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Abstract. Let Km −H be the graph obtained from Km by removing the edges set E(H)
of H where H is a subgraph of Km. In this paper, we characterize the potentially K5 −P4

and K5 − Y4-graphic sequences where Y4 is a tree on 5 vertices and 3 leaves.
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1. Introduction

We consider finite simple graphs. Any undefined notation follows that of Bon-

dy and Murty [1]. An n-term non-increasing nonnegative integer sequence π =

(d1, d2, . . . , dn) is said to be graphic if it is the degree sequence of a simple graph G

of order n; such a graph G is referred as a realization of π. Let Ck and Pk denote a

cycle on k vertices and a path on k + 1 vertices, respectively. We use the symbol E4

to denote graphs on 5 vertices and 4 edges. Let σ(π) be the sum of all the terms

of π, and let [x] be the largest integer less than or equal to x. Let Y4 denote a tree on

5 vertices and 3 leaves. Z4 is K4−P2. A graphic sequence π is said to be potentially

H-graphic if it has a realization G containing H as a subgraph. Let G − H denote

the graph obtained from G by removing the edges set E(H) where H is a subgraph

of G. In the degree sequence, rt means r repeats t times, that is, in the realization

of the sequence there are t vertices of degree r.

In 1907, Mantel first proposed the problem of determining the maximum number

of edges in a graph without containing 3-cycles. In general, this problem can be
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phrased as determining the maximum number of edges, denoted ex(n, H), of a graph

with n vertices not containing H as a subgraph. This area of research is called

extremal graph theory. In terms of graphic sequences, the number 2 ex(n, H) + 2 is

the minimum even integer l such that every n-term graphic sequence π with σ(π) > l

is forcibly H-graphic. In 1991, Erdös, Jacobson and Lehel [2] showed σ(Kk, n) >

(k−2)(2n−k+1)+2 and conjectured that the equality holds. In the same paper, they

proved that the conjecture is true for the case k = 3 and n > 6. The cases k = 4 and 5

were proved separately in [3], [16] and [17]. Based on linear algebraic techniques, Li,

Song and Luo [18] proved the conjecture true for k > 6 and n >
(

k

2

)

+ 3. Recently,

Ferrara, Gould and Schmitt proved the conjecture [5] and they also determined

in [6] σ(Fk, n) where Fk denotes the graph of k triangles intersecting at exactly one

common vertex.

In 1999, Gould, Jacobson and Lehel [3] considered the following generalized prob-

lem: determine the smallest even integer σ(H, n) such that every n-term positive

graphic sequence π = (d1, d2, . . . , dn) with σ(π) > σ(H, n) has a realization G con-

taining H as a subgraph. They proved σ(pK2, n) = (p − 1)(2n − p) + 2 for p > 2

and σ(C4, n) = 2[1
2
(3n − 1)] for n > 4. Lai [10] determined σ(K4 − e, n) for n > 4.

Yin, Li, and Mao [24] determined σ(Kr+1 − e, n) for r > 3 and r + 1 6 n 6 2r

and σ(K5 − e, n) for n > 5, and Yin and Li [23] further determined σ(Kr+1 − e, n)

for r > 2 and n > 3r2 − r − 1. Moreover, Yin and Li in [23] also gave two suffi-

cient conditions for a sequence πεGSn to be potentially (Kr+1− e)-graphic. Yin [26]

determined σ(Kr+1 − K3, n) for r > 3 and n > 3r + 5. Lai [11]–[13] determined

σ(K5 − P3, n), σ(K5 − P4, n), σ(K5 − C4, n) and σ(K5 − K3, n) for n > 5. Lai and

Hu [14] determined σ(Kr+1 − H, n) for n > 4r + 10, r > 3, r + 1 > k > 4 and

H be a graph on k vertices which containing a tree on 4 vertices but not containing

a cycle on 3 vertices and σ(Kr+1 − P2, n) for n > 4r + 8, r > 3. Lai [15] determined

σ(Kr+1 −Z4, n), σ(Kr+1 − (K4 − e), n), σ(Kr+1 −K4, n) for n > 5r + 16, r > 4 and

σ(Kr+1−Z, n) for n > 5r+19, r+1 > k > 5, j > 5 where Z is a graph on k vertices

and j edges which contains a graph Z4 but does not contain a cycle on 4 vertices.

A harder question is to characterize the potentially H-graphic sequences without

zero terms. That is, finding necessary and sufficient conditions for a sequence to be

a potentially H-graphic sequence. Luo [20] characterized the potentially Ck-graphic

sequences for each k = 3, 4 and 5. Recently, in [21], Luo and Warner also charac-

terized the potentially K4-graphic sequences. Eschen and Niu [22] characterized the

potentially K4 − e-graphic sequences. Hu and Lai [7]–[8] characterized the poten-

tially K5 −C4 and K5 −Z4-graphic sequences. Yin and Chen [25] characterized the

potentially Kr,s-graphic sequences for r = 2, s = 3 and r = 2, s = 4, where Kr,s is

an r × s complete bipartite graph. Gupta, Joshi and Tripathi [4] gave a necessary

and sufficient condition for the existence of a tree of order n with a given degree set.
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In attempt to completely characterize the potentially K5 −E4-graphic sequences,

we will characterize the potentially K5 − P4 and K5 − Y4-graphic sequences in this

paper. The problem of characterizing the potentially K5−E4-graphic sequences has

not been solved so far.

Let π = (d1, d2, . . . , dn) be a nonincreasing positive integer sequence. We

write m(π) and h(π) to denote the largest positive terms of π and the smallest posi-

tive terms of π, respectively. π′′ = (d1−1, d2−1, . . . , ddn
−1, ddn+1, . . . , dn−1) is the

residual sequence obtained by laying off dn from π. We denote π′ = (d′1, d
′

2, . . . , d
′

n−1)

where d′1 > d′2 > . . . > d′n−1 is a rearrangement of the n− 1 terms in π′′. We denote

by π′ the residual sequence obtained by laying off dn from π and all the graphic

sequences have no zero terms. We need the following results.

Theorem 1.1 ([3]). If π = (d1, d2, . . . , dn) is a graphic sequence with a realiza-

tion G containing H as a subgraph, then there exists a realization G′ of π contain-

ing H as a subgraph so that the vertices of H have the largest degrees of π.

Theorem 1.2 ([19]). If π = (d1, d2, . . . , dn) is a sequence of nonnegative integers

with 1 6 m(π) 6 2, h(π) = 1 and σ(π) even, then π is graphic.

Theorem 1.3 ([9]). π is graphic if and only if π′ is graphic.

The following corollary is obvious.

Corollary 1.4. Let H be a simple graph. If π′ is potentially H-graphic, then π is

potentially H-graphic.

2. Main theorems

Theorem 2.1. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − P4-graphic if and only if the following conditions hold:

(1) d2 > 3.

(2) d5 > 2.

(3) π 6= (n − 1, k, 2t, 1n−2−t) where n > 5, k, t = 3, 4, . . . , n − 2, and, k and t have

different parities.

(4) For n > 5, π 6= (n − k, k + i, 2i, 1n−i−2) where i = 3, 4, . . . , n − 2k and k =

1, 2, . . . , [ 1
2
(n − 1)] − 1.

(5) If n = 6, 7, then π 6= (32, 2n−2).

P r o o f. First we show that the conditions (1)–(5) are necessary conditions

for π to be potentially K5 − P4-graphic. Assume that π is potentially K5 − P4-

graphic. (1), (2) and (5) are obvious. If π = (n − 1, k, 2t, 1n−2−t) is potentially
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K5 − P4-graphic, then according to Theorem 1.1, there exists a realization G of π

containing K5 − P4 as a subgraph so that the vertices of K5 − P4 have the largest

degrees of π. Therefore, the sequence π∗ = (n− 4, k− 3, 2t−3, 1n−2−t) obtained from

G−(K5−P4) must be graphic. Since the edge between two vertices with degree n−4

and k−3 has been removed from the realization of π∗, thus, ∆(G−(K5−P4)) 6 n−5,

a contradiction. Hence, (3) holds. If π = (n − k, k + i, 2i, 1n−i−2) is potentially

K5 − P4-graphic, then according to Theorem 1.1, there exists a realization G of π

containing K5 − P4 as a subgraph so that the vertices of K5 − P4 have the largest

degrees of π. Therefore, the sequence π∗ = (n−k−3, k+i−3, 2i−3, 1n−i−2) obtained

from G− (K5 −P4) must be graphic and there is no edge between two vertices with

degree n − k − 3 and k + i − 3 in the realization of π∗. Let G∗ be a realization

of π∗, and, dG∗(x) = n − k − 3 and dG∗(y) = k + i − 3. Consider a partition of G∗

where X = {x, y} and Y = V (G∗) − {x, y}. It follows that the number of edges

between X and Y equals (n − k − 3) + (k + i − 3) 6 2(i − 3) + (n − i − 2), that is,

[(n − k − 3) + (k + i − 3)] − [2(i − 3) + (n − i − 2)] = 2 6 0, a contradiction. Hence,

(4) holds.

Now we show that the conditions (1)–(5) are sufficient conditions for π to be po-

tentiallyK5−P4-graphic. Suppose the graphic sequence π satisfies the conditions (1)

to (5). Our proof is by induction on n. We first prove the base case where n = 5.

Since π 6= (42, 23), π must be one of the following sequences: (45), (43, 32), (42, 32, 2),

(4, 34), (4, 32, 22), (34, 2), (32, 23). It is easy to check that all of these are potentially

K5 − P4-graphic. Now we assume that the sufficiency holds for n − 1 (n > 6). We

will prove that π is potentially K5 − P4-graphic.

Case 1: π′ = (32, 24). Clearly, n = 7 and π must be one of the following sequences

(42, 25), (4, 32, 24), (34, 23), (4, 3, 24, 1) or (33, 23, 1). It is easy to check that all of

these are potentially K5 − P4-graphic.

Case 2: π′ = (32, 25). Clearly, n = 8 and π must be one of the following sequences

(42, 26), (4, 32, 25), (34, 24), (4, 3, 25, 1) or (33, 24, 1). It is easy to check that all of

these are potentially K5 − P4-graphic.

Case 3: dn > 3. Clearly, π′ satisfies the assumption, and thus, by the induction

hypothesis, π′ is potentially K5−P4-graphic, and hence so is π. In the following, we

only consider the cases dn = 1 or dn = 2.

Case 4: π′ = (n − 2, k, 2t, 1n−3−t) where n − 1 > 5, k, t = 3, 4, . . . , n − 3, and, k

and t have different parities.

If dn = 2, then π′ = (n − 2, k, 2n−3). If k > 4, then π = (n − 1, k + 1, 2n−2)

which contradicts condition (3). If k = 3, that is π′ = (n−2, 3, 2n−3), then π = (n−

1, 4, 2n−2) or π = (n−1, 32, 2n−3). But π = (n−1, 4, 2n−2) contradicts condition (3),

thus π = (n − 1, 32, 2n−3) where n is odd. We will show that π = (n − 1, 32, 2n−3)
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is potentially K5 − P4-graphic. In other words, we would like to show that π1 =

(n−4, 2n−5, 1) is graphic. It suffices to show that π2 = (1n−5) where n > 7 is graphic.

By σ(π2) being even and Theorem 1.2, π2 is graphic. Thus, π = (n − 1, 32, 2n−3) is

potentially K5 − P4-graphic.

If dn = 1, then π = (n − 1, k, 2t, 1n−2−t) which contradicts condition (3).

Case 5: π′ = (n − 1 − k, k + i, 2i, 1n−i−3) where i = 3, 4, . . . , n − 1 − 2k and

k = 1, 2, . . . , [n/2] − 2.

If dn = 2, then n − i − 3 = 0 and π = (n − k, k + i + 1, 2i+1) which contradicts

condition (4).

If dn = 1 and n − 1 − k = k + i + 1, then π = (n − k, k + i, 2i, 1n−i−2) or

π = ((n − 1 − k)2, 2i, 1n−i−2), both of which contradict condition (4). If dn = 1 and

n − 1 − k = k + i or n − 1 − k > k + i + 2, then π = (n − k, k + i, 2i, 1n−i−2) which

also contradicts condition (4).

Case 6: dn = 2, π′ 6= (n−2, k, 2n−3), π′ 6= (n−1−k, n+k−3, 2n−3), π′ 6= (32, 24),

and π′ 6= (32, 25).

Consider π′ = (d′1, d
′

2, . . . , d
′

n−1). Since d2 > 3, we have d′n−1 > 2. If d′2 > 3,

then π′ satisfies the assumption. Thus, π′ is potentially K5 −P4-graphic. Hence, we

may assume d′2 = 2, that is, d2 = 3 and d3 = d4 = . . . = dn = 2. It follows that

π = (d1, 3, 2n−2). Since σ(π) is even, d1 must be odd. If d1 = 3, then π = (32, 2n−2).

Since π 6= (32, 24) and π 6= (32, 25), we have n > 8. We will show that π is potentially

K5 − P4-graphic. It suffices to show π1 = (2n−5) is graphic. Clearly, Cn−5 is a

realization of π1. If d1 > 5, since π 6= (n − 1, 3, 2n−2), we have d1 6 n − 2. We will

prove that π = (d1, 3, 2n−2), where d1 > 5 and n > d1 + 2, is potentially K5 − P4-

graphic. We would like to show that π1 = (d1 − 3, 2n−5) is graphic. It suffices to

show that π2 = (2n−d1−2, 1d1−3) is graphic. Since σ(π2) is even, π2 is graphic by

Theorem 1.2. Thus, π = (d1, 3, 2n−2) is potentially K5 − P4-graphic.

Case 7: dn = 1, π′ 6= (n − 2, k, 2t, 1n−3−t), π′ 6= (n − 1 − k, k + i, 2i, 1n−i−3),

π′ 6= (32, 24), and π′ 6= (32, 25).

Consider π′ = (d′1, d
′

2, . . . , d
′

n−1). Since d2 > 3 and d5 > 2, we have d′1 > 3 and

d′5 > 2. If d′2 > 3, then π′ satisfies the assumption. Thus, π′ is potentially (K5−P4)-

graphic. Hence, we may assume d′2 = 2, that is, d1 = d2 = 3 and d3 = d4 = d5 = 2.

Thus π = (32, 2t, 1n−2−t) where t > 3 and n − 2 − t > 1. Since σ(π) is even,

n − 2 − t must be even. We will prove π is potentially K5 − P4-graphic. It suffices

to show that π1 = (2t−3, 1n−2−t) is graphic. Since σ(π1) is even, π1 is graphic by

Theorem 1.2 and, in turn, π is potentially K5 − P4-graphic.

This completes the proof. �
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Theorem 2.2. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − Y4-graphic if and only if the following conditions hold:

(1) d3 > 3.

(2) d4 > 2.

(3) π 6= (36).

P r o o f. Assume that π is potentially K5−Y4-graphic. In this case the necessary

conditions (1) to (3) are obvious.

Now we prove the sufficient conditions. Suppose the graphic sequence π satisfies

the conditions (1) to (3). Our proof is by induction on n. We first prove the base

case where n = 5. In this case, π is one of the following sequences: (45), (43, 32),

(42, 32, 2), (4, 34), (4, 33, 1), (4, 32, 22), (34, 2), or (33, 2, 1). It is easy to check that

all of these are potentially K5 − Y4-graphic. Now suppose the sufficiency holds for

n − 1 (n > 6), and let π = (d1, d2, . . . , dn) be a graphic sequence which satisfies (1)

to (3). We will prove π is potentially K5 − Y4-graphic.

Case 1: π′ = (36). We have n = 7 and π is one of the following sequences

(43, 34), (42, 34, 2) or (4, 35, 1). It is easy to check that all of these are potentially

K5 − Y4-graphic.

Case 2: dn > 3 and π′ 6= (36). Clearly, d′4 > 2. If d3 > 4, then d′3 > 3. If

d3 = . . . = dn = 3 and n > 6, d′3 > 3. It follows conditions (1) and (2) hold.

Thus, by the induction hypothesis, π′ is potentially K5−Y4-graphic. Therefore, π is

potentially K5 − Y4-graphic by Corollary 1.4. In the following, we only consider the

cases where dn = 2 or dn = 1.

Case 3: dn = 2 and π′ 6= (36). Consider π′ = (d′1, d
′

2, . . . , d
′

n−1). Since d3 > 3 and

dn = 2, we have d′1 > 3 and d′n−1 > 2. If d′3 > 3, then π′ satisfies the assumption

and it follows π′ is potentially K5 − Y4-graphic. Therefore, π is potentially K5 − Y4-

graphic by Corollary 1.4. Hence, we may assume d′3 = 2. We will proceed with the

following two cases d1 > 4 and d1 = 3.

Subcase 1: d1 > 4. It suffices to consider the case where d2 = d3 = 3 and

d4 = d5 = . . . = dn = 2. That is, π = (d1, 3
2, 2n−3). Since σ(π) is even, d1 must

be even. We will prove π is potentially K5 − Y4-graphic. It is enough to show that

π1 = (d1−3, 2n−5, 1) is graphic. If d1 = n−1, then π1 = (n−4, 2n−5, 1). It suffices to

show that π2 = (1n−5) is graphic. Since σ(π2) is even, π2 is graphic by Theorem 1.2.

If d1 6 n−2, it suffices to show that π2 = (2n−2−d1, 1d1−2) (or π2 = (2n−1−d1 , 1d1−4))

is graphic. Similarly, one can show π2 is graphic. Thus, π1 = (d1 − 3, 2n−5, 1) is

graphic and, in turn, π is potentially K5 − Y4-graphic.

Subcase 2: d1 = 3. It suffices to consider the case where d1 = d2 = d3 = d4 = 3 and

d5 = . . . = dn = 2. That is, π = (34, 2n−4). We will prove π is potentially (K5 −Y4)-
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graphic. It is enough to show that π1 = (2n−5, 12) is graphic. Since σ(π1) is even,

π1 is graphic by Theorem 1.2 and, in turn, π is potentially K5 − Y4-graphic.

Case 4: dn = 1 and π′ 6= (36). Consider π′ = (d′1, d
′

2, . . . , d
′

n−1). Since d3 > 3 and

d4 > 2, we have d′2 > 3 and d′4 > 2. If d′3 > 3, then π′ satisfies the assumptions and it

follows π′ is potentially K5−Y4-graphic. Therefore, π is potentially K5−Y4-graphic

by Corollary 1.4. Hence, we may assume d′3 = 2. It suffices to consider the case

where d1 = d2 = d3 = 3 and d4 = 2. That is, π = (33, 2t, 1n−3−t) where t > 1 and

n− 3− t > 1. Since σ(π) is even, n− t must be even. We will prove π is potentially

K5−Y4-graphic. It is enough to show that π1 = (2t−2, 1n−2−t) is graphic when t > 2.

Since σ(π1) is even, π1 is graphic by Theorem 1.2. If t = 1, then π = (33, 2, 1n−4).

Similarly we can show that π2 = (1n−5) is graphic and, in turn, π is potentially

K5 − Y4-graphic.

This completes the proof. �

In the remainder of this section, we will use the above two theorems to find exact

values of σ(K5 − P4, n), σ(K5 − C5, n), σ(K5 − Y4, n), σ(K5 − (Y4 + e), n) and

σ(K5 −K2,3, n). Note that the value of σ(K5 −P4, n) was determined by Lai in [11]

so a much simpler proof is given here.

Corollary 2.3 ([11]). For n > 5, σ(K5 − P4, n) = 4n − 4.

P r o o f. First we claim that σ(K5 −P4, n) > 4n− 4 for n > 5. We would like to

show there exists π1 with σ(π1) = 4n − 6 such that π1 is not potentially K5 − P4-

graphic. Let π1 = ((n − 1)2, 2n−2). It is easy to see that σ(π1) = 4n − 6 and π1 is

not potentially K5 − P4-graphic by Theorem 2.1.

Now we show if π is an n-term (n > 5) graphical sequence with σ(π) > 4n − 4,

then there exists a realization of π containing a K5 − P4. If d5 = 1, then σ(π) =

d1 + d2 + d3 + d4 + (n − 4). Let X be the four vertices of the largest degrees of G

and Y = V (G) − X . Since there are at most six edges in X , d1 + d2 + d3 + d4 6

12 + |E(X, Y )| 6 12 + (n − 4) = n + 8. This leads to σ(π) 6 2n + 4 < 4n − 4, a

contradiction. Thus, d5 > 2. If d2 6 2, then σ(π) 6 d1+2(n−1) 6 3n−3 < 4n−4, a

contradiction. Thus, d2 > 3. Since σ(π) > 4n− 4, then π is not one of the following:

(32, 24), (32, 25), and (n − 1, k, 2t, 1n−2−t) where n > 6 and k, t = 3, 4, . . . , n − 2,

(n − k, k + i, 2i, 1n−i−2) where i = 3, 4, . . . , n − 2k and k = 1, 2, . . . , [ 1
2
(n − 1)] − 1.

Thus, π satisfies the conditions (1) to (5) in Theorem 2.1. Therefore, π is potentially

K5 − P4-graphic by Theorem 2.1. �

Corollary 2.4 ([14]). For n > 5, σ(K5 − C5, n) = 4n − 4.

P r o o f. Obviously, for n > 5, σ(K5 − C5, n) 6 σ(K5 − P4, n) = 4n − 4. Now

we claim that σ(K5 − C5, n) > 4n − 4 for n > 5. We would like to show there
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exists π1 with σ(π1) = 4n− 6, such that π1 is not potentially K5 − C5-graphic. Let

π1 = ((n − 1)2, 2n−2). It is easy to see that σ(π1) = 4n − 6 and the only realization

of π1 does not contain K5 − C5. Thus, σ(K5 − C5, n) = 4n − 4. �

Corollary 2.5 ([14]). For n > 5, σ(K5 − Y4, n) = 4n − 4.

P r o o f. First we claim that σ(K5 − Y4, n) > 4n − 4 if n > 5. We would like to

show there exists π1 with σ(π1) = 4n − 6, such that π1 is not potentially K5 − Y4-

graphic. Let π1 = ((n − 1)2, 2n−2). It is easy to see that σ(π1) = 4n − 6 and π1 is

not potentially K5 − Y4-graphic by Theorem 2.2.

Now we show if π is an n-term (n > 5) graphical sequence with σ(π) > 4n − 4,

then there exists a realization of π containing a K5 − Y4. If d4 = 1, then σ(π) =

d1 + d2 + d3 + (n − 3). Using a similar argument as in the above corollary, we

have d1 + d2 + d3 6 6 + (n − 3) = n + 3. This leads to σ(π) 6 2n < 4n − 4, a

contradiction. Thus, d4 > 2. Similarly, if d3 6 2, then σ(π) 6 d1 + d2 + 2(n − 2) 6

2(n − 1) + 2(n − 2) = 4n − 6 < 4n − 4, a contradiction. Thus, d3 > 3. Since

σ(π) > 4n − 4, necessarily π 6= (36). Thus, π satisfies the conditions (1) to (3) in

Theorem 2.2. Therefore, π is potentially K5 − Y4-graphic by Theorem 2.2. �

Corollary 2.6 ([14]). For n > 5, σ(K5 − (Y4 + e), n) = 4n − 4 where the two

vertices of e are the leaves of Y4 whose distance is 3.

P r o o f. Obviously, for n > 5, σ(K5−(Y4+e), n) 6 σ(K5−Y4, n) = 4n−4. Now

we claim that σ(K5 − (Y4 + e), n) > 4n − 4 for n > 5. We would like to show there

exists π1 with σ(π1) = 4n− 6, such that π1 is not potentially K5 − (Y4 + e)-graphic.

Let π1 = ((n−1)2, 2n−2). It is easy to see that σ(π1) = 4n−6 and the only realization

of π1 does not contain K5 − (Y4 + e). Thus, σ(K5 − (Y4 + e), n) = 4n − 4. �

Corollary 2.7 ([14]). For n > 5, σ(K5 − K2,3, n) = 4n − 4.

P r o o f. Obviously, for n > 5, σ(K5 − K2,3, n) 6 σ(K5 − Y4, n) = 4n − 4.

Now we claim σ(K5 − K2,3, n) > 4n − 4 for n > 5. We would like to show there

exists π1 with σ(π1) = 4n−6, such that π1 is not potentially K5−K2,3-graphic. Let

π1 = ((n − 1)2, 2n−2). It is easy to see that σ(π1) = 4n − 6 and the only realization

of π1 does not contain K5 − K2,3. Thus, σ(K5 − K2,3, n) = 4n − 4. �
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