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Abstract. Let µ be a nonnegative Radon measure on Rd which only satisfies µ(B(x, r)) 6

C0r
n for all x ∈ Rd , r > 0, with some fixed constants C0 > 0 and n ∈ (0, d]. In this paper,

a new characterization for the space RBMO(µ) of Tolsa in terms of the John-Strömberg
sharp maximal function is established.
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1. Introduction

Let µ be a nonnegative Radon measure on Rd which only satisfies the growth

condition that there exist C0 > 0 and n ∈ (0, d] such that for all x ∈ Rd and r > 0,

(1.1) µ(B(x, r)) 6 C0r
n,

where B(x, r) is the open ball according to the usual Euclidean metric with the center

at x and the radius r. Such a measure µ in (1.1) is not necessarily doubling, which

is a key assumption in the classical theory of harmonic analysis. Recall that µ is

said to be doubling if there exists C > 0 such that for all x ∈ Rd and r > 0,

µ (B(x, 2r)) 6 Cµ (B(x, r)). During the recent years, it was shown that many results

on the Calderón-Zygmund theory remain valid for non-doubling measures. One of

the main motivations for extending the classical theory to the non-doubling context

was the solution of several questions related to analytic capacity, like Vitushkin’s

The first author is supported by NNSF (No. 10671210) of China and the second (corre-
sponding) author is supported by National Science Foundation for Distinguished Young
Scholars (No. 10425106) and NCET (No. 04-0142) of Ministry of Education of China.

159



conjecture or Painlevé’s problem; see [10], [11], [13] or survey papers [12], [14], [15],

[16] for more details.

In [9], Tolsa found a suitable substitute for the classical BMO space in this setting,

which is denoted by RBMO(µ). This space is small enough to posses the properties

such as the John-Nirenberg inequality and big enough for Calderón-Zygmund opera-

tors which are bounded on L2(µ) to be also bounded from L∞(µ) into RBMO(µ). It

should be pointed out that BMO-type spaces with non-doubling measures were also

considered by Mateu, Mattila, Nicolau and Orobitg in [5], as well as by Nazarov, Treil

and Volberg in [7]. However, none of them can guarantee both the above mentioned

properties at the same time.

The purpose of this paper is to establish a new characterization for RBMO(µ) in

terms of the John-Strömberg sharp maximal function. Our result shows that as in the

case that µ is the d-dimensional Lebesgue measure, a measurable function f belongs

to RBMO(µ) if and only if its John-Strömberg sharp maximal function is in L∞(µ),

and the local integrability of f is superfluous in the definition of f ∈ RBMO(µ). To

state this result more precisely, we first recall some definitions and notation.

By a cube Q ⊂ Rd we mean a closed cube whose sides are parallel to the axes

and centered at some point of suppµ, and we denote its side length by l(Q). If

µ(Rd) < ∞, we also regard Rd as a cube. Let α, β be two positive constants. We say

that a cube Q is (α, β)-doubling if it satisfies µ(αQ) 6 βµ(Q), where and in what

follows, given λ > 0 and any cube Q, λQ denotes the cube with the same center as

Q whose radius is λ times that of Q. It was pointed out by Tolsa (see [9, pp. 95–96])

that if β > αn, then for any x ∈ suppµ and any R > 0 there exists an (α, β)-doubling

cube Q centered at x with l(Q) > R, and that if β > αd, then for µ-almost every

x ∈ Rd there exists a sequence of (α, β)-doubling cubes {Qk}k∈N centered at x with

l(Qk) → 0 as k → ∞. In the sequel, by a doubling cube we mean a (2, βd)-doubling

cube, where βd is a constant such that βd > 2d.

For any cube Q, let Q̃ be the smallest doubling cube which has the form 2kQ with

k ∈ N ∪ {0}. For two cubes Q1 ⊂ Q2, set

KQ1,Q2 = 1 +

NQ1,Q2∑

k=1

µ(2kQ1)

[l(2kQ1)]n
,

where NQ1,Q2 is the first positive integer k such that l(2kQ1) > l(Q2).

As usual, L1
loc(µ) denotes the set of all locally integrable functions with respect to

µ. We now recall the definition of RBMO(µ) given by Tolsa in [9].
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Definition 1. Let ̺ ∈ (1,∞) be fixed. We say that f ∈ L1
loc(µ) is in the space

RBMO(µ) if there exists some constant C1 > 0 such that

(1.2) sup
Q

1

µ(̺Q)

∫

Q

|f(x) − m
Q̃

(f)| dµ(x) 6 C1,

and for any two doubling cubes Q1 ⊂ Q2,

(1.3) |mQ1(f) − mQ2(f)| 6 C1KQ1,Q2 ,

where the supremum is taken over all cubes centered at some point of suppµ, and

mQ(f) denotes the mean value of f on Q, that is,

mQ(f) =
1

µ(Q)

∫

Q

f(y) dµ(y).

The minimal constant C1 in (1.2) and (1.3) is defined to be the RBMO(µ) norm of

f and denoted by ‖f‖RBMO(µ).

For a cube Q with µ(Q) 6= 0 and a real-valued µ-measurable function f , we define

the median value of f on the cube Q, denoted by mf (Q), to be one of the numbers

such that

µ({y ∈ Q : f(y) > mf (Q)}) 6 1
2µ(Q)

and

µ({y ∈ Q : f(y) < mf (Q)}) 6 1
2µ(Q).

For the case µ(Q) = 0, we define mf (Q) = 0. If f is complex-valued, the median

value mf (Q) of f is defined by

mf (Q) = mRe(f)(Q) + imIm(f)(Q),

where i2 = −1.

Let 0 < s < 1. For any fixed cube Q and µ-measurable function f , we define the

quantity m0,s;Q(f) by

m0,s;Q(f) = inf{t > 0: µ({y ∈ Q : |f(y)| > t}) < sµ(3
2Q)}

if µ(3
2Q) 6= 0, and m0,s;Q(f) = 0 if µ(3

2Q) = 0. The John-Strömberg sharp maximal

function M ♯
0,sf for any µ-measurable function f is defined by

M ♯
0,sf(x) = sup

Q∋x

m0,s;Q(f − mf (Q̃)) + sup
x∈Q⊂R

Q,R doubling

|mf (Q) − mf (R)|

KQ,R

.

For the case that µ is the d-dimensional Lebesgue measure, this sharp maximal

operator was introduced by John [3] and then rediscovered by Strömberg [8].

Using M ♯
0,s, we introduce the function space RBMO0,s(µ) as follows.
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Definition 2. Let s ∈ (0, 1). A µ-measurable function f is said to belong to the

space RBMO0,s(µ) if M ♯
0,sf ∈ L∞(µ). Moreover, ‖M ♯

0,sf‖L∞(µ) is defined to be the

RBMO0,s(µ) norm of f and denoted by ‖f‖RBMO0,s(µ).

The main purpose of this paper is to establish the coincidence between the space

RBMO(µ) and the space RBMO0,s(µ) in a certain range of s.

Theorem 1. Let s ∈ (0, β−2
d /2). The space RBMO(µ) and the space RBMO0,s

(µ) coincide with equivalent norms.

Remark 1. If µ is the d-dimensional Lebesgue measure, it was proved by Ström-

berg in [8] that RBMO(µ) = RBMO0,s(µ) if and only if s ∈ (0, 1/2]. A crucial

ingredient in Strömberg’s proof is Lemma 3.6 therein, which heavily depends on the

doubling property of the considered measure µ. It is not clear so far if there is a

proper substitution of Lemma 3.6 in [8] when µ is a nonnegative Radon measure

only satisfying (1.1).

Remark 2. Let µ be an absolutely continuous measure on Rd, namely, such

that there exists a weight ω such that dµ = ω dx. Lerner [4] also established the

John-Strömberg characterization of BMO(ω) in [5].

We now give some applications of Theorem 1.

Corollary 1. Let f be a measurable function with respect to µ. If f satisfies

(1.3) for doubling cubes, then f ∈ RBMO(µ) if and only if

(1.4) lim
t→∞

sup
Q⊂Rd

1

µ(3
2Q)

µ({y ∈ Q : |f(x) − mf(Q̃)| > t}) = 0.

Let ϕ be a strictly increasing and nonnegative function on [0,∞) such that

lim
t→∞

ϕ(t) = ∞.

Denote by ϕ−1 the inverse function of ϕ. Notice that for any cube Q,

m0,s;Q(f − mf (Q̃)) 6 ϕ−1

(
1

sµ(3
2Q)

∫

Q

ϕ(|f(x) − mf (Q̃)|) dµ(x)

)
.

From this and Theorem 1, we immediately deduce the following conclusion.
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Corollary 2. Let f be a measurable function with respect to µ. If f satisfies

(1.3) for doubling cubes, ϕ(|f |) is µ-locally integrable and

sup
Q⊂Rd

1

µ(3
2Q)

∫

Q

ϕ(|f(x) − mf (Q̃)|) dµ(x) < ∞,

then f ∈ RBMO(µ).

We remark that Corollary 2 when ϕ(r) = rp with p ∈ (0, 1) was obtained in

[1], which was used to obtain the boundedness of some operators in RBMO(µ) and

Lebesgue spaces with non-doubling measures; see [1] and [6]. Other typical examples

of ϕ satisfying Corollary 2 are

ϕ(t) = log(. . . log︸ ︷︷ ︸
k

(ek + t) . . .)

with k ∈ N.

Throughout the paper, we always denote by C a positive constant which is inde-

pendent of the main parameters, but it may vary from line to line. A constant with

subscript such as C1 does not change in different occurrences. The symbol A . B

means that A 6 CB, and the symbol A ∼ B means that A . B and B . A. For a

µ-measurable set E ⊂ Rd, we denote by χ
E
the characteristic function of E.

2. Proofs of Theorem 1 and Corollary 1

We begin with some preliminary lemmas. The following Lemma 1 and Lemma 2

are special cases of Lemma 2.5 and Lemma 2.3 in [2], respectively. For reader’s

convenience, we still present some details here.

Lemma 1. Let s ∈ (0, β−1
d /2] and let Q be a doubling cube. If f is real-valued,

then

|mf (Q)| 6 m0,s;Q(f).

P r o o f. If f is real-valued and mf (Q) > 0, we have

{y ∈ Q : |f(y)| > |mf (Q)|} = {y ∈ Q : f(y) > mf (Q)} ∪ {y ∈ Q : f(y) 6 −mf(Q)};

and if mf(Q) < 0, then

{y ∈ Q : |f(y)| > |mf (Q)|} = {y ∈ Q : f(y) > −mf (Q)} ∪ {y ∈ Q : f(y) 6 mf (Q)}.
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Therefore, by the definition of mf (Q),

µ({y ∈ Q : |f(y)| > |mf (Q)|}) > max{µ({y ∈ Q : f(y) > mf (Q)}),

µ({y ∈ Q : f(y) 6 mf (Q)})} > µ(Q)/2.

This fact implies that for any t > 0 satisfying

µ({y ∈ Q : |f(y)| > t}) < sµ(3
2Q),

we have that t > |mf (Q)|; otherwise we have a contradiction

µ({y ∈ Q : |f(y)| > |mf (Q)|}) < sµ(2Q) 6 1
2µ(Q).

Then the desired conclusion follows by taking the infimum over t, which completes

the proof of Lemma 1. �

Now for any µ-measurable function f , we define the doubling local maximal func-

tion Md
0,sf by

Md
0,sf(x) = sup

Q∋x, Q doubling
m0,s;Q(f).

Lemma 2. Let s ∈ (0, β−1
d ). Then for any λ > 0,

µ({x ∈ Rd : |f(x)| > λ} 6 µ({x ∈ Rd : Md
0,sf(x) > λ}).

P r o o f. We first claim that

µ
({

x ∈ Rd : χ{y∈Rd : |f(y)|>λ}(x) > βds
})

6 µ
({

x ∈ Rd : Md
0,sf(x) > λ

})
.

In fact, the Lebesgue differentiation theorem tells that for µ-a.e. x such that

|f(x)| > λ, there is a doubling cube Q containing x such that

µ({y ∈ Q : |f(y)| > λ}) > sµ(3
2Q);

while for any t > m0,s;Q(f) we have

µ({y ∈ Q : |f(y)| > t}) < sµ(3
2Q).

These facts indicate that m0,s;Q(f) > λ and hence Md
0,sf(x) > λ.

Observe that for s ∈ (0, β−1
d ),

{x ∈ Rd : |f(x)| > λ}) ⊂
{
x ∈ Rd : χ{y∈Rd : |f(y)|>λ}(x) > βds

}
.

The desired conclusion of Lemma 2 then follows directly. �
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Lemma 3. For any fixed q > 0 and a real-valued function f ∈ RBMO0,s(µ), let

fq(x) = f(x) when |f(x)| 6 q, and fq(x) = qf(x)/|f(x)| when |f(x)| > q. Moreover,

for each Q ⊂ Rd, let

mq
f (Q) = min(m+

f (Q), q) − min(m−
f (Q), q),

where m+
f (Q) = max(mf (Q), 0) and m−

f (Q) = −min(mf (Q), 0). Then for any cubes

Q and R,

|mq
f (Q) − mq

f (R)| 6 |mf (Q) − mf (R)|

and

|fq − mq
f (Q)| 6 |f − mf (Q)|.

P r o o f. We only prove the first conclusion of this lemma by similarity. Without

loss of generality, we may assumemf (Q) < mf (R). We then have the following three

cases.

Case 1. mf (Q) > 0 and mf (R) > 0. In this case, mq
f (Q) = min(mf (Q), q) and

mq
f (R) = min(mf (R), q). A trivial computation yields to that if mf (Q) > q and

mf (R) > q, then |mq
f (Q) − mq

f (R)| = 0; if mf (Q) < q and mf (R) < q, then

|mq
f (Q) − mq

f (R)| = |mf (Q) − mf(R)|;

and if mf(Q) < q 6 mf (R), then

|mq
f (Q) − mq

f (R)| = q − mf (Q) 6 |mf (Q) − mf (R)|.

Case 2. mf (Q) 6 0 and mf (R) 6 0. In this case, mq
f (Q) = −min(−mf (Q), q)

and mq
f (R) = −min(−mf (R), q). Exactly as in Case 1, we also have

|mq
f (Q) − mq

f (R)| 6 |mf (Q) − mf(R)|.

Case 3. mf (Q) 6 0 < mf (R). In this case, mq
f (Q) = −min(−mf(Q), q) and

mq
f (R) = min(mf (R), q).

Thus, if −mf(Q) > q and mf (R) > q, then |mq
f (Q) − mq

f (R)| = 0; if −mf(Q) < q

and mf (R) < q, then

|mq
f (Q) − mq

f (R)| = |mf (Q) − mf(R)|;

if mf (R) < q 6 −mf(Q), then

|mq
f (Q) − mq

f (R)| = q + mf (R) 6 |mf (Q) − mf (R)|;
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and if −mf(Q) < q 6 mf (R), then

|mq
f (Q) − mq

f (R)| = q − mf (Q) 6 |mf (Q) − mf (R)|.

Combining these estimates then leads to the first conclusion of Lemma 3. �

Lemma 4. For any given f ∈ L1
loc(µ), let ‖f‖◦ be defined to be the minimal

constant C2 > 0 such that

sup
Q∋x

1

µ(2Q)

∫

Q

|f(y) − mf(Q̃)| dµ(y) 6 C2,

and for any two doubling cubes Q ⊂ R,

|mf (Q) − mf (R)| 6 C2KQ,R.

Then ‖ · ‖◦ is a norm of RBMO(µ), which is equivalent to ‖ · ‖RBMO(µ).

Lemma 4 was established by Tolsa in [9, p. 116]. Based on this, we identify

‖f‖◦ with ‖f‖RBMO(µ). Moreover, by Remark 2.7 of [9], we can also replace µ(2Q)

by µ(̺Q) with any fixed ̺ > 1 in Lemma 4 to obtain other equivalent norms of

RBMO(µ).

P r o o f o f T h e o r e m 1. It is easy to verify that if f ∈ RBMO(µ), then for

any cube Q,

m0,s;Q(f − mf (Q̃)) 6
s−1

µ(3
2Q)

∫

Q

|f(x) − mf (Q̃)| dµ(x),

and so

‖f‖RBMO0,s(µ) . s−1‖f‖RBMO(µ).

To see the inverse, if we can prove that for all real-valued functions f ∈

RBMO0,s(µ),

(2.1) ‖f‖RBMO(µ) . ‖f‖RBMO0,s(µ),

then for any function f ∈ RBMO0,s(µ) with f = f1+if2, where f1 and f2 are the real

and the imaginary part of f respectively, since ‖f1‖RBMO0,s(µ) and ‖f2‖RBMO0,s(µ)

are both no more than ‖f‖RBMO0,s(µ), we then also have that (2.1) holds for any

f ∈ RBMO0,s(µ) and this would complete the proof of Theorem 1.

To prove (2.1), if ‖f‖RBMO0,s(µ) = 0, the definition of ‖f‖RBMO0,s(µ) tells us on

the one hand that for any doubling Q and R, mf (Q) = mf (R), and on the other
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hand that sup
Q

m0,s;Q(f −mf (Q̃)) = 0. Therefore there is a constant Z such that for

any doubling cube Q, mf (Q) = Z and so m0,s;Q(f − Z) = 0 for any doubling cube

Q. This via Lemma 2 shows that f(x) = Z for µ-almost every x ∈ Rd, and then

‖f‖RBMO(µ) = 0.

Now we assume ‖f‖RBMO0,s(µ) > 0. For each fixed cube Q ⊂ Rd, set Q′ = 4
3Q.

Let B be a positive constant which will be determined later. Recalling that s ∈

(0, β−2
d /2), we can take γ > βd such that γs < β−1

d /2. For µ-a.e. x ∈ Q such that

|f(x) − mf (Q̃)| > B‖f‖RBMO0,s(µ),

by the Lebesgue differentiation theorem there is a doubling cube Qx centered at x

such that

(2.2) mQx
(χ{y∈Rd : |f(y)−mf(Q̃)|>B‖f‖RBMO0,s(µ)}

) > γs.

Moreover, we can suppose that Qx is the biggest doubling cube satisfying (2.2) with

side length 2−kl(Q) for some k ∈ N and l(Qx) 6 l(Q)/10. By Besicovitch’s covering

theorem, there exists an almost disjoint subfamily {Qi}i of {Qx}x such that

{x ∈ Q : |f(x) − mf (Q̃)| > B‖f‖RBMO0,s(µ)} ⊂
⋃

i

Qi.

Because Qi satisfies (2.2) and Qi ⊂ Q′, it is easy to see that

∑

i

µ(Qi) < γ−1s−1
∑

i

µ({x ∈ Qi : |f(x) − mf (Q̃)| > B‖f‖RBMO0,s(µ)})

6 γ−1s−1µ({x ∈ Q′ : |f(x) − mf (Q̃)| > B‖f‖RBMO0,s(µ)}).

Notice that the definition of M ♯
0,sf(x) implies that for any ε > 0,

µ({y ∈ Q′ : |f(y) − mf (Q̃′)| > ‖f‖RBMO0,s(µ) + ε}) < sµ(3
2Q′).

Therefore, if we can show that there exists a constant C3 > 0 such that

(2.3) |mf (Q̃′) − mf (Q̃)| 6 C3‖f‖RBMO0,s(µ),

by taking ε = ‖f‖RBMO0,s(µ) and B > C3 + 2 we then have

(2.4)
∑

i

µ(Qi) 6 γ−1s−1µ({x ∈ Q′ : |f(x) − mf (Q̃′)| > 2‖f‖RBMO0,s(µ)})

< γ−1µ(2Q).
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We now prove (2.3). In fact, if l(Q̃) 6 l(Q̃′), then Q̃ ⊂ 4Q̃′. Setting Q′′ = 4̃Q̃′, by

Lemma 2.1 in [9], we obtain

|mf (Q̃′) − mf (Q′′)| 6 K
Q̃′,Q′′

‖f‖RBMO0,s(µ)

. (K
Q̃′,4Q̃′

+ K4Q̃′Q′′
)‖f‖RBMO0,s(µ)

. ‖f‖RBMO0,s(µ)

and

|mf (Q′′) − mf (Q̃)| 6 K
Q̃,Q′′‖f‖RBMO0,s(µ) . KQ,Q′′‖f‖RBMO0,s(µ)

. ‖f‖RBMO0,s(µ).

We then see that

|mf (Q̃′) − mf (Q̃)| 6 |mf (Q̃′) − mf (Q′′)| + |mf (Q′′) − mf (Q̃)| . ‖f‖RBMO0,s(µ).

Assume now that l(Q̃′) 6 l(Q̃), then Q̃′ ⊂ 4Q̃. There is an integerm > 1 such that

l(Q̃′) > l(2mQ)/10, Q̃′ ⊂ 2mQ ⊂ 4Q̃. Because l(Q̃′) ∼ l(2mQ), another application

of Lemma 2.1 in [9] leads to K
Q̃′,2mQ

. 1. Setting Q0,1 = 4̃Q̃, we then have that

K
Q̃′,Q0,1

. K
Q̃′,2mQ

+ K2mQ,4Q̃
+ K4Q̃,Q0,1

. 1

and

K
Q̃,Q0,1

. K
Q̃,4Q̃

+ K4Q̃,Q0,1
. 1.

As a consequence,

|mf (Q̃′) − mf (Q̃)| 6 |mf (Q̃′) − mf (Q0,1)| + |mf (Q̃) − mf (Q0,1)|

6 (K
Q̃′,Q0,1

+ K
Q̃,Q0,1

)‖f‖RBMO0,s(µ)

. ‖f‖RBMO0,s(µ).

Thus (2.3) holds.

Our next goal is to show that there exists a constant C4 > 0 such that for all i

and f ,

(2.5) |mf (Qi) − mf (Q̃)| 6 C4‖f‖RBMO0,s(µ).

To prove this, we consider the following three cases.
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Case I. If l(2̃Qi) > 10l(Q̃), then there exists an integer m > 1 such that Q̃ ⊂ 2mQi

and l(Q̃) ∼ l(2mQi) 6 l(2̃Qi). It follows from Lemma 2.1 in [9] that

|mf (Qi) − mf (Q̃)| 6 |mf (Qi) − mf (2̃Qi)| + |mf (2̃Qi) − mf (Q̃)|

6 (K
Qi,2̃Qi

+ K
Q̃,2̃Qi

)‖f‖RBMO0,s(µ)

. (K
Qi,2̃Qi

+ K
Q̃,2mQi

+ K
2mQi,2̃Qi

)‖f‖RBMO0,s(µ)

. ‖f‖RBMO0,s(µ).

Case II. If l(Q)/10 < l(2̃Qi) 6 10l(Q̃), we see that Q ⊂ 402̃Qi ⊂
˜
1600Q̃. Notice

that

K
Qi,

˜
1600Q̃

. K
Qi,402̃Qi

+ K
402̃Qi,

˜
1600Q̃

. 1 + K
Q,

˜
1600Q̃

. 1.

It consequently follows that

|mf (Qi) − mf (Q̃)| . (K
Qi,

˜
1600Q̃

+ K
Q̃,

˜
1600Q̃

)‖f‖RBMO0,s(µ) . ‖f‖RBMO0,s(µ).

Case III. If l(2̃Qi) 6 l(Q)/10, then for any δ > 0 such that γs + δ < β−1
d /2, we

have

m
2̃Qi

(χ|f(x)−mf (Q̃)|>B‖f‖RBMO0,s(µ)
) < γs + δ

by the choice of Qi, which implies

m
0,γs+δ;2̃Qi

(f − mf (Q̃)) 6 B‖f‖RBMO0,s(µ).

This fact together with Lemma 1 yields

|mf (2̃Qi) − mf (Q̃)| = |m
f−mf (Q̃)(2̃Qi)| 6 B‖f‖RBMO0,s(µ).

Therefore,

|mf (Qi) − mf (Q̃)| 6 |mf (Qi) − mf (2̃Qi)| + |mf (2̃Qi) − mf(Q̃)|

6 K
Qi,2̃Qi

‖f‖RBMO0,s(µ) + B‖f‖RBMO0,s(µ)

. ‖f‖RBMO0,s(µ).

We can now conclude the proof of Theorem 1. Let

X = sup
Q

1

µ(2Q)

∫

Q

|f(x) − mf (Q̃)| dµ(x),
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where the supremum is taken over all cubes Q ⊂ Rd. The estimates (2.4) and (2.5)

now give that due to the fact that Qi’s are doubling, we have

1

µ(2Q)

∫

Q

|f(x) − mf (Q̃)| dµ(x)

6
1

µ(2Q)

∫

Q\∪iQi

|f(x) − mf (Q̃)| dµ(x)

+
1

µ(2Q)

∑

i

∫

Qi

|f(x) − mf (Qi)| dµ(x) + C4‖f‖RBMO0,s(µ)

6 C‖f‖RBMO0,s(µ) +
X

µ(2Q)

∑

i

µ(2Qi)

6 C‖f‖RBMO0,s(µ) +
βd

γ
X,

where C > 0 is independent of f . If f ∈ L∞(µ), then X < ∞ and the last inequality

together with γ > βd implies that

‖f‖RBMO(µ) . ‖f‖RBMO0,s(µ).

For a general f ∈ RBMO0,s(µ) we consider the function fq with q > 0 in Lemma 3.

By repeating the foregoing proof we arrive at

sup
Q

1

µ(2Q)

∫

Q

|fq(x) − mq
f (Q̃)| dµ(x) . ‖f‖RBMO0,s(µ),

which together with Lemma 3 and the Fatou lemma leads to the desired conclusion

of Theorem 1. �

P r o o f o f C o r o l l a r y 1. If f ∈ RBMO(µ), then for any cube Q and t > 0,

1

µ(3
2Q)

µ({y ∈ Q : |f − mf (Q̃)| > t}) 6
1

µ(3
2Q)t

∫

Q

|f(x) − mf (Q̃)| dµ(x) .
1

t
,

and the inequality (1.4) follows directly. To prove sufficiency, we choose s ∈

(0, β−2
d /2). If f 6∈ RBMO(µ), then f 6∈ RBMO0,s(µ) by Theorem 1. Therefore, by

(1.3), there exists a sequences of cubes {Qj} such that

lim
j→∞

m0,s;Qj
(f − mf (Q̃j)) = ∞.

Let Aj = m0,s;Qj
(f − mf (Q̃j)). We then have that

µ({y ∈ Qj : |f − mf (Q̃j)| > Aj/2}) > sµ(3
2Qj),
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which in turn implies that

sup
Q⊂Rd

1

µ(3
2Q)

µ({y ∈ Q : |f − mf (Q̃)| > Aj/2}) > s.

This contradicts with (1.4) and hence, completes the proof of Corollary 1. �
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