r1) ⇔ (r2) holds for A .

P r o o f. In view of 6.5, G is projectable. Hence according to 4.5 we have

(r′1) ⇔ (r′2). Further, 6.3 yields (r1) ⇔ (r′1). In view of 6.6, (r′2) ⇔ (r2). Hence

(r1) ⇔ (r2). �

Specker groups were investigated by Conrad and Darnel [3] and by the author [12].

For each Boolean algebra B there exists a Specker group G0 such that G0 is a lattice

ordered group having the property that there exists an ideal B1 of the underlying

lattice of G+
0 with B ≃ B1.

We denote by u the greatest element of B1. Further, let G be the convex ℓ-

subgroup of G0 generated by the element u. Put A = Γ(G, u). Then without loss

of generality we can assume that B is the underlying lattice of A .

Each Specker group is projectable and abelian; this yields that G is projectable

as well. The condition (r1) for the Boolean algebra B is, in fact, identical to the

condition (r1) for the MV -algebra A ; the situation for (r2) is analogous. Therefore

the equivalence (r1) ⇔ (r2) for Boolean algebras (cf. Section 1) is a consequence

of 6.7.

We remark that in the proof of the implication (r2) ⇒ (r1) for Boolean algebras

in the proof of 19.3 in [20], Stone’s theorem and arguments of topological character

were applied. In our method, all the proofs are purely algebraic.

7. Radical classes of generalized MV -algebras

The collection of all MV -algebras or of all generalized MV -algebras will be de-

noted by M or by Mg, respectively.

The notion of radical class of MV -algebras was introduced in [10]. If we modify

the definition from [10] in such a way that instead of elements of M , the elements

of Mg are taken into account, then we obtain the definition of a radical class of

generalized MV -algebras.

For the sake of completness, we present the definition in detail.

Let X be a nonempty subclass of Mg such that the following conditions are sat-

isfied:

(i) X is closed with respect to isomorphisms;

(ii) if A ∈ X , then each interval subalgebra of A belongs to X ;

(iii) if A ∈ Mg and if a1, . . . , an ∈ A such that all interval subalgebras

Aa1
, . . . , Aan

of A belong to X , then the interval subalgebra Aa also belongs

to X , where a = a1 ∨ . . . ∨ an.
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Under these assumptions, X is called a radical class of generalized MV -algebras.

We denote by Rℓ and Rg the collection of all radical classes of lattice ordered

groups or the collection of all radical classes of generalizedMV -algebras, respectively.

Let X ∈ Rℓ. We denote by ϕ1(X) the class of all generalizedMV -algebrasA such

that there exists a unital lattice ordered group (G, u) with (G, u) ∈ X , Γ(G, u) = A .

Further, let Y ∈ Rg. The symbol ϕ2(Y ) will denote the class of all lattice ordered

groups G such that for each 0 6 u ∈ G we have Γ(Gu, u) ∈ Y , where Gu is the

convex ℓ-subgroup of G generated by the element u.

Lemma 7.1. For each X ∈ Rℓ and Y ∈ Rg we have ϕ1(X) ∈ Rg and ϕ2(Y ) ∈

Rℓ. The mapping ϕ1 is a bijection of Rℓ onto Rg; further, ϕ2 is a bijection of Rg

onto Rℓ and ϕ2 = ϕ−1
1 .

P r o o f. It suffices to apply the same argument as in [10] by investigating the

relation between radical classes of abelian lattice ordered groups and radical classes

of MV -algebras. �

Let m be an infinite cardinal and i ∈ {1, 2}. We denote by Di
m
the class of all

generalized MV -algebras which satisfy the condition (ri).

Proposition 7.2. D1
m
is a radical class of generalized MV -algebras.

P r o o f. This is a consequence of 5.6 and 7.1. �

On the other hand, D2
m
fails to be a radical class. We verify this as follows. Put

D2
m

= Y and let ϕ2(Y ) be as above. Further, let C2
m
be as in Section 5. Then in

view of 6.6 we have ϕ2(Y ) = C2
m
. If Y ∈ Rg, then in view of 7.1 we would have

C2
m
∈ Rℓ. But in Section 5 we observed that C2

m
fails to be a radical class; hence we

have arrived at a contradiction.
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