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Abstract. We give a characterization of totally η-umbilical real hypersurfaces and ruled
real hypersurfaces of a complex space form in terms of totally umbilical condition for the
holomorphic distribution on real hypersurfaces. We prove that if the shape operator A of
a real hypersurface M of a complex space form Mn(c), c 6= 0, n > 3, satisfies g(AX,Y ) =
ag(X,Y ) for any X, Y ∈ T0(x), a being a function, where T0 is the holomorphic distribution
on M , then M is a totally η-umbilical real hypersurface or locally congruent to a ruled real
hypersurface. This condition for the shape operator is a generalization of the notion of
η-umbilical real hypersurfaces.

Keywords: real hypersurface, totally η-umbilical real hypersurface, ruled real hypersur-
face
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1. Introduction

Let Mn(c) be an n-dimensional complex space form with constant holomorphic

sectional curvature 4c, and let M be a real hypersurface of Mn(c). We denote by J

the complex structure of Mn(c). Then M has an almost contact metric structure

(ϕ, ξ, η, g) induced from J .

If the shape operator A of a real hypersurfaceM is of the form A = aI, where I is

the identity, thenM is said to be totally umbilical. In Tashiro-Tachibana [12], it was

proved that no real hypersurface ofMn(c), c 6= 0, is totally umbilical. So we need the

notion of totally η-umbilical real hypersurfaces, that is, the shape operator A is of the

form A = aI + bη⊗ ξ. Totally η-umbilical real hypersurfaces of a complex projective

space CPn and a complex hyperbolic space CHn are determined by Takagi [11] and

Montiel [7].
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If a real hypersurfaceM ofMn(c), c 6= 0, is totally η-umbilical, then the structure

vector field ξ is a principal vector field of the shape operator A of M , that is,

Aξ = αξ. On the other hand, for any ruled real hypersurface M of Mn(c), we see

that the structure vector field ξ is not principal vector field of A. But the shape

operator A of a ruled real hypersurface M satisfies g(AX, Y ) = 0 for any vectors

X, Y ∈ T0(x) = {X ∈ Tx(M) : η(X) = 0}, where T0 is the holomorphic distribution

on M (see [4]).

It is an interesting and important problem to determine real hypersurfaces of com-

plex space forms with respect to some conditions for the holomorphic distribution

on real hypersurfaces. For instance, Kimura [3] classified real hypersurfaces of a

complex projective space CPn, n > 3, on which the sectional curvature of the holo-

morphic 2-plane spanned by a unit tangent vector orthogonal to the structure vector

field ξ is constant. When the ambient manifold is the complex hyperbolic space, the

corresponding result is given by M. Ortega and J.D. Pérez [8], and D. J. Sohn and

Y. J. Suh [10] (see also [9]).

So, we consider the condition for the holomorphic distribution on real hypersur-

faces such that the shape operator A of a real hypersurface M satisfies g(AX, Y ) =

ag(X, Y ) for any X, Y ∈ T0, a being a function, which includes the notion of totally

η-umbilical real hypersurfaces and is independent of the condition with respect to

the structure vector field ξ.

Our main theorem states that if the shape operator A of a real hypersurfaceM of

a complex space formMn(c), c 6= 0, n > 3, satisfies the condition above, thenM is a

totally η-umbilical real hypersurface or locally congruent to a ruled real hypersurface.

2. Preliminaries

Let Mn(c) denote the complex space form of complex dimension n (real dimen-

sion 2n) with constant holomorphic sectional curvature 4c. We denote by J the

almost complex structure ofMn(c). The Hermitian metric ofMn(c) will be denoted

by G.

LetM be a real (2n−1)-dimensional hypersurface immersed inMn(c). We denote

by g the Riemannian metric induced on M from G. We take the unit normal vector

field N of M in Mn(c). For any vector field X tangent to M , we define ϕ, η and ξ

by

JX = ϕX + η(X)N, JN = −ξ,

where ϕX is the tangential part of JX , ϕ is a tensor field of type (1,1), η is a 1-form,

and ξ is the unit vector field on M . Then they satisfy

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ϕX) = 0
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for any vector field X tangent to M . Moreover, we have

g(ϕX, Y ) + g(X, ϕY ) = 0, η(X) = g(X, ξ),

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ).

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on M .

We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇
the one in M determined by the induced metric. Then the Gauss and Weingarten

formulas are given respectively by

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX,

for any vector fields X and Y tangent to M . We call A the shape operator of M .

For the contact metric structure on M we have

∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ.

We denote by R the Riemannian curvature tensor field of M . Then the equation

of Gauss is given by

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX

− g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ}
+ g(AY, Z)AX − g(AX, Z)AY,

and the equation of Codazzi by

(∇XA)Y − (∇Y A)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}.

From the equation of Gauss, the Ricci tensor S of M is given by

S(X, Y ) = (2n + 1)cg(X, Y ) − 3cη(X)η(Y )

+ TrAg(AX, Y ) − g(AX, AY ),

where TrA is the trace of A.

If the shape operatorA ofM is of the form AX = aX+bη(X)ξ for some functions a

and b, then M is said to be totally η-umbilical (see Tashiro-Tachibana [12]). It is

well known that if M is a totally η-umbilical real hypersurface of a complex space

form Mn(c), c 6= 0, n > 2, then M has two constant principal curvatures (see

Takagi [11]).
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Example 1. Let C
n be the space of (n + 1)-tuples of complex numbers

(z1, . . . , zn+1). Put S2n+1 =
{

(z1, . . . , zn+1) ∈ C
n+1 :

n+1
∑

j=1

|zj |2 = 1
}

. For a positive

number r we denote by M ′(2n, r) a hypersurface of S2n+1 defined by

n
∑

j=1

|zj |2 = r|zn+1|2,
n+1
∑

j=1

|zj|2 = 1.

Let π : S2n+1 −→ CPn be the natural projection. ThenM(2n−1, r) = π(M ′(2n, r))

is a connected compact real hypersurface of CPn with two constant principal curva-

tures and totally η-umbilical. We call M(2n − 1, r) a geodesic hypersphere of CPn.

We have (see [1] and [11])

Theorem A. Let M be a totally η-umbilical real hypersurface of CPn, n > 2,

then M is locally congruent to a geodesic hypersphere.

Moreover, any totally η-umbilical real hypersurface of Mn(c) is a pseudo-Einstein

real hypersurface, that is, the Ricci tensor S of M satisfies S(X, Y ) = ag(X, Y ) +

bη(X)η(Y ) for some functions a and b (cf. [13]).

Example 2 ([7]). Let H2n+1

1 be a (2n + 1)-dimensional anti-de Sitter space

in C
n+1, which is a Lorentz manifold of constant sectional curvature −1. H2n+1

1 is

a principal S1-bundle over the complex hyperbolic space CHn with projection map

π : H2n+1

1 −→ CHn. CHn is of constant holomorphic sectional curvature −4.

For integers p and q with p + q = n − 1 and t ∈ R, 0 < t < 1, we consider the

Lorentz hypersurface M ′

p,q(t) of H
2n+1

1 defined by

−|z0|2 +

n
∑

j=1

|zj |2 = −1, t

(

−|z0|2 +

p
∑

j=1

|zj |2
)

= −
n

∑

k=p+1

|zk|2,

which is isometric to the product

H2p+1

1 (1/(t − 1)) × S2q+1(t/(1 − t)),

where 1/(t−1) and t/(1−t) are the respective squares of the radii. We putMp,q(t) =

π(M ′

p,q(t)). Mp,q(t) is a real hypersurface of CHn with constant three principal

curvatures tanh θ, cosh θ and 2 coth 2θ with multiplicities 2p, 2q and 1 respectively,

where we have put tanh θ =
√

t. Mp,q(t) is a tube of radius θ over a (n − q − 1)-

dimensional totally geodesic complex submanifold CHn−q−1 of CHn.
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If p = 0 or q = 0, Mp,q(t) is pseudo-Einstein and totally η-umbilical. M0,n−1(t)

is called the geodesic hypersphere and the Ricci tensor S is given by S(X, Y ) =

(−2n + (2n − 2) coth2 θ)g(X, Y ) + 2nη(X)η(Y ).

Mn−1,0 is a tube over a complex hyperbolic hyperplane and the Ricci tensor S of

Mn−1,0(t) is given by S(X, Y ) = (−2n + (2n − 2) tanh2 θ)g(X, Y ) + 2nη(X)η(Y ).

For fixed t ∈ R, t > 0, we denote by L(t) the Lorentz hypersurface of H2n+1

1
, given

by

−|z0|2 +
n

∑

j=1

|zj|2 = −1, |z0 − z1|2 = t.

We put M∗

n(t) = π(L(t)). Then M∗

n(t) is a totally η-umbilical real hypersurface

of CHn with two constant principal curvatures 1 and 2. We see that M∗

n(t) is

congruent to M∗

n(1) = M∗

n for each t > 0. M∗

n is a pseudo-Einstein real hypersurface

with S(X, Y ) = −2g(X, Y ) + 2nη(X)η(Y ). We call M∗

n a self-tube.

We notice that a complete and connected real hypersurface of CHn, n > 3, is

pseudo-Einstein if and only if it is totally η-umbilical (Montiel [7]).

The following theorem is a direct consequence of theorems in Montiel [7].

Theorem B. Let M be a totally η-umbilical real hypersurface of CHn, n > 3.

Then M is locally congruent to one of the following spaces:

(a) a geodesic hypersphere M0,n−1(tanh2 θ) of radius θ > 0,

(b) a tube Mn−1,0(tanh2 θ) of radius θ > 0 over a complex hyperbolic hyperplane,

(c) a self-tube M∗

n.

For r > 0 and the unit normal vector field N , we define a map ϕr : M∗

n −→ CHn

by ϕr(x) = F (rN(x)), where F (rN(x)) is the point of CHn reached at distance r

along the geodesic of CHn starting at x with initial direction rN(x). Then the real

hypersurface ϕrM
∗

n(t) is congruent toM∗

n. Therefore, we say thatM
∗

n is a “self-tube”

(see [7, p. 526]).

Example 3 ([2], [4], [6]). Let M be a real hypersurface of a complex space

form Mn(c), c 6= 0, and let T0 be the distribution defined by T0(x) = {X ∈ Tx(M) :

X ⊥ ξ} for x ∈ M . If T0 is integrable and its integral manifold is a totally geodesic

submanifold Mn−1(c), then M is said to be ruled real hypersurface. Let γ(t) (t ∈ I)

be an arbitrary (regular) curve in Mn(c). Then for every t ∈ I there exists a totally

geodesic submanifoldMn−1(c) inMn(c) which is orthogonal to the plane τt spanned

by {γ′(t), Jγ′(t)}. Here we denote by Mn−1
t (c) such a totally geodesic submanifold.

Let M = {x ∈ Mn−1
t (c) : t ∈ I}. Then the construction of M asserts that M is

a ruled real hypersurface in Mn(c). Moreover, the construction of M tells us that

there are many ruled real hypersurfaces. The holomorphic sectional curvature H of

the ruled real hypersurface M is 4c (see [3]).
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3. Proof of the theorem

We prove our main theorem.

Theorem 3.1. LetM be a real hypersurface of a complex space formMn(c), c 6=
0, n > 3. Let T0 denote the holomorphic distribution onM defined by T0(x) = {X ∈
Tx(M) : η(X) = 0}. If the shape operator A of M satisfies g(AX, Y ) = ag(X, Y )

for any X, Y ∈ T0, a being a function, then M is either totally η-umbilical or it is

locally a ruled real hypersurface.

To prove the theorem above, we prepare some lemmas.

Let M be a real hypersurface of Mn(c), c 6= 0, n > 3. Suppose that the shape

operator A satisfies g(AX, Y ) = ag(X, Y ) for any X, Y ∈ T0. We can choose a local

field of orthonormal frames {e1, . . . , e2n−2, ξ} of M such that the shape operator A

is represented by a matrix of the form

A =











a . . . 0 h1

...
. . .

...
...

0 . . . a h2n−2

h1 . . . h2n−2 b











,

where we have put hi = g(Aei, ξ), i = 1, . . . , 2n − 2 and b = g(Aξ, ξ).

We notice that {ϕe1, . . . , ϕe2n−2, ξ} is also a local field of orthonormal frames
of M .

First of all, we consider the case a 6= 0.

Lemma 3.2. Let M be a real hypersurface ofMn(c), c 6= 0, n > 3. Suppose that

the shape operator A of M satisfies g(AX, Y ) = ag(X, Y ), a 6= 0, for any X, Y ∈ T0.

Then h1, . . . , h2n−2 satisfy

hig(ϕej , ek) = hjg(ϕek, ei) = hkg(ϕei, ej)

for any i 6= j, j 6= k, k 6= i.

P r o o f. In the following, let i, j, k and l satisfy i, j, k, l 6 2n−2. By the equation

of Codazzi, we have

(∇ei
A)ej − (∇ej

A)ei = 2cg(ei, ϕej)ξ.
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Since Aei = aei + hiξ for i = 1, . . . , 2n − 2, we have

(∇ei
A)ej − (∇ej

A)ei

= ∇ei
Aej − A∇ei

ej −∇ej
Aei + A∇ej

ei

= ∇ei
(aej + hjξ) − A∇ei

ej −∇ej
(aei + hiξ) + A∇ej

ei

= (eia)ej + a∇ei
ej + (eihj)ξ + hjϕAei − A∇ei

ej

− (eja)ei − a∇ej
ei − (ejhi)ξ − hiϕAej + A∇ej

ei

= 2cg(ei, ϕej)ξ

for any i 6= j. Thus, for any k such that k 6= i and k 6= j, we have

0 = ag(∇ei
ej −∇ej

ei, ek) + ag(hjϕei − hiϕej , ek) − g(∇ei
ej −∇ej

ei, Aek)(3.1)

= ahjg(ϕei, ek) − ahig(ϕej, ek) + hkg(ej ,∇ei
ξ) − hkg(ei,∇ej

ξ)

= ahjg(ϕei, ek) − ahig(ϕej, ek) + hkg(ej , ϕAei) − hkg(ei, ϕAej)

= ahjg(ϕei, ek) − ahig(ϕej, ek) + 2ahkg(ej, ϕei).

By this equation, we obtain

ahkg(ϕej , ei) − ahjg(ϕek, ei) + 2ahig(ek, ϕej) = 0,(3.2)

ahig(ϕek, ej) − ahkg(ϕei, ej) + 2ahjg(ei, ϕek) = 0.(3.3)

Since a 6= 0, the equations (3.1) and (3.2) imply hi(ϕej , ek) = hkg(ϕei, ej). Us-

ing (3.3), we have

hig(ϕej , ek) = hjg(ϕek, ei) = hkg(ϕei, ej).

Lemma 3.3. Let M be a real hypersurface ofMn(c), c 6= 0, n > 3. Suppose that

the shape operator A of M satisfies g(AX, Y ) = ag(X, Y ), a 6= 0, for any X, Y ∈ T0.

If hi = 0 for some i, then h1 = . . . = h2n−2 = 0.

P r o o f. Suppose that there exists hi which satisfies hi = 0. Then we have

hjg(ϕek, ei) = hkg(ϕei, ej) = 0

for any j and k such that j 6= k, k 6= i and i 6= j. If there is a hj 6= 0, then

g(ϕek, ei) = 0 for any k such that k 6= i and k 6= j. Thus we have ei = ϕej or

ei = −ϕej . Since hkg(ϕei, ej) = 0, we have hk = 0 for any k such that k 6= i and

k 6= j.
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Let l satisfy l 6= i, l 6= j and l 6= k. Since hk = 0 and hi = 0, we have

hjg(ϕek, el) = hkg(ϕel, ej) = 0,

hjg(ϕei, el) = hig(ϕel, ej) = 0.

Since hj 6= 0, el satisfies g(ϕek, el) = 0 for any k 6= j, k 6= i and g(ϕei, el) = 0. Thus

we obtain el = ϕej or el = −ϕej. Then we have ei = el or ei = −el. This is a

contradiction. So we see that if there is an hi = 0, then h1 = . . . = h2n−2 = 0. �

Lemma 3.4. Let M be a real hypersurface ofMn(c), c 6= 0, n > 3. Suppose that

the shape operator A of M satisfies g(AX, Y ) = ag(X, Y ), a 6= 0, for any X, Y ∈ T0.

Then there exists i such that hi = 0.

P r o o f. Suppose that h1 6= 0, . . . , h2n−2 6= 0, and i, j, k and l are different from

each other. By Lemma 3.1, we have

hig(ϕej , ek) = hjg(ϕek, ei) = hkg(ϕei, ej),(3.4)

hjg(ϕek, el) = hkg(ϕel, ej) = hlg(ϕej , ek),(3.5)

hkg(ϕel, ei) = hlg(ϕei, ek) = hig(ϕek, el),(3.6)

hlg(ϕei, ej) = hig(ϕej , el) = hjg(ϕel, ei).(3.7)

By (3.5) and (3.7), we obtain

hig(ϕej, ek) =
hihk

hl

g(ϕel, ej) = −hihk

hl

× hl

hi

g(ϕei, ej) = −hkg(ϕei, ej).

Since hig(ϕej , ek) = hkg(ϕei, ej), we have hig(ϕej , ek) = 0. Since hi 6= 0, we have

g(ϕej , ek) = 0 for any j and k such that i 6= j, j 6= k and k 6= i. Here, we fix the

index i. Then we obtain ek = ϕei or ek = −ϕei for any k 6= i. This is a contradiction.

Consequently, we see that there is a hi such that hi = 0. �

P r o o f of Theorem 3.1. From Lemmas 3.2, 3.3 and 3.4, if a 6= 0, we have hi = 0

for all i, and hence A = aI+bη⊗ξ. ThusM is a totally η-umbilical real hypersurface.

We next suppose that a = 0. Then g(AX, Y ) = 0 for any X, Y ∈ T0. Using the

basic formulas from the Preliminaries, we easily check that, for any X, Y ∈ T0, we

have

g(∇XY, ξ) = −g(Y, ϕAX) = g(AX, ϕY ) = 0.

From here we see that always ∇XY ∈ T0 and the distribution T0 is integrable.

Moreover, ∇̃XY = ∇XY , and hence the integral manifold of T0 is a totally geodesic

complex submanifold ofMn(c). Consequently,M is locally a ruled real hypersurface.

This completes the proof of our theorem. �

From Theorem A and Theorem 3.1 we have
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Theorem 3.5. Let M be a real hypersurface of a complex projective space CPn,

n > 3. If the shape operatorA ofM satisfies g(AX, Y ) = ag(X, Y ) for anyX, Y ∈ T0,

a being a function, then M is locally congruent to a geodesic hypersphere or a ruled

real hypersurface.

From Theorem B and Theorem 3.1, we have the following theorem.

Theorem 3.6. LetM be a real hypersurface of a complex hyperbolic space CHn,

n > 3. If the shape operatorA ofM satisfies g(AX, Y ) = ag(X, Y ) for anyX, Y ∈ T0,

a being a function, then M is locally congruent to one of the following spaces:

(a) a ruled real hypersurface,

(b) a geodesic hypersphere M0,n−1(tanh2 θ) of radius θ > 0,

(c) a tube Mn−1,0(tanh2 θ) of radius θ > 0 over a complex hyperbolic hyperplane,

(d) a self-tube M∗

n.
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