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Abstract. Let X be a Banach space. We give characterizations of when F(Y, X) is a
u-ideal in W(Y, X) for every Banach space Y in terms of nets of finite rank operators
approximating weakly compact operators. Similar characterizations are given for the cases
when F(X, Y ) is a u-ideal inW(X, Y ) for every Banach space Y , when F(Y, X) is a u-ideal
in W(Y, X∗∗) for every Banach space Y , and when F(Y, X) is a u-ideal in K(Y, X∗∗) for
every Banach space Y .
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1. Introduction

A closed subspace Z of a Banach space X is an ideal in X if the annihilator Z⊥ is

the kernel of a norm one projection on X∗. A linear operator ϕ : Z∗ → X∗ is called

a Hahn-Banach extension operator if ϕ(z∗)(z) = z∗(z) and ‖ϕ(z∗)‖ = ‖z∗‖ for every

z ∈ Z and z∗ ∈ Z∗. We write HB(Z,X) for the set of all Hahn-Banach extension

operators from Z∗ into X∗. It is not difficult to see that HB(Z,X) 6= ∅ if and only

if Z is an ideal in X . If Z is a subspace of a normed space X , we say that Z is an

ideal in X if Z is an ideal in X. The notion of an ideal was introduced and studied

by Godefroy, Kalton and Saphar in [5].

The stronger notion of an unconditional ideal (u-ideal for short) was introduced

and studied by Casazza and Kalton in [2]. If Z is an ideal in X such that the

corresponding projection P on X∗ satisfies ‖I − 2P‖ = 1, then Z is called a u-ideal

in X . The projection is called a u-projection and the corresponding ϕ ∈ HB(Z,X)

is called an unconditional Hahn-Banach extension operator. From Lemma 2.2 and

Proposition 3.6 in [5] we can state the following result.
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Theorem 1.1 (Godefroy, Kalton and Saphar). Let X be a Banach space and let

Z be a subspace of X . The following statements are equivalent.

(a) Z is a u-ideal in X .

(b) There exists a Hahn-Banach extension operator ϕ ∈ HB(Z,X) such that when-

ever ε > 0, x ∈ X and A is a convex subset of Z such that ϕ∗(x) is in the

weak∗-closure of A then there exists z ∈ A with ‖x− 2z‖ < ‖x‖ + ε.

(c) There exists a Hahn-Banach extension operator ϕ ∈ HB(Z,X) such that for

every x ∈ X there is a net (zα) in Z such that ϕ∗(x) = lim
α
zα in the weak

∗-

topology and lim sup
α

‖x− 2zα‖ 6 ‖x‖.

(d) For every finite dimensional subspace F of X and every ε > 0 there is a linear

map L : F → Z such that

(1) L(x) = x for every x ∈ F ∩ Z, and

(2) ‖x− 2L(x)‖ 6 (1 + ε)‖x‖ for every x ∈ F .

Note that (1) in Theorem 1.1 (d) can be substituted by the inequality ‖L(x)−x‖ 6

ε‖x‖ for every x ∈ F ∩ Z. We will sometimes use this fact.

Let X and Y be Banach spaces. We denote by L(Y,X) the Banach space of

bounded linear operators from Y to X , and by F(Y,X), K(Y,X) and W(Y,X) its

subspaces of finite rank operators, compact operators and weakly compact operators,

respectively.

In Section 2 we show that the set of Hahn-Banach extension operators HB(X,Y )

is a face in the unit ball of L(X∗, Y ∗). We show in Proposition 2.2 that an un-

conditional Hahn-Banach extension operator has to be a center of symmetry in

HB(X,Y ). If X contains a copy of ℓ1 and is a u-ideal in its bidual, then we show that

diamHB(X,X∗∗) = 2. We also show that in some important cases the set HB(X,Y )

consists of a single element. The subspaces Z of X such that ϕ∗|X∗∗(Z⊥⊥) ⊂ Z⊥⊥

where ϕ ∈ HB(X,X∗∗) is unconditional are characterized.

In Section 3 we establish in Theorem 3.2 characterizations of the case when

F(Y,X) is a u-ideal in W(Y,X) for every Banach space Y . The characterizations

include a statement similar to Theorem 1.1 (b) involving a Hahn-Banach extension

operator, a statement which is an approximation property for X and statements

about approximating weakly compact operators by finite rank operators. In Theo-

rem 3.5 we give similar characterizations of the case when F(X,Y ) is a u-ideal in

W(X,Y ) for every Banach space Y .

In Section 4 we characterize the property that F(Y,X) is a u-ideal in W(Y,X∗∗)

for every Banach space Y in Theorem 4.3, and the property that F(Y,X) is a u-ideal

in K(Y,X∗∗) for every Banach space Y in Theorem 4.4 (by statements similar to

those in Theorems 3.2 and 3.5). An example due to Oja [25, Example 3] shows

that the latter property is strictly weaker than the first (see Remark 4.3 below).
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We define an unconditional version of the weak metric approximation property. We

show by giving an example that this property is strictly weaker than F(Y,X) being

a u-ideal in K(Y,X∗∗) for every Banach space Y .

We will frequently use the isometric version of the Davis-Figiel-Johnson-

Pe lczyński factorization lemma [3] due to Lima, Nygaard and Oja [16]. Let X

be a Banach space and let K be a closed absolutely convex subset of the unit ball

BX of X . If Z is the Banach space constructed from K in the factorization lemma

and J is the norm one identity embedding of Z into X (see [16, Lemma 1.1]), we

will write

[Z, J ] = DFJP(K).

From the factorization lemma we know that Z is reflexive if and only if K is weakly

compact. The factorization lemma also says that if K is compact, then Z is separable

and J is compact.

From the isometric version of the factorization lemma proved by Lima, Nygaard

and Oja [16, Theorem 2.3] we get that if G ⊂ W(Y,X) is a finite dimensional

subspace, then there exist a reflexive Banach space Z, a norm one operator J : Z →

X and a linear isometry Φ: G→ W(Y, Z) such that T = J ◦ Φ(T ) for every T ∈ G.

We will write

(1) [Z, J,Φ] = DFJP(G),

for this construction. Similarly, using [16, Corollary 2.4], we get that if G ⊂ W(X,Y )

is a finite dimensional subspace, then there exists a reflexive Banach space Z, a

norm one operator J : X → Z, and a linear isometry Φ: G → W(Z, Y ) such that

T = Φ(T ) ◦ J for every T ∈ G. We will write

(2) [Z,Φ, J ] = DFJP(G)

for this construction.

We use standard Banach space notation as used by Lindenstrauss and Tzafriri in

[23]. Only real Banach spaces are considered unless otherwise stated. The closed

unit ball of a Banach space X is denoted by BX and the identity operator on X is

denoted by IX . We will write X∗ for the dual space of X . If Z ⊂ X is a subspace

of X , then we will write iZ : Z → X for the canonical embedding. We will write

kX : X → X∗∗ for the natural embedding of X into its bidual. The symbol extBX

denotes the set of extreme points in BX . If T : X → Y is an operator and x ∈ X ,

then we will write Tx instead of T (x) when there is no danger of confusion.
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2. Unconditional Hahn-Banach extension operators

Let us start with a general result about the location and size of the set of Hahn-

Banach extension operators.

Proposition 2.1. Let Y be a Banach space. If X is an ideal in Y , then HB(X,Y )

is a face in BL(X∗,Y ∗).

P r o o f. Let ϕ1, ϕ2 ∈ BL(X∗,Y ∗) and suppose ϕ = 1
2 (ϕ1 + ϕ2) ∈ HB(X,Y ). We

then get that

i∗Xϕ1 + i∗Xϕ2

2
= i∗Xϕ = IX∗ ∈ extBL(X∗,X∗).

Thus i∗Xϕi = IX∗ and ϕi ∈ HB(X,Y ) for i = 1, 2. �

In Lemma 3.1 in [5] there is an algebraic proof of the fact that an unconditional

Hahn-Banach extension operator is unique. Next we have a geometric proof. (Recall

that x is a center of symmetry in a subset A of a linear space X if 2x − y ∈ A for

every y ∈ A.)

Proposition 2.2. Let X be a u-ideal in Y with unconditional ϕ ∈ HB(X,Y ).

For x∗ ∈ X∗, let HB(x∗) ⊂ Y ∗ be the set of norm preserving extensions of x∗ to Y .

Then ϕ(x∗) is the center of symmetry in HB(x∗) for every x∗ ∈ X∗. In particular,

the unconditional Hahn-Banach extension operator ϕ is unique, and ϕ is a center of

symmetry in HB(X,Y ).

P r o o f. Let y∗ ∈ HB(x∗) and let Pϕ = ϕi∗X be the u-projection. Then ‖x∗‖ =

‖y∗‖ = ‖(I − 2Pϕ)y∗‖ = ‖y∗ − 2ϕ(x∗)‖ so that 2ϕ(x∗) − y∗ ∈ HB(x∗). Hence ϕ(x∗)

is a center of symmetry in HB(x∗). Since a center of symmetry in a convex bounded

set is unique, it follows that there is at most one unconditional extension operator

in HB(X,Y ).

If ψ ∈ HB(X,Y ) and x∗ ∈ X∗, then ψ(x∗) ∈ HB(x∗). Using the fact that ϕ(x∗)

is a center of symmetry in HB(x∗) we get 2ϕ(x∗) − ψ(x∗) ∈ HB(x∗). Hence we get

2ϕ− ψ ∈ HB(X,Y ) and ϕ is a center of symmetry in HB(X,Y ). �

The following result shows that if a Banach space X contains a subspace isomor-

phic to ℓ1 and is a u-ideal in its bidual, then the diameter of HB(X,X∗∗) is as large

as possible.
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Proposition 2.3. LetX be a Banach space which contains a subspace isomorphic

to ℓ1. If X is a u-ideal in its bidual, then diamHB(X,X∗∗) = 2.

P r o o f. Let π = kX∗k∗X and Pϕ = ϕk∗X respectively be the canonical projection

and the u-projection on X∗∗∗. By Proposition 2.2 the unconditional Hahn-Banach

extension operator ϕ is a center of symmetry in HB(X,X∗∗), i.e. ψ = 2ϕ − kX∗ ∈

HB(X,X∗∗). Let Pψ = ψk∗X and note that Pψ is an ideal projection on X∗∗∗. By

Proposition 2.6 in [5] we have ‖I − 2π‖ = 3, so

2 > ‖Pψ − π‖ = ‖2Pϕ − 2π‖ > ‖I − 2π‖ − ‖I − 2Pϕ‖ = 2.

Hence ‖ψ − kX∗‖ = ‖Pψ − π‖ = 2, so diamHB(X,X∗∗) = 2. �

Note that the proof of Proposition 1 in [1] shows that if a non-reflexive Banach

space X is 1 -complemented in its bidual by a projection P , then HB(X,X∗∗) consists

of at least two elements.

One direction of the following theorem was proved for separable h-ideals in [5,

Theorem 6.7]. Our argument, just as the proof of Theorem 6.7 in [5], is based on an

application of Theorem 1.1 (b).

Theorem 2.4. Let X be a Banach space. Assume that X is a u-ideal in X∗∗ with

unconditional ϕ ∈ HB(X,X∗∗). Let Z be a closed subspace of X . Then ϕ∗(Z⊥⊥) ⊂

Z⊥⊥ if and only if Z is a u-ideal in Z∗∗ with an unconditional Hahn-Banach extension

operator ψ ∈ HB(Z,Z∗∗) such that i∗∗Z ψ
∗|Z∗∗ = ϕ∗i∗∗Z .

P r o o f. Suppose ϕ∗(Z⊥⊥) ⊂ Z⊥⊥. iZ : Z → X is the natural embedding, so

i∗Z is the restriction and i∗∗Z is weak∗-weak∗ continuous, isometric, and onto Z⊥⊥.

Define ψ : Z∗ → Z∗∗∗ by

ψ(z∗) = ψ(x∗ + Z⊥) = i∗∗∗Z ϕ(x∗)

for z∗ = x∗ + Z⊥ ∈ Z∗. Since i∗∗Z (Z∗∗) ⊂ Z⊥⊥ we get that ψ is well-defined:

〈ψ(z∗), z∗∗〉 = 〈x∗ + Z⊥, ϕ∗(i∗∗Z (z∗∗))〉 = 〈x∗, ϕ∗(i∗∗Z (z∗∗))〉 = 〈i∗∗∗Z ϕ(x∗), z∗∗〉

for z∗∗ ∈ Z∗∗. Thus we have ψ(i∗Z(x∗)) = i∗∗∗Z ϕ(x∗) for all x∗ ∈ X∗. Taking adjoints

we get i∗∗Z ψ
∗|Z∗∗ = ϕ∗i∗∗Z .

Let us show that ψ is an unconditional Hahn-Banach extension operator. Clearly

ψ is linear with norm at most one. For z ∈ Z and z∗ = x∗ + Z⊥ ∈ Z∗ we have

ψ(z∗)(z) = 〈ϕ(x∗), iZ(z)〉 = 〈x∗, iZ(z)〉 = z∗(z).
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Let z∗∗ ∈ BZ∗∗ and ε > 0. Since X is a u-ideal in X∗∗ and ϕ∗(i∗∗Z (z∗∗)) is in the

w∗-closure of BZ in X∗∗ there exists a z ∈ BZ such that

‖z∗∗ − 2z‖ = ‖i∗∗Z (z∗∗) − 2iZ(z)‖ < ‖z∗∗‖ + ε

by Theorem 1.1 (b). Thus there is a net (zα) ⊂ BZ with lim sup
α

‖z∗∗−2zα‖ 6 ‖z∗∗‖

such that zα → ψ∗(z∗∗) weak∗ in Z∗∗ (here we have used i∗∗Z ψ
∗|Z∗∗ = ϕ∗i∗∗Z ). Hence

‖z∗∗ − 2k∗∗Z (ψ(z∗∗))‖ 6 ‖z∗∗‖ and ψ is unconditional.

For the converse assume that Z is a u-ideal in Z∗∗ with an unconditional ψ ∈

HB(Z,Z∗∗) such that i∗∗Z ψ
∗|Z∗∗ = ϕ∗i∗∗Z . Let x∗∗ ∈ Z⊥⊥ in X∗∗ and choose z∗∗ ∈ Z∗∗

such that i∗∗Z (z∗∗) = x∗∗; then ϕ∗(x∗∗) = i∗∗Z (ψ∗z∗∗) ∈ Z⊥⊥. �

Recall that a Banach space X is said to have the approximation property (AP) if

there exists a net (Sα) ⊂ F(X,X) such that Sα → IX uniformly on compact sets in

X . Lima, Nygaard and Oja have proved [16, Theorem 3.3] that a Banach space X

has the AP if and only if the set HB(F(Y,X),W(Y,X)) of Hahn-Banach extension

operators is non-empty for every Banach space Y .

In some cases the set of Hahn-Banach extension operators consists of a single

element. For example, if X is an M-ideal in a Banach space Y , then HB(X,Y )

contains a single element (see [7, Proposition 1.2]; cf. [7, p. 1] for definition of an

M-ideal). A Banach space X such that HB(X,X∗∗) consists of a single element is

said to have the unique extension property (UEP). This notion was introduced and

studied by Godefroy and Saphar in [6]. They proved in [6, Corollary 5.4] that if X

and Y are Banach spaces such that X is reflexive and Y ∗ has the Radon-Nikodým

property (RNP) and contains no proper norming subspace, then X⊗εY and K(X,Y )

have the UEP. (Recall that a subspace Z of Y ∗ is norming if ‖y‖ = sup{y∗(y) : y∗ ∈

Z, ‖y∗‖ 6 1} for y ∈ Y .)

From [24] we also know that HB(F(Y,X),L(Y,X)) contains a single element for

every Banach space Y whenever X is either ℓp or the Lorentz sequence space d(ω, p)

for 1 < p < ∞ (see also [7, Example 4.1] for the case X = ℓp and Y = ℓq where

1 < q 6 p < ∞). Dually we also have that HB(F(X,Y ),L(X,Y )) contains a single

element for every Y whenever X is either ℓp or d(ω, p)∗ for 1 < p < ∞. From [26,

Theorem 3] we have in addition that the above holds if X is a closed subspace of

either ℓp, d(ω, p) or d(ω, p)∗ with the AP. Also the set HB(F(Y, c0),L(Y, c0)) consists

of a single element for every Banach space Y (F(Y, c0) is an M-ideal in L(Y, c0),

see [7, Example 4.1]). The next results tell us that in many more cases the set of

Hahn-Banach extension operators consists of a single element.
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Proposition 2.5. Let X and Y be Banach spaces. If X has the AP and Y is

reflexive, then HB(F(Y,X),W(Y,X)) consists of one element only.

P r o o f. Let Φ ∈ HB(F(Y,X),W(Y,X)), let x∗ ∈ X∗ and y ∈ BY . Assume

that y is a strongly exposed point. Then by Lemma 3.4 in [15] x∗ ⊗ y has a unique

norm-preserving extension from F(Y,X) to W(Y,X) and hence Φ(x∗ ⊗ y) = x∗ ⊗ y.

Since Y has the RNP we get Φ(x∗⊗y) for every x∗ ∈ X∗ and y ∈ Y by linearity and

continuity. By a theorem of Feder and Saphar [4, Theorem 1] F(Y,X)∗ is a quotient

of X∗⊗̂πY and it follows that Φ is just the identity and hence unique. �

A Banach space X has the AP if and only if F(Y,X) is dense in K(Y,X) for every

Banach space Y (cf. e.g. [23, Theorem 1.e.4]). By [17, Theorem 5.1] X has the AP if

and only if F(Y,X) is a (trivially unconditional) ideal in K(Y,X) for every Banach

space Y .

For Y reflexive, we can combine Proposition 2.5 with the isometries F(X,Y ) =

F(Y ∗, X∗) and W(X,Y ) = W(Y ∗, X∗) obtaining the following corollary.

Corollary 2.6. Let X and Y be Banach spaces. If X∗ has the AP and Y is

reflexive, then HB(F(X,Y ),W(X,Y )) consists of one element only.

The dual of a Banach space X has the AP if and only if F(X,Y ) is dense in

K(X,Y ) for every Banach space Y (cf. e.g. [23, Theorem 1.e.5]). By [17, Theorem 5.2]

X∗ has the AP if and only if F(X,Y ) is a (trivially unconditional) ideal in K(X,Y )

for every Banach space Y .

3. F(Y,X) as a u-ideal in W(Y,X)

From [17, Theorem 5.1] and [19, Theorem 4.4] (resp. [19, Theorem 4.3]) we have

the following result.

Theorem 3.1 (Lima and Oja). Let X be a closed subspace of a Banach space

Z. Then F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z)) for all Banach spaces Y

if and only if F(Y,X) is a u-ideal in W(Y, Z) (resp. K(Y, Z)) for all separable, or,

respectively, reflexive separable Banach spaces Y .

The next theorem characterizes the property that F(Y,X) is a u-ideal in W(Y,X)

for every Banach space Y in terms of convergence of nets of finite rank operators.

The statements should be compared with their prototypes in similar results on ideals

(see [12, Theorem 5.2] and [20, Theorem 2.3]).
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Theorem 3.2. Let X be a Banach space. The following statements are equiva-

lent.

(a) F(Y,X) is a u-ideal in W(Y,X) for every Banach space Y .

(b) F(Y,X) is a u-ideal in span(F(Y,X), {T }) for every T ∈ W(Y,X) and for every

reflexive Banach space Y .

(c) For every reflexive Banach space Y there exists a Hahn-Banach extension op-

erator Ψ ∈ HB(F(Y,X),W(Y,X)) such that for every T ∈ W(Y,X) there is a

net (Tα) ⊂ F(Y,X) with lim sup
α

‖T − 2Tα‖ 6 ‖T ‖ such that Tα → Ψ∗(T ) = T

weak∗ in F(Y,X)∗∗.

(d) For every weakly compact set K ⊂ X there is a net (Sα) ⊂ F(X,X) with

lim
α

sup
x∈K

‖x−2Sαx‖ 6 sup
x∈K

‖x‖ such that Sα → IX uniformly on compact subsets

of K.

(e) For every Banach space Y and T ∈ W(Y,X) there is a net (Sα) ⊂ F(X,X)

with lim sup
α

‖T − 2SαT ‖ 6 ‖T ‖ such that Sα → IX uniformly on compact sets

in X .

(f) For every Banach space Y and T ∈ W(Y,X) there is a net (Sα) ⊂ F(X,X) with

lim sup
α

‖T − 2SαT ‖ 6 ‖T ‖ such that Sα → IX in the strong operator topology.

(g) For every reflexive Banach space Y and T ∈ W(Y,X) there is a net (Sα) ⊂

F(X,X) with lim sup
α

‖T − 2SαT ‖ 6 ‖T ‖ such that SαT → T in the strong

operator topology.

P r o o f. (a) ⇒ (b) is immediate from the local characterization of u-ideals,

Theorem 1.1.

(b) ⇒ (c). Assume that Y is reflexive and let T ∈ W(Y,X). Since F(Y,X) is

a u-ideal in B = span(F(Y,X), {T }) we can, using the local characterization of u-

ideals in Theorem 1.1, find a net (Tα) ⊂ F(Y,X) with lim sup
α

‖T −2Tα‖ 6 ‖T ‖ such

that Tα → Φ∗
T (T ) weak∗, where ΦT ∈ HB(F(Y,X),B) is the unconditional extension

operator. From the argument in the proof of Proposition 2.5 ΦT is unique and of the

form ΦT = IX∗ ⊗ IY . A straightforward calculation shows that Φ∗
T (T ) = T . Thus

the operator Ψ = IX∗ ⊗ IY ∈ HB(F(Y,X),W(Y,X)) satisfies (c) in Theorem 1.1.

(c) ⇒ (d). Let K ⊂ X be weakly compact, ε > 0, and u =
∞
∑

n=1
x∗n ⊗ xn ∈

X∗⊗̂πX . Assume that K is a symmetric subset of BX . Assume also that 1 >

‖xn‖ → 0 and that
∞
∑

n=
‖x∗n‖ <∞. Put [Z, J ] = DFJP(conv(K ∪ (±xn)∞n=1)). Now Z

is reflexive, J ∈ W(Z,X) and ‖J‖ 6 1. Find zn ∈ BZ such that xn = Jzn. Choose

a net (Jα) ⊂ F(Z,X) with lim sup
α

‖J − 2Jα‖ 6 ‖J‖ such that Jα → J weak∗ in

F(Z,X)∗∗. Since J∗X∗ is norm-dense in Z∗ [16, Lemma 1.1] we can write Jα = SαJ
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where (Sα) ⊂ F(X,X) (see the proof of [21, Theorem 3.2]). Now we can find an S

among the Sα’s such that

ε >

∣

∣

∣

∣

∞
∑

n=1

〈SJzn, x
∗
n〉 −

∞
∑

n=1

〈Jzn, x
∗
n〉

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

n=1

〈Sxn, x
∗
n〉 −

∞
∑

n=1

〈xn, x
∗
n〉

∣

∣

∣

∣

and sup
x∈K

‖x− 2Sx‖ 6 sup
z∈BZ

‖Jz − 2SJz‖ 6 ‖J − 2SJ‖ < 1 + ε.

(d) ⇒ (e). Let Y be a Banach space and let T ∈ W(Y,X) be of norm one.

Let C ⊂ BX be compact and let ε > 0. Define K = conv(±(C ∪ T (BY ))) and note

that K ⊂ BX and is weakly compact. By assumption there is S ∈ F(X,X) with

sup
x∈K

‖x− 2Sx‖ < 1 + ε and sup
x∈C

‖x− Sx‖ < ε. From this (e) follows.

(e) ⇒ (f) and (f) ⇒ (g) are trivial.

(g) ⇒ (a). Let Y be a Banach space, let ε > 0 and choose a finite dimensional

subspace F ⊂ W(Y,X). Put [Z, J,Φ] = DFJP(F ) (see (1), page 3) and let G =

F ∩ F(Y,X). Then

K =
⋃

T∈BG

T (BY )

is a compact subset of X and of Z. It follows from the assumptions that we can find

an S ∈ F(X,X) with ‖J − 2SJ‖ 6 1 + ε such that ‖z − Sz‖ 6 ε for every z ∈ K.

Define L : F → F(Y,X) by L(T ) = ST . Then ‖T−L(T )‖ 6 ‖Φ(T )‖‖J−SJ‖ 6 ε‖T ‖

for every T ∈ G and ‖T −2L(T )‖ = ‖T −2ST ‖ 6 ‖Φ(T )‖‖J−2SJ‖ 6 (1+ε)‖T ‖ for

T ∈ F . The result now follows from local characterization of u-ideals in Theorem 1.1.

�

Remark 3.1. Let ℓ̂2 be the equivalently re-normed version of ℓ2 defined by Oja

and denoted by F in Example 3 in [25]. The space F(ℓ1, ℓ̂2) is not a u-ideal in

W(ℓ1, ℓ̂2) (by [25, Example 3] and [27, Theorem 1.2] or [28, Proposition 1]). Since

ℓ̂2 has the AP, F(Y, ℓ̂2) is an ideal in W(Y, ℓ̂2) for all Banach spaces Y (see [25,

Example 3] or [16, Theorem 3.3]). Thus statement (a) in Theorem 3.2 is strictly

stronger than statement (a) in Proposition 3.3 below. Note that this implies that

the bound lim sup
α

‖T − 2SαT ‖ 6 ‖T ‖ in statement (f) in Theorem 3.2 is strictly

stronger than the bound lim sup
α

‖Tα‖ 6 ‖T ‖ in (iii) in Corollary 1.5 in [16].

Since ℓ̂2 is reflexive, we also get that F(ℓ̂∗2, ℓ∞) is not a u-ideal in W(ℓ̂∗2, ℓ∞).

Hence, also ℓ∞ is an example of a Banach space X such that F(Y,X) is an ideal

in W(Y,X) for all Banach spaces Y , without being a u-ideal for all Y . Also, if for

0 < r < 1, Yr are the equivalently re-normed versions of c0 defined in [8], then

F(ℓ1, Yr) is not a u-ideal in W(ℓ1, Yr) for any 0 < r < 1, even though F(Y, Yr) is an

ideal in W(Y, Yr) for all Banach spaces Y and 0 < r < 1 (see the last paragraph in

[25]).
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Remark 3.2. Let X be a Banach space and let K ⊂ BX be a weakly compact

subset. If X has the AP, then there is a net (Sα) ⊂ F(X,X) with sup
x∈K

‖Sαx‖ 6

1 such that Sα → IX uniformly on compact sets in X . Indeed, put [Z, J ] =

DFJP(conv(±K)). Using [4, Theorem 1] we get that BF(Z,X) cannot be strongly

separated from conv(SαJ). This should be compared with statement (d) in Theo-

rem 3.2.

A Banach space X is said to have the unconditional metric approximation property

(UMAP) if there is a net (Tα) ⊂ F(X,X) with lim sup
α

‖IX − 2Tα‖ 6 1 such that

Tα(x) → x for all x ∈ X . Like u-ideals, also the notion of the UMAP (for separable

spaces using sequences) was introduced by Casazza and Kalton in [2].

In Theorem 5.2 in [12] it was proved that X has the UMAP if and only if

F(Y,X) is a u-ideal in L(Y,X) for every Banach space Y .

If X is reflexive, then (d) in Theorem 3.2 says that X has the UMAP. By [2,

Theorem 3.9] it follows that in this case F(Y,X) is a u-ideal in W(Y,X) for all

Banach spaces Y if and only if F(X,X) is a u-ideal in W(X,X).

From [16, Theorem 3.3] and [14, Corollary 2] (see also [9, Theorem 5.1], [30,

Proposition 2.1]) we get the following proposition.

Proposition 3.3. Let X be a Banach space. The following statements are equiv-

alent.

(a) F(Y,X) is an ideal in W(Y,X) for every Banach space Y .

(b) X has the AP.

(c) Every separable ideal Z in X has the AP.

(d) F(Y, Z) is an ideal in W(Y, Z) for every Banach space Y and a separable ideal

Z in X .

For u-ideals we have the following result.

Proposition 3.4. Let X be a Banach space and assume F(Y,X) is a u-ideal in

W(Y,X) for every Banach space Y . Then a closed subspace Z of X has the AP if

and only if F(Y, Z) is a u-ideal in W(Y, Z) for every Banach space Y .

P r o o f. One direction is immediate from Proposition 3.3.

For the reverse direction let Y be a reflexive Banach space, Z a subspace of

X with the AP, and T ∈ W(Y, Z). Put T̂ = iZ ◦ T , choose a compact subset

K of Z, and let ε > 0. By Theorem 3.2 there is a net (Sα) ⊂ F(X,X) with

lim sup
α

‖T̂ − 2SαT̂‖ 6 ‖T̂‖ = ‖T ‖ such that Sα → IX uniformly on compact sets.

Since Z has the AP, there is a net (Uβ) ⊂ F(Z,Z) such that Uβ → IZ uniformly on
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compact sets. After switching to the product index set we may suppose that (Uβ) is

indexed by the same set as (Sα). Hence we shall write (Uα) from now on.

Now let u ∈ F(Y,X)∗. Since Y is reflexive and X has the AP, F(Y,X)∗ is

isometrically isomorphic to a quotient of X∗⊗̂πY by a theorem of Feder and Saphar

[4, Theorem 1]. Choose a representation
∞
∑

n=1
x∗n ⊗ yn for u. For the net Tα =

SαiZT − iZUαT we have

〈u, Tα〉 =

∞
∑

n=1

〈x∗n, (SαiZT − iZUαT )(yn)〉

→
∞
∑

n=1

〈i∗Zx
∗
n, T yn〉 −

∞
∑

n=1

〈i∗Zx
∗
n, T yn〉 = 0.

Hence Tα → 0 weakly in F(Y,X). Consequently, a suitable net of convex combina-

tions of Tα converges in norm to 0. Thus there exist α0, Ŝα0
∈ co{Sα : α > α0} and

Ûα0
∈ co{Uα : α > α0} such that ‖Ŝα0

iZT − iZÛα0
T ‖ 6 ε, sup

z∈K
‖Ûα0

(z) − z‖ 6 ε

and ‖T̂ − 2Ŝα0
T̂‖ 6 ‖T̂‖ + ε. We get that

‖iZT − 2iZÛα0
T ‖ 6 ‖iZT − 2Ŝα0

iZT ‖ + 2‖Ŝα0
iZT − iZÛα0

T ‖ 6 ‖T̂‖ + 3ε.

Hence ‖T−2Ûα0
T ‖ 6 ‖T ‖+3ε, and the result follows from the local characterization

of u-ideals in Theorem 1.1. �

Remark 3.3. If F(Y, Z) is a u-ideal in W(Y, Z) for every Banach space Y and

every subspace Z of X with the AP, then F(Y,X) is not necessarily a u-ideal in

W(Y,X) for every Banach space Y . Indeed, for 1 < p <∞, choose a subspace X of

ℓp such that X does not have the AP (cf. e.g. [23, p. 91]). X cannot be complemented

and hence it is not an ideal in ℓp. It is probably well known that F(Y, ℓp) is a u-

ideal in W(Y, ℓp) for all Banach spaces Y . (This can be proved by using that the

standard basis of ℓp is 1-unconditional and then Theorem 3.2 (g).) By Proposition

3.4, F(Y, Z) is a u-ideal in W(Y, Z) for every subspace Z of X with the AP. But X

does not have the AP so F(Y0, X) is not even an ideal in W(Y0, X) for some Banach

space Y0 by [16, Theorem 3.3].

Let X be a Banach space. In the next theorem we want to study the problem

when F(X,Y ) is a u-ideal in W(X,Y ) for all Banach spaces Y . In Theorem 6.5 in

[12] it was proved that (a) K(X,Y ) is a u-ideal in L(X,Y ) for all Banach spaces Y is

equivalent to (c) there is a net (Tα) ⊂ K(X,X) with lim sup
α

‖I−2Tα‖ 6 1 such that

Tαx → x for all x ∈ X and T ∗
αx

∗ → x∗ for all x∗ ∈ X∗, which in turn is equivalent

to (e) X has the metric compact approximation property and X has the property
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(wM∗). Note that the equivalence of (c) and (e) follows from the equivalence of

(3o) and (2o) in Corollary 4.5 in [29] by taking a = 1 and B = {−2}. In all these

statements K(X,X) (resp. K(X,Y )) may be replaced by F(X,X) (resp. F(X,Y ))

(see the text after Corollary 4.6 in [29]).

Theorem 3.5. Let X be a Banach space. The following statements are equiva-

lent.

(a) F(X,Y ) is a u-ideal in W(X,Y ) for every Banach space Y .

(b) F(X,Y ) is a u-ideal in W(X,Y ) for every reflexive Banach space Y .

(c) F(X,Y ) is a u-ideal in span(F(X,Y ), {T }) for every T ∈ W(X,Y ) and for

every reflexive Banach space Y .

(d) For every reflexive Banach space Y there exists a Hahn-Banach extension op-

erator Ψ ∈ HB(F(X,Y ),W(X,Y )) such that for every T ∈ W(X,Y ) there is a

net (Tα) ⊂ F(X,Y ) with lim sup
α

‖T − 2Tα‖ 6 ‖T ‖ such that Tα → Ψ∗(T ) = T

weak∗ in F(X,Y )∗∗.

(e) For every weakly compact set K ⊂ X∗ there is a net (Sα) ⊂ F(X,X) with

lim
α

sup
x∗∈K

‖x∗ − 2S∗
αx

∗‖ 6 sup
x∗∈K

‖x∗‖ such that S∗
α → IX∗ uniformly on compact

subsets of K.

(f) For every Banach space Y and T ∈ W(X,Y ) there is a net (Sα) ⊂ F(X,X)

such that lim sup
α

‖T − 2TSα‖ 6 ‖T ‖ and S∗
α → IX∗ uniformly on compact sets

in X∗.

(g) For every Banach space Y and T ∈ W(X,Y ) there is a net (Sα) ⊂ F(X,X)

such that lim sup
α

‖T − 2TSα‖ 6 ‖T ‖ and S∗
α → IX∗ in the strong operator

topology.

(h) For every reflexive Banach space Y and T ∈ W(X,Y ) there is a net (Sα) ⊂

F(X,X) such that lim sup
α

‖T − 2TSα‖ 6 ‖T ‖ and S∗
αT

∗ → T ∗ in the strong

operator topology.

P r o o f. If Y is a reflexive Banach space, we have isometries F(X,Y ) =

F(Y ∗, X∗) and W(X,Y ) = W(Y ∗, X∗). Using this observation, Theorem 3.5, for

reflexive spaces Y , follows from Theorem 3.2.

It now suffices to show that the statements in (a) and (f) hold whenever they

hold for reflexive spaces Y . Indeed, to see that (a) holds we can use the local

characterization of u-ideals in Theorem 1.1 and an argument similar to (g) ⇒ (a) in

Theorem 3.2 (use (2) on page 3 instead of (1)).

To see that (f) holds we put [Z,Φ, J ] = DFJP(span({T })) where Y is a Banach

space and T ∈ W(X,Y ). Since Z is reflexive and J ∈ W(X,Z) there is a net

(Sα) ⊂ F(X,X) with lim sup
α

‖J − 2JSα‖ 6 ‖J‖ = 1 such that S∗
α → IX∗ uniformly
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on compact sets in X∗. Finally, write lim sup
α

‖T − 2TSα‖ 6 lim sup
α

‖Φ(T )‖‖J −

2JSα‖ 6 ‖T ‖ and we are done. �

Remark 3.4. By [16, Theorem 3.4] we get that F(ℓ1, Y ) is an ideal in W(ℓ1, Y )

for every Banach space Y . In Remark 3.1 we noticed that F(ℓ1, ℓ̂2) is not a u-ideal

in W(ℓ1, ℓ̂2) where ℓ̂2 is the equivalent re-norming of ℓ2 constructed by Oja in [25].

Thus ℓ1 does not fulfil statement (a) in Theorem 3.5.

Note that Proposition 2.3 in [22] for M-ideals also holds for u-ideals by using

the local characterization of u-ideals in Theorem 1.1 instead of the 3-ball-property

used in [22, Proposition 2.3] (see [13, Theorem 6.17], [7, Theorem I.2.2] or [22,

Theorem 2.1]). Thus if a dual space X∗ contains a copy of c0, then F(ℓ1, Y ) is a u-

ideal in W(ℓ1, Y ) whenever F(X,Y ) is a u-ideal in W(X,Y ). If ℓ̂2 is the equivalently

re-normed version of ℓ2 constructed by Oja, it follows from Remark 3.4 that F(X, ℓ̂2)

fails to be a u-ideal in W(X, ℓ̂2) whenever X∗ contains a copy of c0.

Remark 3.5. Recall that a u-ideal Z in X is strict if the u-complement of Z⊥

in X∗ is a norming subspace for X , i.e. if ϕ(Z∗) is a norming subspace of X∗ where

ϕ ∈ HB(Z,X) is the unconditional Hahn-Banach extension operator.

If Y is a reflexive Banach space and F(Y,X) is a u-ideal in W(Y,X) then

it is in fact a strict u-ideal. This is easily seen from the proof of Proposi-

tion 2.5. Indeed, in this case there is a unique Hahn-Banach extension oper-

ator Φ ∈ HB(F(Y,X),W(Y,X)) which is of the form Φ = IX∗ ⊗ IY . Since

BX∗ ⊗ BY ⊂ W(Y,X)∗ is norming for W(Y,X) the claim follows. Similarly by

Corollary 2.6, if Y is reflexive, then F(X,Y ) is a strict u-ideal in W(X,Y ) whenever

it is a u-ideal.

If X is a Banach space it follows from [16, Theorem 3.4] and [11, Proposition 2.5]

that F(X,Y ) is an ideal in W(X,Y ) for every Banach space Y if and only if F(Z, Y )

is an ideal in W(Z, Y ) for every Banach space Y and for every separable ideal Z in

X . For u-ideals we have the following result.

Proposition 3.6. Let X be a Banach space. If F(X,Y ) is a u-ideal in W(X,Y )

for every Banach space Y , then F(Z, Y ) is a u-ideal in W(Z, Y ) for every ideal Z in

X and every Banach space Y .

P r o o f. Let Y be a Banach space and let Z be an ideal in X with the correspond-

ing Hahn-Banach extension operator ϕ ∈ HB(Z,X). Let G be a finite dimensional

subspace of W(Z, Y ) and define a map L : G→ W(X,Y ) by

L(T ) = T ∗∗ ◦ ϕ∗|X , T ∈ G.
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Let ε > 0. By the local characterization of u-ideals, Theorem 1.1, there is an

operator M : L(G) → F(X,Y ) such that M(S) = S for every S ∈ F(X,Y ) ∩ L(G)

and ‖S − 2M(S)‖ 6 (1 + ε)‖S‖ for every S ∈ L(G). Now define an operator

N : G→ F(Z, Y ) by

N(T ) = M(L(T )) ◦ iZ .

It is straightforward to verify that the operator N fulfils (d) in Theorem 1.1 and the

result follows. �

4. F(Y,X) as a u-ideal in K(Y,X∗∗) and W(Y,X∗∗)

From [17, Theorem 5.1] and [19, Proposition 2.10] we have the following result.

Proposition 4.1 (Lima and Oja). Let X be a closed subspace of a Banach space

Y . If F(Z,X) is a u-ideal in K(Z, Y ) for every reflexive Banach space Z, then X is

a u-ideal in Y .

The next result tells us more.

Proposition 4.2. Let X be a closed subspace of a Banach space Y and let

Z be a reflexive Banach space. Assume F(Z,X) is a u-ideal in K(Z, Y ) with an

unconditional extension operator Ψ. Then X is a u-ideal in Y with an unconditional

extension operator ψ satisfying

Ψ(x∗ ⊗ z) = (ψx∗) ⊗ z

for all z ∈ Z and x∗ ∈ X∗.

Moreover, if the above assumption holds for every separable reflexive Banach space

Z, then ψ∗|Y is in the w∗-closure of F(Y,X) in L(Y,X∗∗).

P r o o f. We proceed as in the proof of [18, Theorem 2.3]. Let Ψ ∈ HB(F(Z,X),

K(Z, Y )) be the unconditional Hahn-Banach extension operator and denote the cor-

responding ideal projection on K(Z, Y )∗ by PΨ. Since Z is reflexive, it follows from

[18, Theorem 1.3] that there exist {ψi : i = 1, . . . , n} ⊂ HB(X,Y ) such that

Z =

n
∑

i=1

⊕1ZΨψi
, ZΨψi

6= {0} for all 1 6 i 6 n,

where

ZΨψi
= {z ∈ Z : Ψ(x∗ ⊗ z) = (ψix

∗) ⊗ z, ∀x∗ ∈ X∗}.
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Let (Pψi
) be the corresponding ideal projections on Y ∗. It now follows that for

z ∈ ZΨψi
and y∗ ∈ Y ∗

‖z‖‖y∗‖ = ‖y∗ ⊗ z‖ > ‖(I − 2PΨ)(y∗ ⊗ z)‖ = ‖y∗ ⊗ z − 2PΨ(y∗ ⊗ z)‖

= ‖y∗ ⊗ z − 2(Pψi
y∗) ⊗ z‖ = ‖(y∗ − 2Pψi

y∗) ⊗ z‖ = ‖z‖‖y∗ − 2Pψi
y∗‖.

Hence every ψi is unconditional and by uniqueness, see Proposition 2.2, they all

coincide. With ψ = ψi we have Z = ZΨψ.

Furthermore, if F(Z,X) is a u-ideal in K(Z, Y ) for all separable reflexive Z, then

by Lemma 2.1 in [20] there is for every such Z and T ∈ K(Z, Y ) a net (Tα) in

F(Z,X) with sup
α

‖Tα‖ 6 ‖T ‖ such that T ∗
α → T ∗ψ in the strong operator topology.

By boundedness we may also assume that 〈u, Tα〉 → 〈u, T 〉 for all u ∈ X∗⊗̂πZ.

Choose u =
∑

n

x∗n⊗ yn ∈ X∗⊗̂πY and assume that
∑

n

‖x∗n‖ = 1 and 1 > ‖yn‖ → 0

and put [Z, J ] = DFJP(conv((±yn)∞n=1). Then Z is a separable reflexive Banach

space and J ∈ K(Z, Y ) with ‖J‖ 6 1. Pick a net (Jα) ⊂ F(Z,X) with sup
α

‖Jα‖ 6

‖J‖ such that J∗
α → J∗ψ uniformly on compact sets. As in the proof of (c)⇒ (d)

in Theorem 3.2 we may assume that each J∗
α = J∗S∗

α for some Sα ∈ F(Y,X). Now

choose ε > 0 and let zn ∈ BZ be such that yn = Jzn. Since J∗
α → J∗ψ uniformly

on compact sets, it follows from [23, Proposition 1.e.3] that there is an operator

S ∈ F(Y,X) such that

ε >

∣

∣

∣

∣

∞
∑

n=1

〈J∗S∗x∗n, zn〉 −
∑

n=1

〈J∗ψx∗n, zn〉

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

n=1

〈x∗n, Syn〉 −
∑

n=1

〈x∗n, ψ
∗yn〉

∣

∣

∣

∣

.

Hence ψ∗|Y is in the w∗-closure of the F(Y,X) in L(Y,X∗∗). �

Remark 4.1. If Y = X∗∗ in Proposition 4.2 we actually have that ψ∗|X∗∗ is in

the weak∗-closure of set F(X,X) in L(X∗∗, X∗∗). In this case J∗(X∗) and not just

J∗(X∗∗∗) is norm-dense in Z∗ (see the proof of [10, Proposition 2.1]). Thus for each

J∗
α we can write J∗

α = J∗S∗
α for some Sα in F(X,X) (and not only in F(X∗∗, X)).

Let X be a Banach space. From Theorem 3.1 we have that F(Y,X) is a u-ideal in

W(Y,X∗∗) for every Banach space Y if and only if F(Y,X) is a u-ideal in W(Y,X∗∗)

for every reflexive Banach space Y . The next results contain other characterizations

of these statements.

Theorem 4.3. Let X be a Banach space. The following statements are equiva-

lent.

(a) F(Y,X) is a u-ideal in W(Y,X∗∗) for every Banach space Y .
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(b) X is a u-ideal in its bidual with an unconditional Hahn-Banach extension op-

erator ψ ∈ HB(X,X∗∗) such that for every Banach space Y and T ∈ W(Y,X∗∗)

there is a net (Sα) ⊂ F(X,X) with lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖ such that

S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).

(c) There exists a Hahn-Banach extension operator ψ ∈ HB(X,X∗∗) such that for

every Banach space Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂ F(X,X) with

lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖ such that S∗∗

α T → ψ∗T weak∗ in L(Y,X∗∗).

(d) For every weakly compact set K ⊂ X∗∗ there is a net (Sα) ⊂ F(X,X) with

lim
α

sup
x∗∗∈K

‖x∗∗ − 2S∗∗
α x

∗∗‖ 6 sup
x∗∗∈K

‖x∗∗‖ such that Sα → IX uniformly on

compact subsets of K ∩X .

(e) For every Banach space Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂ F(X,X)

with lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖ such that Sα → IX uniformly on compact sets

in X .

(f) For every reflexive Banach space Y and T ∈ W(Y,X∗∗) there is a net (Sα) ⊂

F(X,X) with lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖ such that Sα → IX uniformly on

compact sets in X .

P r o o f. (a) ⇒ (b). Let Y be a Banach space and let T ∈ W(Y,X∗∗). Put

G = span({T }) and let [Z, J,Φ] = DFJP(G). Now Z is reflexive and J ∈ W(Z,X∗∗)

is of norm 1. Let Ψ: F(Z,X)∗ → W(Z,X∗∗)∗ be the unconditional Hahn-Banach

extension operator. As in the proof of Proposition 4.2 we can show that X is a u-

ideal in X∗∗ with ψ ∈ HB(X,X∗∗) unconditional such that Ψ(x∗⊗ z) = ψ(x∗)⊗ z for

every x∗ ∈ X∗ and z ∈ Z. By Theorem 1.1 there is a net (Jα) ⊂ F(Z,X) such that

lim sup
α

‖J−2Jα‖ 6 1 and Jα → Ψ∗(J) weak∗. Since J∗(X∗) is norm dense in Z∗ we

can assume that for each α, Jα = S∗∗
α J where (Sα) ⊂ F(X,X). Since ‖T−2S∗∗

α T ‖ =

‖JΦ(T ) − 2S∗∗
α JΦ(T )‖ 6 ‖T ‖‖J − 2S∗∗

α J‖ we get lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖.

Let u =
∑

n

x∗n ⊗ yn ∈ X∗⊗̂πY . Then v =
∑

n

x∗n ⊗ (Φ(T )yn) ∈ X∗⊗̂πZ. We get

that

〈u, ψ∗T 〉 =
∑

n

〈ψx∗n, JΦ(T )yn〉 = 〈Ψ(v), J〉 = 〈v,Ψ∗(J)〉

= lim
α
〈v, S∗∗

α J〉 = lim
α

∑

n

〈x∗n, S
∗∗
α Tyn〉 = lim

α
〈u, S∗∗

α T 〉.

This shows that S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).

(b) ⇒ (c) is trivial.

(c) ⇒ (d) is similar to the proof of (c) ⇒ (d) in Theorem 3.2.

(d) ⇒ (e) is similar to the proof of (d) ⇒ (e) in Theorem 3.2.
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(e) ⇒ (f) is trivial.

(f) ⇒ (a) is similar to the proof of (f) ⇒ (a) in Theorem 3.2. �

Remark 4.2. Note that X = c0 fulfils Theorem 4.3 since c0 is an M∞ space (see

[7] p. 306) and [7, Proposition 5.6].

Theorem 4.4. Let X be a Banach space. The following statements are equiva-

lent.

(a) F(Y,X) is a u-ideal in K(Y,X∗∗) for every Banach space Y .

(b) X is a u-ideal in X∗∗ with an unconditional Hahn-Banach extension ψ such

that ψ∗|X∗∗ is in the weak∗-closure of the F(X,X) in L(X∗∗, X∗∗).

(c) X is a u-ideal in its bidual with an unconditional Hahn-Banach extension op-

erator ψ ∈ HB(X,X∗∗) such that for every Banach space Y and T ∈ K(Y,X∗∗)

there is a net (Sα) ⊂ F(X,X) with lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖ such that

S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).

(d) For every Banach space Y and T ∈ K(Y,X∗∗) there is a net (Sα) ⊂ F(X,X)

with lim sup
α

‖T − 2S∗∗
α T ‖ 6 ‖T ‖ such that Sα → IX uniformly on compact sets

in X .

(e) For every separable reflexive Banach space Y and T ∈ K(Y,X∗∗) there is a net

(Sα) ⊂ F(X,X) with lim sup
α

‖T −2S∗∗
α T ‖ 6 ‖T ‖ such that Sα → IX uniformly

on compact sets in X .

P r o o f. (a) ⇒ (b) follows from Proposition 4.2.

(b) ⇒ (c). Let Y be a Banach space and let T ∈ K(Y,X∗∗). Put G = span({T })

and write [Z, J,Φ] = DFJP(G). Now Z is reflexive and J ∈ K(Z,X∗∗) has norm

one. Let ψ ∈ HB(X,X∗∗) be the unconditional Hahn-Banach extension operator and

choose a net (Sα) ⊂ F(X,X) such that S∗∗
α → ψ∗|X∗∗ weak∗ in L(X∗∗, X∗∗). Since

Z is reflexive, K(Z,X∗∗)∗ is a quotient of X∗∗∗⊗̂πZ by [4, Theorem 1] of Feder and

Saphar. Now let ε > 0 and let u ∈ X∗∗∗⊗̂πZ. Choose a representation
∞
∑

n=1
x∗∗∗n ⊗ zn

for u such that
∞
∑

n=1
‖x∗∗∗n ‖‖zn‖ 6 ‖u‖π + ε and write x∗n = x∗∗∗n |X . We get that

| 〈u, J − 2S∗∗
α J〉 | =

∣

∣

∣

∣

∞
∑

n=1

〈x∗∗∗n , (J − 2S∗∗
α J)zn〉

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

n=1

〈x∗∗∗n − 2S∗
αx

∗
n, Jzn〉

∣

∣

∣

∣

→

∣

∣

∣

∣

∞
∑

n=1

〈x∗∗∗n − 2ψx∗n, Jzn〉 6

∞
∑

n=1

‖x∗∗∗n ‖‖Jzn‖ 6 ‖u‖π + ε.

Hence conv(J − 2S∗∗
α J) cannot be strongly separated from BK(Z,X∗∗). By taking

successive convex combinations we get a new net, also denoted by (Sα), such that
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lim sup
α

‖J − 2S∗∗
α J‖ 6 1. Thus

lim sup
α

‖T − 2S∗∗
α T ‖ 6 lim sup

α
‖Φ(T )‖‖J − 2S∗∗

α J‖ 6 ‖T ‖.

Obviously S∗∗
α T → ψ∗T weak∗ in L(Y,X∗∗).

(c) ⇒ (d). Argue as in the proof of (d) ⇒ (e) in Theorem 4.3.

(d) ⇒ (e) is trivial.

(e) ⇒ (a). Argue as in the proof of (g) ⇒ (a) in Theorem 3.2. �

Remark 4.3. In [10, Proposition 2.1] it is proved that F(Y,X) is an ideal in

W(Y,X∗∗) for every Banach space Y if and only if F(Y,X) is an ideal in K(Y,X∗∗)

for every Banach space Y . This fails if we replace “ideal” with “u-ideal”. Indeed, if

we let X = ℓ̂2, the equivalent re-norming of ℓ2 obtained by Oja (see Remark 3.1),

then we have a counterexample. This proves that the statements in Theorem 4.4 are

strictly weaker than those in Theorem 4.3.

The next result shows that F(Y,X) being a u-ideal in W(Y,X∗∗) for all Banach

spaces Y is inherited by some subspaces of X .

Proposition 4.5. Suppose F(Y,X) is a u-ideal in W(Y,X∗∗) for every Banach

space Y and let ϕ ∈ HB(X,X∗∗) be the unconditional Hahn-Banach extension oper-

ator. Then F(Y, Z) is a u-ideal in W(Y, Z∗∗) for every Banach space Y and every

ideal Z in X such that ϕ∗(Z⊥⊥) ⊂ Z⊥⊥.

P r o o f. Let Y be a reflexive Banach space and let Z be an ideal in X such

that ϕ∗(Z⊥⊥) ⊂ Z⊥⊥. Denote by iZ : Z → X the natural embedding. Since

ϕ∗(Z⊥⊥) ⊂ Z⊥⊥, it follows from Theorem 2.4 that Z is a u-ideal in its bidual with

an unconditional extension operator ψ ∈ HB(Z,Z∗∗) such that i∗∗Z ψ
∗|Z∗∗ = ϕ∗i∗∗Z .

From Theorem 4.4 we have ϕ∗|X∗∗ in the weak∗-closure of F(X,X) in L(X∗∗, X∗∗).

By the Principle of Local Reflexivity it is routine to check that ψ∗|Z∗∗ is in the

weak∗-closure of L(Z∗∗, Z∗∗).

Choose a compact subset K of Z and an operator T ∈ W(Y, Z∗∗). Put

T̂ = i∗∗Z ◦ T ∈ W(Y,X∗∗). By Theorem 4.3 there is a net (Sα) ⊂ F(X,X) with

lim sup
α

‖T̂−2S∗∗
α T̂‖ 6 ‖T̂‖ = ‖T ‖ such that S∗∗

α T̂ → ϕ∗|X∗∗ T̂ weak∗ in L(X∗∗, X∗∗).

From the first paragraph there is a net (Ui) ⊂ F(Z,Z) such that U∗∗
i → ψ∗|Z∗∗ weak∗

in L(Z∗∗, Z∗∗). Assume (Sα) and (Ui) have the same index set. Thus we will write

(Uα) for the net in F(Z,Z). Note that Uα → IZ uniformly on compact sets in Z.

Now let u =
∑

n

x∗n ⊗ yn ∈ F(Y,X)∗ and Tα = S∗∗
α i

∗∗
Z T − i∗∗Z U

∗∗
α T . From this we get
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that

〈u, Tα〉 =
∑

n

〈x∗n, (S
∗∗
α i

∗∗
Z − i∗∗Z U

∗∗
α )(Tyn)〉

=
∑

n

〈x∗n, S
∗∗
α (i∗∗Z Tyn)〉 −

∑

n

〈i∗Zx
∗
n, U

∗∗
α (Tyn)〉

→
∑

n

〈x∗n, ϕ
∗(i∗∗Z Tyn)〉 −

∑

n

〈i∗Zx
∗
n, ψ

∗(Tyn)〉 = 0.

Hence Tα → 0 weakly in F(Y,X). Consequently, a suitable net of convex combina-

tions of Tα converges in norm to 0. Thus there exist α0, Ŝα0
∈ co{S∗∗

α : α > α0} and

Ûα0
∈ co{U∗∗

α : α > α0} such that ‖T̂ − 2Ŝα0
T̂‖ 6 ‖T̂‖ + ε, sup

z∈K
‖Ûα0

z − z‖ 6 ε and

‖Ŝα0
i∗∗Z T − i∗∗Z Ûα0

T )‖ 6 ε. We get

‖i∗∗Z T − 2i∗∗Z Ûα0
T ‖ 6 ‖i∗∗Z T − 2Ŝα0

i∗∗Z T ‖ + 2‖Ŝα0
i∗∗Z T − i∗∗Z Ûα0

T ‖ 6 ‖T̂‖ + 3ε.

Hence ‖T − 2Ûα0
T ‖ 6 ‖T ‖+ 3ε, and the result follows. �

In [21] Lima and Oja introduced and studied the weak metric approximation

property. Following Lima and Oja a Banach space X is said to have the weak metric

approximation property (weak MAP) if for every Banach space Y and every operator

T ∈ W(X,Y ) there is a net (Sα) ⊂ F(X,X) with sup
α

‖TSα‖ 6 ‖T ‖ such that

Sα → IX uniformly on compact subsets in X . It is easy to see that the MAP implies

the weak MAP. In [31, Corollary 1] it is shown that the weak MAP and the MAP

are indeed equivalent for a Banach space for which either its dual or its bidual has

the RNP.

Lima proved in [10] that X has the weak MAP if and only if F(Y,X) is an ideal

in K(Y,X∗∗) for every Banach space Y . Based on this, it is natural to guess that

an “unconditional version” of the weak MAP could be the property that for every

Banach space Y and every operator T ∈ K(X,Y ) there is a net (Sα) ⊂ F(X,X) with

lim sup
α

‖T − 2TSα‖ 6 ‖T ‖ such that Sα → IX uniformly on compact sets in X . As

remarked below, this property is strictly weaker than the statements in Theorem 4.4.

Proposition 4.6. Let X be a Banach space. The following statements are equiv-

alent.

(a) For every Banach space Y and every operator T ∈ K(X,Y ) there is a net

(Sα) ⊂ F(X,X) such that lim sup
α

‖T − 2TSα‖ 6 ‖T ‖ and Sα → IX uniformly

on compact sets.

(b) For every reflexive Banach space Y and every operator T ∈ K(X,Y ) there is

a net (Sα) ⊂ F(X,X) such that lim sup
α

‖T − 2TSα‖ 6 ‖T ‖ and TSα → T

uniformly on compact sets.
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(c) There is a Hahn-Banach extension operator ψ ∈ HB(X,X∗∗) with ‖IX∗∗ −

2ψ∗
|X∗∗

‖ = 1 such that ψ∗|X∗∗ is in the weak∗-closure of F(X,X) in

L(X∗∗, X∗∗).

P r o o f. (a) ⇒ (b) is trivial.

(b) ⇒ (c). The proof is essentially that of [10, Proposition 2.5].

(c) ⇒ (a) is similar to Theorem 4.4 (c) ⇒ (d). �

Remark 4.4. If ψ ∈ HB(X,X∗∗) is an unconditional extension operator then

‖IX∗∗ − 2ψ∗|X∗∗‖ = ‖IX∗∗∗ − 2ψk∗X‖ = 1. To see this, first note that 1 = ‖IX∗∗∗ −

2ψk∗X‖ = ‖IX∗∗∗∗ − 2k∗∗X ψ
∗‖. Write the identity operator on the dual X∗ as IX∗ =

k∗XkX∗ and the identity operator on the bidual X∗∗ as IX∗∗ = k∗X∗kX∗∗ . By taking

adjoints we obtain from the first equality that IX∗∗ = (IX∗)∗ = k∗X∗k∗∗X . It follows

that
‖IX∗∗ − 2ψ∗kX∗∗‖ = ‖IX∗∗ − 2IX∗∗ψ∗kX∗∗‖

= ‖k∗X∗kX∗∗ − 2k∗X∗k∗∗X ψ
∗kX∗∗‖ 6 1.

Proposition 4.7. Let X be a Banach space. If every equivalent re-norming of X

is a u-ideal in its bidual, then X is a strict u-ideal in its bidual.

P r o o f. Let x∗∗∗ ∈ X∗∗∗, x∗ = k∗X(x∗∗∗), and let ε > 0. By [12, Lemma 2.4]

there is an equivalent re-normingX1 ofX which is locally uniformly rotund at x∗ such

that BX ⊆ BX1
⊆ BX(0, 1+ε). Let | · | be the norm on X1 and let P : X∗∗∗

1 → X∗∗∗
1

be the u-ideal projection. Then P (x∗∗∗) = x∗ and

‖x∗∗∗ − 2x∗‖ 6 |x∗∗∗ − 2x∗| = |x∗∗∗ − 2P (x∗∗∗)| 6 |x∗∗∗| 6 (1 + ε)‖x∗∗∗‖,

which shows that ‖I − 2π‖ = 1 where π = kX∗k∗X , so X is a strict u-ideal in its

bidual. �

Remark 4.5. The statements in Proposition 4.6 are strictly weaker than those in

Theorem 4.4. Indeed, as noted in [5] (see p. 29), ℓ1 is not a strict u-ideal in its bidual.

Thus it follows from Proposition 4.7 that there exists an equivalent re-norming ℓ̂1 of

ℓ1 for which ℓ̂1 is not a u-ideal in its bidual. Since ℓ̂1 has the AP, Proposition 4.6

(c) is fulfilled with ψ = k
ℓ̂∗
1

.
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[20] Å. Lima and E. Oja: Ideals of operators, approximability in the strong operator topology,
and the approximation property. Michigan Math. J. 52 (2004), 253–265.
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