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Abstract. In this paper we consider positive unbounded solutions of second order quasi-
linear ordinary differential equations. Our objective is to determine the asymptotic forms
of unbounded solutions. An application to exterior Dirichlet problems is also given.
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1. Introduction

In this paper we consider second order quasilinear ordinary differential equations

of the form

(1.1) (p(t)|u′|α−1u′)′ = q(t)|u|λ−1u,

where α and λ are positive constants satisfying the super-homogeneity condition

λ > α, and p and q are positive continuous functions defined on [t0,∞). Our objective

is to search for the asymptotic properties, especially for asymptotic behaviors of

positive solutions of (1.1). In what follows we always assume that

(1.2)

∫ ∞

p(t)−1/α dt < ∞.

The reason why we assume (1.2) is that if, on the contrary, p satisfies

∫ ∞

p(t)−1/α dt = ∞,
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then the equation (1.1) can be reduced, by the change of variable τ =
∫ t

t0
p(s)−1/α ds,

to

(1.3) (|uτ |
α−1uτ )τ = Q(τ)|u|λ−1u.

The leading term of this equation is simpler than that of (1.1). So most of researchers

usually consider (1.1) after the change of variables when
∫ ∞

p(t)−1/α dt = ∞. For

the equation (1.3) there are many studies of the asymptotic properties. When α = 1,

the equation (1.3) is reduced to the well-known Emden-Fowler equations, which arise

in many fields of applied sciences; see, for example, [8], [9]. The mathematical results

for Emden-Fowler equations are summarized in the monographs [1], [6]. When α 6= 1,

the equation (1.3), which is of the so called quasilinear type, has been studied in many

papers with respect to its asymptotic properties; see, for example, [4], [5], [10]. On

the other hand, for the equation (1.1) under the assumption (1.2) recent papers [3],

[11] are devoted to the study of qualitative properties.

By a solution u of (1.1) we mean a function u such that u and p|u′|α−1u′ are of

class C1, and u satisfies (1.1) near +∞. Throughout this paper we shall confine

ourselves to the study of those solutions which remain positive near +∞. It was

already shown in [11] that every positive solution u of (1.1) has exactly one of the

four asymptotic behaviors listed below:

(i) rapidly decaying solution: lim
t→∞

u(t)/π(t) = 0;

(ii) slowly decaying solution: lim
t→∞

u(t)/π(t) ∈ (0,∞);

(iii) asymptotically constant solution: lim
t→∞

u(t) ∈ (0,∞);

(iv) unbounded solution: lim
t→∞

u(t) = ∞,

where π(t) is the decreasing function defined by

π(t) =

∫ ∞

t

p(s)−1/α ds.

Necessary and/or sufficient conditions for the existence of each type of solutions are

obtained in [11].

We also know the exact asymptotic behaviors, more precisely the leading order

terms for slowly decaying solutions (type (ii)) and asymptotically constant solu-

tions (type (iii)). For example, the asymptotic form of a type (ii) solution u is

u(t) = c{1 + o(1)}π(t) as t → ∞, i.e., the leading order term is cπ(t), where c is a

positive constant. But it was not known how rapidly decaying solutions (type (i))
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and unbounded solutions (type (iv)) behave near +∞ exactly, except for what fol-

lows from the definitions. For rapidly decaying solutions, we obtained the asymptotic

behavior in [3]. However, as far as the authors are aware, very little is known about

asymptotic forms of unbounded solutions. This is our main motivation to try to

consider asymptotic behavior for unbounded solutions of (1.1).

Remark. By Theorem 4.7 in [11] the equation (1.1) has an unbounded solution

if
∫ ∞

q(t) dt < ∞.

As an example let us consider the following equation which is a prototype of (1.1):

(1.4) (tβ |u′|α−1u′)′ = ctσ|u|λ−1u,

where c > 0 is a constant, and β > 0 and σ ∈ R are constants satisfying

(1.5) β > α and β − σ − α − 1 > 0.

We can see easily that the equation (1.4) has an unbounded solution u0 explicitly

given by

(1.6) u0(t) = ĉtk

with

(1.7) k =
β − σ − α − 1

λ − α
(> 0) and ĉλ−α =

kα{β + α(k − 1)}

c
.

This fact leads us to conjecture that unbounded solutions of (1.1) behave like u0(t)

if p(t) and q(t), respectively, behave like tβ and ctσ under the condition (1.5). We

will show that this conjecture is true as seen from the following theorem, which is

the main result in this paper.

Theorem 1.1. Assume that (1.5) holds. Suppose that

(1.8) p(t) ∼ tβ and q(t) ∼ ctσ as t → ∞,

p is of class C1, and

(1.9) lim
t→∞

t
(p(t)

tβ

)′

= 0.
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Then every unbounded solutions u of (1.1) has the asymptotic form

u ∼ u0(t) as t → ∞.

Henceforth the notation f(t) ∼ g(t) means that lim
t→∞

f(t)/g(t) = 1. The proof of

this theorem will be given in Section 3.

The present paper is organized in the following way. In Section 2 we state some

properties and growth estimates for unbounded solutions of (1.1). In Section 3 we

prove Theorem 1.1. In Section 4 we consider exterior Dirichlet problems for elliptic

equations as an application of our main result.

2. Some properties for unbounded solutions

The objective in this section is to obtain some properties and estimates for un-

bounded solutions of (1.1). We start by establishing the fundamental properties for

unbounded solutions.

Lemma 2.1. Let u be an unbounded solution of (1.1). Then u′ > 0 near∞ and

lim
t→∞

p(t)(u′)α = +∞.

To prove this lemma we note that p(t)|u′|α−1u′ is monotone increasing. If we

assume that p(t)(u′)α has a finite positive limit as t → ∞, then we get a contradiction

to the condition (1.2) immediately.

Next, we obtain some estimates for unbounded solutions of (1.1).

Theorem 2.1 (Upper-estimate for unbounded solutions). Let u be an un-

bounded solution of (1.1). Then there exist a positive constant c and sufficiently

large t0 such that

u(t) 6 c

[
∫ t

t0

p(s)−1/α

{
∫ ∞

s

(q(r)α+1

p(r)λ+1

)1/(λα+2α+1)

dr

}−(λα+2α+1)/{α(λ−α)}

ds

]α/(α+1)

near +∞.

P r o o f. Let z = p(t)(u′)αu. Then

z′ = {p(t)(u′)α}′u + p(t)(u′)α+1 = q(t)uλ+1 + p(t)(u′)α+1.
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Young’s inequality implies that there exists a positive constant c1 such that for

δ = (α + 1)/(αλ + 2α + 1) ∈ (0, 1)

z′ > c1p(t)1−δq(t)δu(λ+1)δ(u′)(α+1)(1−δ) = c1z
(λ+1)δp(t)1−2δ−δλq(t)δ,

that is,

z′z−(λ+1)δ > c1p(t)1−2δ−δλq(t)δ.

Note that −(λ + 1)δ < −1 and lim
t→∞

z(t) = ∞ from Lemma 2.1, so we obtain by

integrating over [t,∞) that

z1−(λ+1)δ > c2

∫ ∞

t

p(s)1−2δ−δλq(s)δ ds

and

u′u1/α 6 c3p(t)−1/α

{
∫ ∞

t

p(s)1−2δ−δλq(s)δ ds

}1/(α−αδ−αδλ)

,

where c2 and c3 are positive constants. Integrating this inequality over [t0, t], we find

the conclusion. This completes the proof. �

Corollary 2.1. Assume that

0 < lim inf
t→∞

p(t)

tβ
6 lim sup

t→∞

p(t)

tβ
< ∞(2.1)

and

0 < lim inf
t→∞

q(t)

tσ
6 lim sup

t→∞

q(t)

tσ
< ∞

holds for some β and σ satisfying (1.5). Then we know by Theorem 2.1 that un-

bounded solutions u of (1.1) are estimated as u(t) = O(tk) as t → ∞, where k is

given by (1.7).

Theorem 2.2 (Lower-estimate for unbounded solutions). Let u be an unbounded

solution of (1.1). If there exists a function ξ(t) ∈ C1 satisfying

ξ(t) > p(t)1/αq(t), ξ′(t) > 0,

∫ ∞

p(t)−1/αξ(t)1/(α+1) dt < ∞,

then there exist a positive constant c and sufficiently large t0 such that

u(t) > c

{
∫ ∞

t

p(s)−1/αξ(s)1/(α+1) ds

}−(α+1)/(λ−α)

for t > t0.

1157



P r o o f. Let u be an unbounded solution of (1.1). Multiplying (1.1) by p(t)1/αu′,

we have

{p(t)(u′)α}′p(t)1/αu′ = p(t)1/αq(t)uλu′ 6 ξ(t)uλu′,

since u′ > 0. This inequality is equivalent to

{p(t)(u′)α}′{p(t)(u′)α}1/α 6 ξ(t)uλu′;

that is
α(λ + 1)

α + 1

[

{p(t)(u′)α}(α+1)/α
]′

6 ξ(t)(uλ+1)′.

Integrating this inequality over [t0, t], we obtain

c1p(t)(α+1)/α(u′)α+1 6 ξ(t)uλ+1 −

∫ t

t0

ξ′(s)uλ+1 ds 6 ξ(t)uλ+1,

since p(t)(α+1)/α(u′)α+1 → ∞ as t → ∞ from Lemma 2.1, where c1 > 0 is a constant.

Noting that λ > α and lim
t→∞

u(t) = ∞, we immediately obtain the conclusion of this

theorem by integrating the inequality

u′u−(λ+1)/(α+1) 6 c2p(t)−1/αξ(t)1/(α+1)

over [t,∞), where c2 > 0 is a constant. This completes the proof. �

Corollary 2.2. Let (2.1) hold for some β and σ satisfying (1.5). Assume further

that β + ασ > 0. Then Theorem 2.2 gives a lower-estimate for unbounded solutions

of (1.1), that is u(t) > c1t
k as t → ∞ for some constant c1 > 0, where k is given

by (1.7).

In fact by putting ξ(t) ≡ ctσ+β/α for sufficiently large c, we obtain Corollary 2.2

immediately. Moreover we can see that 0 < lim inf
t→∞

u(t)/(tk) 6 lim sup
t→∞

u(t)/(tk) < ∞

when (2.1) holds for some β and σ satisfying (1.5) and β + ασ > 0.

These estimates play a very important role in determining the asymptotic behavior

of unbounded solutions of (1.1). At the end of this section we will show a comparison

lemma for unbounded solutions of (1.1). Let us consider the two differential equations

of the same form

(2.2)
( 1

f(t)
|y′|a−1y′

)′

= g(t)|y|b−1y, t > t0,

and

(2.3)
( 1

F (t)
|Y ′|a−1Y ′

)′

= G(t)|Y |b−1Y, t > t0,

where a and b are positive constants, and f , g, F and G are positive continuous

functions on [t0,∞).
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Lemma 2.2 (Comparison lemma for unbounded solutions). Suppose that f(t) 6

F (t), g(t) 6 G(t) for t > t0. Let y and Y be unbounded solutions on [t0,∞)

of (2.2) and (2.3), respectively. If 0 < y(t0) 6 Y (t0), 0 6 y′(t0) < Y ′(t0) and

f(t)F (t0)y
′(t0) 6 f(t0)F (t)Y ′(t0) for t > t0, then y(t) < Y (t) for t > t0.

P r o o f. For t > t0 we have

y(t) = y(t0) +

∫ t

t0

{

f(s)
y′(t0)

f(t0)
+

∫ s

t0

g(r)y(r)b dr

}1/a

ds

and

Y (t) = Y (t0) +

∫ t

t0

{

F (s)
Y ′(t0)

F (t0)
+

∫ s

t0

G(r)Y (r)b dr

}1/a

ds.

Taking the difference of the two equations, we obtain

Y (t) − y(t) = Y (t0) − y(t0) −

∫ t

t0

{

f(s)
y′(t0)

f(t0)
+

∫ s

t0

g(r)y(r)b dr

}1/a

ds(2.4)

+

∫ t

t0

{

F (s)
Y ′(t0)

F (t0)
+

∫ s

t0

G(r)Y (r)b dr

}1/a

ds.

Since y(t0) 6 Y (t0) and y′(t0) < Y ′(t0), there exists δ > 0 such that Y (t)− y(t) > 0

for t0 < t < t0 + δ. Suppose to the contrary that there exists t1 ∈ (t0,∞) such that

Y (t1) < y(t1). Then there exists t2 ∈ (t0, t1) satisfying y(t) < Y (t) for t0 < t < t2

and y(t2) = Y (t2). Putting t = t2 in (2.4) we find that the left-hand side is zero

and the right-hand side is positive, which in a contradiction. So y(t) 6 Y (t) for

t ∈ (t0,∞). This completes the proof. �

3. Proof of Theorem 1.1

The objective in this section is to prove Theorem 1.1., i.e., to determine the asymp-

totic behavior of unbounded solutions of (1.1). Regrettably we can not determine the

asymptotic behavior of unbounded solutions in general situations. So we impose the

assumption on the asymptotic behavior of functions p(t) and q(t) to be power-like,

as in (1.8). When (1.8) holds we put

(3.1) p(t) = {1 + ε1(t)}t
β , q(t) = c{1 + ε2(t)}t

σ,

where ε1 and ε2 are continuous functions satisfying lim
t→∞

ε1(t) = lim
t→∞

ε2(t) = 0. The

change of variables introduced in the next lemma is a typical method to research the

asymptotic behavior of positive solutions [1], [2], [3], [4].
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Lemma 3.1 (Reduction to semi-autonomous form). Let u be an unbounded

solution of (1.1). Put v = u/u0 and t = es. Then v solves

v̈ +

[

β

α
+ 2k − 1 +

˙̃ε1(s)

α{1 + ε̃1(s)}

]

v̇ +
k

α

{ ˙̃ε1(s)

1 + ε̃1(s)
+ β + α(k − 1)

}

v(3.2)

=
kα{β + α(k − 1)}{1 + ε̃2(s)}(v̇ + kv)1−αvλ

α{1 + ε̃1(s)}
,

where ˙= d/ds, u0 is given by (1.6), ε̃1(s) = ε1(e
s) and ε̃2(s) = ε2(e

s).

Next we introduce a lemma which is used when we apply the comparison lemma

for unbounded solutions (Lemma 2.2).

Lemma 3.2. Let µ > 0 be a constant. Then the equation

(3.3) α̺α+1 + (β − α)̺α = 2µ

has only one positive root ̺µ. Moreover ̺µ ↓ 0 as µ ↓ 0.

Let us prove Theorem 1.1.

P r o o f of Theorem 1.1. Put v = u/u0 and t = es. Then we can see that

v solves (3.2) from Lemma 3.1 and that lim sup
t→∞

v < ∞ from Corollary 2.1. Define

an auxiliary function ϕ by

ϕ(s) =

{ ˙̃ε1(s)

(β + α(k − 1))(1 + ε̃2(s))
+

1 + ε̃1(s)

1 + ε̃2(s)

}1/(λ−α)

for sufficiently large s. By noting the fact that assumption (1.9) is equivalent to
˙̃ε1(s) → 0 as s → ∞, we can see that lim

s→∞
ϕ(s) = 1. If v̇ = 0 and v > ϕ(s),

then v̈ > 0 there. This means that only minima can occur in the region v > ϕ(s).

Similarly, only maxima can occur in the region 0 < v < ϕ(s). Using the same method

as in Theorem 1 of [4], we see that v is eventually monotone or that v(s) → 1 as

s → ∞. Hence v has a nonnegative finite limit.

First, we will show that lim
s→∞

v(s) 6= 0. For this purpose, we may show that there

exists a positive constant c1 satisfying c1t
k 6 u. If β + ασ > 0, then this is clear

from Corollary 2.2. So we consider the case β + ασ < 0. We note that this means

σ < −1 since 0 < α < β. Let us assume to the contrary that v → 0 as s → ∞. This

implies that u/tk → 0 as t → ∞. Note that the equation (1.1) can be rewritten in

the form

(p(t)|u′|α−1u′)′ = {q(t)u(t)λ−α}uα.
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Let µ > 0 be a sufficiently small constant satisfying σ + λ̺µ < −1, where ̺µ is the

positive root of the equation (3.3) in Lemma 3.2. Since p(t) ∼ tβ and u/tk → 0 as

t → ∞, there exists sufficiently large t1 > 0 satisfying

q(t)u(t)λ−α 6 µtβ−α−1 and
tβ

2
6 p(t) for t > t1.

We consider the equation

( tβ

2
|w′|α−1w′

)′

= µtβ−α−1wα, t > t1.

We know that this half-linear equation has a family of positive solutions U(t; M) =

Mt̺µ , M > 0. We can take M large enough so that

u(t1) 6 Mt
̺µ

1 , u′(t1) < M̺µt
̺µ−1
1 and

{1 + ε1(t1)}u
′(t1)

1 + ε1(t)
6 M̺µt

̺µ−1
1 .

From Lemma 2.2 we obtain that u(t) 6 U(t; M), t > t1. Substituting this estimate

into the equation (1.1), we find that

(p(t)|u′|α−1u′)′ 6 Mλq(t)tλ̺µ 6 c1t
σ+λ̺µ , t > t1,

where c1 is a positive constant. Since σ + λ̺µ < −1 by the choice of µ > 0, an

integration of this inequality shows that p(t)(u′)α = O(1) as t → ∞. However, this

is an obvious contradiction to Lemma 2.1. Hence v has a positive finite limit l as

s → ∞.

Next, we will show that l = 1. Employing l’Hospital’s rule, we obtain

l = lim
t→∞

u(t)

u0(t)
= lim

t→∞

u′(t)

u′
0(t)

=
[

lim
t→∞

{p(t)u′(t)α}′

{tβu′
0(t)

α}′

]1/α

=
{

lim
t→∞

q(t)u(t)λ

ctσu0(t)λ

}1/α

= lλ/α.

Since α < λ, this implies that l = 1, i.e., u(t) ∼ u0(t). This completes the proof. �

As an application of this theorem, we give the following result which will be used

to show the existence of some kinds of solutions of elliptic equations. The details

appear in Section 4.

Example 3.1. Consider the equation

(3.4) (tN−1|u′|m−2u′)′ = tN−1h(t)|u|λ−1u,
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where m, λ and N are constants such that 0 < m − 1 < λ and m < N , and h is

a positive continuous function satisfying h(t) ∼ ctσ1 for some c > 0, σ1 ∈ R. If

m + σ1 < 0, then every unbounded solution of (3.4) has the asymptotic form

(3.5) u(t) ∼ ĉ1t
k1 ,

where

k1 =
−m − σ1

λ − m + 1
> 0

and

ĉλ−m+1
1 =

(−m − σ1)
m−1{N(λ − m + 1) + σ1(1 − m) − mλ}

c(λ − m − 1)m
.(3.6)

Note that solutions of the equation (3.4) are radial solutions of the quasilinear

elliptic equation

div(|∇u|m−2∇u) = h(|x|)|u|λ−1u

in an exterior domain in R
N .

4. Application to elliptic problems

In this section we show that the preceding result for the ordinary differential

equation (1.1) can be applied to obtain the existence of some solutions of the exterior

Dirichlet problem for the elliptic equation :

div(|∇u|m−2∇u) = f(x)|u|λ−1u, in Ω,(4.1)

u = g(x), on ∂Ω,(4.2)

where Ω is an unbounded exterior domain in R
N , N > 2, with boundary ∂Ω of

class C1, 0 < m − 1 < λ, f ∈ C1(RN ; (0,∞)) and g ∈ C1(∂Ω; (0,∞)). We assume

throughout this section that for some constants c1 > 0 and σ1 ∈ R

f(x) ∼ c1|x|
σ1 as |x| → ∞.

A function u ∈ W 1,m
loc (Ω) is said to be a solution (subsolution, supersolution) of

the equation (4.1) in Ω if

∫

Ω

(|∇u|m−2∇u · ∇ϕ + f(x)|u|λ−1uϕ) dx = 0 (6 0, > 0),
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for all ϕ ∈ C∞
0 (Ω) with ϕ > 0 in Ω, and u = g(x) (6 0, > 0) almost everywhere

on ∂Ω in the trace sense. See [7] for details.

To find positive solutions of the problem (4.1)–(4.2) we use the supersolution-

subsolution method which can be formulated, in our context, as follows:

Proposition 4.1 (Theorem 4.4 in [7]). Let v and w be a subsolution and a

supersolution of (4.1) in Ω, respectively, such that v 6 w a.e. in Ω and v 6 g 6 w

a.e. on ∂Ω. Then the problem (4.1)-(4.2) has a solution u such that v 6 u 6 w

a.e. in Ω.

We introduce notations used here. We may assume without loss of generality that

0 /∈ Ω̄. Let

g∗ = min
∂Ω

g(x), g∗ = max
∂Ω

g(x);

r∗ = dist(0, ∂Ω), r∗ = max{|x|; x ∈ ∂Ω};

f∗(r) = min
|x|=r

f(x), f∗(r) = max
|x|=r

f(x).

Theorem 4.1. If m < N and σ1 + N < 0, then the problem (4.1)–(4.2) has a

positive unbounded solution u satisfying

(4.3) 0 < lim inf
|x|→∞

u(x)

|x|k1

6 lim sup
|x|→∞

u(x)

|x|k1

< ∞,

where k1 is given by (3.6).

P r o o f. We construct an appropriate supersolution and a subsolution of (4.3) as

radially symmetric functions, and investigate the asymptotic forms by Example 3.1.

A function ū satisfying

(4.4) div(|∇ū|m−2∇ū) 6 f∗(|x|)ū
λ, |x| > r∗

is a supersolution of the equation (4.1). Similarly a function u satisfying

(4.5) div(|∇u|m−2∇u) > f∗(|x|)uλ, |x| > r∗

is a subsolution of the equation (4.1). Since these inequalities have radial symmetry,

it is natural to construct such ū and u as radially symmetric functions. By putting

ū(x) = v(r) and u(x) = v(r), where r = |x|, (4.4) and (4.5) are reduced to

(4.6) (rN−1|v′|m−2v′)′ 6 rN−1f∗(r)v
λ, r > r∗

1163



and

(4.7) (rN−1|v′|m−2v′)′ > rN−1f∗(r)vλ, r > r∗,

respectively, where ′ = d/dr.

First we construct a supersolution ū. Consider the initial value problem for the

ordinary differential equation

{

(rN−1|w′|m−2w′)′ = rN−1f∗(r)w
λ, r > r∗,

w(r∗) = g∗.

From Theorem 4.7 in [11], this problem has at least one positive unbounded solu-

tion w. Since m < N and σ1 + N < 0, we find from Example 3.1 that

(4.8) w(r) ∼ c1r
k1 as r → ∞,

where c1 and k1 are given by (3.6). Hence, the function given by v(r) ≡ w(r)

satisfies (4.7) (with 6 replaced by =). This means that the function ū(x) ≡ v(|x|) is

a supersolution of (4.1) satisfying ū(x) > g(x) on ∂Ω.

Next we must construct a subsolution u so that u 6 ū in Ω and u 6 g on ∂Ω.

Let δ > 0 be a sufficiently small constant satisfying δw(r∗) 6 g∗ and f∗(r) 6

δm−1−λf∗(r) for r > r∗. This choice of δ is possible because f∗(r) ∼ f∗(r) as

r → ∞. Then the function w(r) ≡ δw(r) satisfies

(rN−1|w′|m−2w′)′ = δm−1−λrN−1f∗(r)w
λ > f∗(t)wλ, r > r∗.

Therefore, the function u(x) ≡ w(|x|) (= δū(x)) is a subsolution of (4.1) satisfy-

ing u 6 ū in Ω and u 6 g∗ on ∂Ω. Hence Proposition 4.1 guarantees that the

problem (4.1)–(4.2) has a positive solution u satisfying

δū(x) 6 u(x) 6 ū(x), a.e. x ∈ Ω.

Since ū(x) ≡ v(t), t = |x|, satisfying (4.8), we find that (4.3) holds. This completes

the proof. �
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