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Abstract. In this note we prove that there exists a Carathéodory vector lattice V such
that V ∼= V

3 and V � V
2. This yields that V is a solution of the Schröder-Bernstein

problem for Carathéodory vector lattices. We also show that no Carathéodory Banach
lattice is a solution of the Schröder-Bernstein problem.
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1. Introduction

We apply the standard terminology and notation for vector lattices; cf. e.g., [1].
Carathéodory vector lattices were investigated in several papers; we quote [8], [11]
and [14]. If V is a Carathéodory vector lattice, then it is generated by a uniquely
determined Boolean algebra B; in such a case we write V = C(B).
Applying the results of [10], [20] and [14], we prove

Theorem 1.1. There exists a Carathéodory vector lattice V such that V ∼= V 3

and V fails to be isomorphic to V 2.

Corollary 1.2. There exist Carathéodory vector lattices A and B such that

(i) A is isomorphic to a direct factor of B and B is isomorphic to a direct factor

of A;
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(ii) A is not isomorphic to B;

(iii) A3 ∼= A and B3 ∼= B.

Theorem 1.1′. Let V be a Carathéodory vector lattice, V = C(B). Assume

that the Boolean algebra B is countable. Then V does not satisfy the conditions

from Theorem 1.1.

In accordance with the terminology applied in literature we can say that the
validity of the conditions (i) and (ii) in Corollary 1.2 expresses the fact that the
problem of Schröder-Bernstein is solvable for Carathéodory vector lattices.
We remark that if the condition (iii) in Corollary 1.2 is replaced by the condition

(iii1) A2 ∼= A and B2 ∼= B,
then the modified assertion fails to be valid.
A Carathéodory vector lattice V is defined to be a solution of the Schröder-

Bernstein problem if there exist direct factors V1 and V2 of V such that V2 ⊂ V1,
V ∼= V2 and V1 fails to be isomorphic to V .
The relation between the conditions mentioned in this definition and the condi-

tions (i), (ii) above are described in Section 2.
The notion of Carathéodory Banach space is defined in a natural way. We prove

that if V is a Carathéodory Banach space, then it fails to be a solution of the
Schröder-Bernstein problem.
Deep results on the Schröder-Bernstein problem for Banach spaces were proved

in [6], [7], [9] and in the papers quoted therein.
The Schröder-Bernstein problem for abelian lattice ordered groups and for MV -

algebras was studied in [15]. Some variations of this problem were investigated in [2]
(for fields) and in [17] (for linearly ordered groups).
For some classes of algebraic structures, the Schröder-Bernstein problem has no

solution. In such a case we say that the Cantor-Bernstein theorem is valid for the
corresponding algebraic structure. Results of this type were proved in [4], [5], [12],
[13], [18], [19].

2. Preliminaries

Assume that V1, V2, . . . , Vn are vector lattices; their direct product is denoted by
V1 × V2 × . . . × Vn. We put

V1 × V1 = V 2
1 , V1 × V1 × V1 = V 3

1 .

Let V be a vector lattice; an isomorphism ϕ : V → V1 × V2 × . . . × Vn is a direct
product decomposition of V ; Vi (i = 1, 2, . . . , n) are direct factors of V .
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Lemma 2.1. Assume that A and B are vector lattices such that

(i) A is isomorphic to a direct factor of B and B is isomorphic to a direct factor A;

(ii) A is not isomorphic to B.

Then A is a solution of the Schröder-Bernstein problem for vector lattices.

P r o o f. In view of (i) there exist direct product decompositions

A = A1 × X, B = B1 × Y

and isomorphisms
ϕ1 : A → B1, ϕ2 : B → A1.

Put A2 = ϕ2(B1). Then A2
∼= A and A2 is a direct factor of A1. Hence A2 is a direct

factor of A. From (ii) we conclude that A1 is not isomorphic to A, hence A2 ⊂ A1.
Therefore A is a solution of the Schröder-Bernstein problem. �

Further, from the definition of the solution of the Schröder-Bernstein problem we
immediately obtain

Lemma 2.2. Assume that V is a vector lattice such that V is a solution of the

Schröder-Bernstein problem. Let V1 and V2 be as in Section 1. Put V = A and

V1 = B. Then the pair (A, B) satisfies the conditions (i) and (ii) from Lemma 2.1.

Let (iii) and (iii1) be as in Section 1. Then the condition (iii) in Corollary 1.2
cannot be replaced by the condition (iii1). In fact, assume that the conditions (i)
(from Corollary 1.3) and (iii1) are valid. Thus there are vector lattices X and Y

with A ∼= B × X , B ∼= A × Y . We obtain

A ∼= B × X ∼= B × B × X ∼= B × A × Y × X.

Similarly, B ∼= A × B × X × Y . Thus A ∼= B. Therefore the condition (ii) from
Corollary 1.2 fails to hold.
For the sake of completeness, we recall the basic definitions concerning Carathéo-

dory functions which correspond to a Boolean algebra B (cf. [8]).
We denote by C(B) the system consisting of all forms

f = a1b1 + . . . + anbn,

where ai are nonzero reals, bi are elements of B such that bi > 0 for each i ∈

{1, 2, . . . , n},

bi(1) ∧ bi(2) = 0 for distinct i(1), i(2) ∈ {1, 2, . . . , n},
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and of the “empty form”. If g is another such form,

g = a′

1b
′

1 + . . . + a′

mb′m,

then f and g are considered equal if

n
∨

i=1

bi =

m
∨

j=1

b′j

and if ai = a′

j whenever bi ∧ b′j > 0.

For b, b′ ∈ B we denote by b −1 b′ the relative complement of b ∧ b′ in the inter-
val [0, b].

If f and g are as above, then we put

f + g =

n
∑

i=1

m
∑

j=1

(ai + a′

j)(bi ∧ b′j) +

n
∑

i=1

ai

(

bi −1

m
∨

j=1

b′j

)

+

m
∑

j=1

a′

j

(

b′j −1

n
∨

i=1

bi

)

,

where in the summations only those terms are taken into account in which ai+a′

j 6= 0

and the elements

bi ∧ b′j , bi −1

m
∨

j=1

b′j , b′j −1

n
∨

i=1

bi

are nonzero. The empty form is considered to be the neutral element of C(B) (with
respect to the operation +) and is identified with the element 0 of B. Also, each
element 0 6= b ∈ B is identiefied with the element 1b of C(B); hence B ⊆ C(B).

We remark that we apply the same symbol for the zero element of R, the least
element of B and the neutral element of C(B); the meaning of this symbol will be
always clear from the context.

If a1 = 0 ∈ R and b1 ∈ B, or if a1 ∈ R and b1 = 0 ∈ B, then a1b1 is identified
with the neutral element of C(B).

If f is as above and a ∈ R, then we set

af = (aa1)b1 + . . . + (aan)bn.

Finally, we set f > 0 if a1 > 0, . . ., an > 0. In more detail: For f , g as above
we have f 6 g if b1 ∨ . . . ∨ bn 6 b′1 ∨ . . . ∨ b′m and ai 6 a′

j whenever bi ∧ b′j 6= 0 (for
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}). Then C(B) turns out to be a vector lattice;
its elements are elementary Carathéodory functions corresponding to the Boolean
algebra B.
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We remark that if f is as above, then without loss of generality we can assume that
the elements a1, a2, . . . , an are mutually distinct. In fact, if we have, e.g., a1 = a2,
then we can write

f = a1b10 + a3b3 + . . . + anbn,

where b10 = b1 ∨ b2 = b1 + b2. In view of this fact we can also assume that a1 >

a2 > . . . > an.
It is obvious that if B and B′ are Boolean algebras such that B ∼= B′, then

C(B) ∼= C(B′).
An element b > 0 of a vector lattice V is said to be boolean if the interval [0, b]

of ℓ(V ) is a Boolean algebra (ℓ(V ) is the underlying lattice of V ). Let β(V ) be the
set of all boolean elements of V . Then for each Boolean algebra B we have

β(C(B)) = B.

From this we obtain

Lemma 2.3. Let B and B′ be Boolean algebras such that C(B) ∼= C(B′). Then

B ∼= B′.

3. Internal direct product decompositions

Assume that

(1) ϕ : V → V1 × V2 × . . . × Vn

is a direct product decomposition of a vector lattice V .
If i ∈ {1, 2, . . . , n}, x ∈ V and ϕ(x) = (x1, x2, . . . , xn), then we put ϕi(x) = xi.

Let Vi0 be the set of all y ∈ V such that

ϕj(y) = 0 for each j ∈ {1, 2, . . . , n} with j 6= i.

Further, for x ∈ V let ϕi0(x) be the element xi0 of Vi0 such that ϕi(xi0) = xi. We
set

ϕ0(x) = (x10, x20, . . . , xn0).

Then we have an isomorphism

(2) ϕ0 : V → V10 × V20 × . . . × Vn0
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which is said to be an internal direct product decomposition of V ; the subalgebras
V10, . . . , Vn0 of V are internal direct factors of V . Thus to each direct product
decomposition ϕ of V there corresponds an internal direct product decomposition ϕ0

of V . Under the assumptions as above we write

(3) V = (int)V10 × V20 × . . . × Vn0.

In the same way we define the notion of the internal direct product decomposition
of a Boolean algebra. For the case of Boolean algebras we apply the analogous
notation as above.
In view of [14, Proposition 5.8], we have

Lemma 3.1. Let B be a Boolean algebra and suppose that

(a) B = (int)B1 × B2 × . . . × Bn.

Then

(b) C(B) = (int)C(B1) × C(B2) × . . . × C(Bn).

Conversely, if (b) is satisfied, then (a) is valid.

The following result was proved in [17] (cf. also [16]).

Proposition 3.2. There exists a Boolean algebra B such that B ∼= B3 and B is

not isomorphic to B2.

Proposition 3.3. Let B be as in Proposition 3.2. Put C(B) = V . Then V ∼= V 3

and V is not isomorphic to V 2.

P r o o f. This is a consequence of Proposition 3.2, Lemma 3.2 and Lemma 2.3.
�

In view of Proposition 3.3 we conclude that Theorem 1.1 is valid. Further, applying
Lemma 2.2, we infer that Corollary 1.2 holds.
The following result was proved in [20] (applying a different terminology).

Theorem 3.4. Let B be a countable Boolean algebra and let m, n be positive

integers such that n < m and Bn ∼= Bm. Then Bn ∼= Bn+1.

P r o o f of Theorem 1.1′. Let V = C(B) be a Carathéodory vector lattice such
that the Boolean algebra B is countable. By way of contradiction, assume that
V satisfies the conditions from Theorem 1.1; i.e., we have V ∼= V 3 and V ∼= V 2.
Then in view of Lemma 3.1 we obtain B ∼= B3 and B ≇ B2. Put n = 1 and m = 3.
According to Theorem 3.4, we have arrived at a contradiction. �
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4. Carathéodory Banach spaces

Assume that V = C(B) is a Carathéodory vector lattice corresponding to the
Boolean algebra B. To avoid the trivial case, let us suppose that B has more than
one element.

We define a norm function on V as follows. For 0 ∈ V we put ‖0‖ = 0 ∈ R. Let
f ∈ V , f 6= 0; under the notation as in Section 2, let

f = a1b1 + a2b2 + . . . + anbn.

Then we set

‖f‖ = max{|a1|, |a2|, . . . , |an|}.

It is easy to verify that the norm function is correctly defined and that it satisfies
the usual rules

|f | 6 |g| ⇒ ‖f‖ 6 ‖g‖;(1)

‖f‖ > 0; moreover ‖f‖ = 0 iff f = 0;(2)

‖f + g‖ 6 ‖f‖ + ‖g‖;(3)

‖af‖ = |a|‖f‖ for each a ∈ R.(4)

Let f ∈ V and let (fn) be a sequence of elements of V . We write

fn
b
→ f or f = (b) lim(fn)

if the relation

lim
n→∞

‖fn − f‖ = 0

is valid. In such a case we also say that the sequence (fn) is convergent.

In the terminology of [16], V is a KB-lineal. Thus in view of [16, Chapter VI,
Section 2.22] we have

Lemma 4.1. Let (xn) be a sequence in V and let x, y ∈ V be such that xn
b
→ x.

Then xn ∨ y
b
→ x ∨ y.
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Lemma 4.2. Let (xn) and x be as in Lemma 4.1. Assume that the sequence (xn)

is increasing. Then x = sup{xn}n∈N.

P r o o f. By way of contradiction, suppose that the relation x = sup{xn}n∈N

fails to be valid. Then some of the following conditions is satisfied:
a) there is x ∈ V such that xn 6 z < x for each n ∈ N,
b) there is m ∈ N with xm � x.
Let a) be valid. Then

‖x − x‖ > ‖x − z‖ > 0 for each n ∈ N,

hence the relation xn
b
→ x cannot hold and we have arrived at a contradiction.

Further, let b) be valid. For each n ∈ N we put xm+n = yn, yn ∨ x = zn.

Then (yn) is a subsequence of (xn), hence yn
b
→ x. In view of Lemma 4.1 we get

zn
b
→ x ∨ x = x. The sequence (zn) is increasing and zn > x for each n ∈ N. Thus

‖zn − x‖ > ‖z1 − x‖ > 0 for each n ∈ N.

This yields that (zn) does not converge to the element x; again, we have arrived at
a contradiction. �

Let (xn) be a sequence in V ; (xn) is a Cauchy sequence if for each real ε > 0 there
exists m ∈ N such that ‖xn(1) − xn(2)‖ < ε whenever n(1), n(2) ∈ N and n(1) > m,
n(2) > m.
In view of the validity of relations (1)–(4) we obtain

Lemma 4.3. Under the norm function defined as above, V is a Banach space iff

each Cauchy sequence of elements of V is convergent.

If V satisfies the conditions from Lemma 4.3, then it is said to be a Carathéodory
Banach space.
A sequence (fn) in V will be called orthogonal if fn(1) ∧ fn(2) = 0 whenever n(1)

and n(2) are distinct positive integers. Analogously, a subset S of V is orthogonal if
0 6 s ∈ S for each s ∈ S, and s1 ∧ s2 = 0 whenever s1 and s2 are distinct elements
of S.
The vector lattice V is orthogonally σ-complete if for each orthogonal sequence (fn)

in V the element
sup{fn}n∈N

exists.
Since the direct product decompositions of a vector lattice are uniquely determined

by the direct product decompositions of its underlying lattice ordered group, in view
of [13] we obtain
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Lemma 4.4. Assume that V is an orthogonally σ-complete vector lattice. Then

V fails to be a solution of the Schröder-Bernstein problem.

Let (fn) be an orthogonal sequence in a Carathéodory vector lattice C(B). Sup-
pose that fn > 0 for each n ∈ N. Each element of this sequence is a form (cf. Sec-
tion 2)

fn = an1bn1 + . . . + an,m(n)bn,m(n).

We put bn = bn1 for each n ∈ N; hence (bn) is an orthogonal sequence in V , 0 <

bn ∈ B for each n ∈ N.
We choose a strictly decreasing sequence (an) such that an > 0 for each n ∈ N.

Further, for each n ∈ N we set

gn = a1b1 + . . . + anbn.

Thus (gn) is an increasing sequence in V and 0 < gn for each n ∈ N.
Let m, n(1) and n(2) be positive integers with m < n(1) < m(2). Then 0 <

gn(2) − gn(1) < gn(2) and

‖gn(2) − gn(1)‖ < am.

From this we conclude

Lemma 4.5. (gn) is a Cauchy sequence in V .

Lemma 4.6. Let us apply the assumptions as above. Then V fails to be a

Carathéodory Banach space.

P r o o f. By way of contradiction, suppose that V is a Carathéodory Banach
space. Then in view of Lemma 4.5 we conclude that the sequence (gn) is convergent.
Hence there exists g ∈ V with

g = (b) lim
n→∞

(gn).

Since (gn) is strictly increasing, in view of Lemma 4.2 we obtain

(5) g =

∞
∨

n=1

gn.

Then 0 < g and g can be written in the form

g = a′

1b
′

1 + . . . + a′

mb′m
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(cf. Section 2). In view of Section 2 we can suppose, without loss of generality,
that the relation a′

1 > a′

2 > . . . > a′

m is valid. For i(1), i(2) ∈ {1, 2, . . . , m} with
i(1) 6= i(2) we have a′

i(1)b
′

i(1) ∧ a′

i(2)b
′

i(2) = 0, hence

(6) g = a′

1b
′

1 ∨ . . . ∨ a′

mb′m.

Similarly, for each n ∈ N we get

gn = a1b1 ∨ . . . ∨ anbn.

Thus in view of (5) we obtain

(7) g =
∞
∨

n=1

anbn.

Let n(1) ∈ N. In view of (6) and (7),

an(1)bn(1) = an(1)bn(1) ∧ g = an(1)bn(1) ∧ (a′

1b
′

1 ∨ . . . ∨ a′

mb′m)

= ((an(1)bn(1)) ∧ (a′

1b
′

1)) ∨ . . . ∨ ((an(1)bn(1) ∧ (a′

mb′m).

Hence there exists j(1) ∈ {1, 2, . . . , m} such that

an(1)bn(1) ∧ a′

j(1)b
′

j(1) > 0.

Then we also have

(8) bn(1) ∧ b′j(1) > 0.

We put bn(1) ∧ b′
j(1) = b0. Thus

b0 ∧ bn = 0 for each n ∈ N, n 6= n(1),

b0 ∧ b′j = 0 for each j ∈ {1, 2, . . . , m}, j 6= j(1).

Hence for such n and j we obtain

a′

j(1)b0 ∧ anbn = 0,(9)

an(1)b0 ∧ a′

jb
′

j = 0.(10)

Since
a′

j(1)b0 6 a′

j(1)b
′

j(1) 6 g,
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in view of (9) we get

a′

j(1)b0 = a′

j(1)b0 ∧ g = a′

j(1)b0 ∧
∞
∨

n=1

anbn

=

∞
∨

n=1

(a′

j(1)b0 ∧ anbn) = a′

j(1)b0 ∧ an(1)bn(1).

Thus a′

j(1)b0 6 an(1)bn(1). Therefore a′

j(1) 6 an(1).
Similarly, an(1)b0 6 an(1)bn(1) 6 g, thus in view of (10) we obtain

an(1)b0 = an(1)b0 ∧ g = an(1)b0 ∧ (a′

1b
′

1 ∨ . . . ∨ a′

mb′m)

= (an1b0 ∧ a′

1b
′

1) ∨ . . . ∨ (an(1)b0 ∧ a′

mb′m)

= an(1)b0 ∧ a′

j(1)b
′

j(1).

Hence an(1) 6 a′

j(1). Summarizing, an(1) = a′

j(1).
For each n(1) ∈ N we put ϕ(n(1)) = j(1), where j(1) is as above. Since the set N

is infinite and the set {1, 2, . . . , m} is finite, we have arrived at a contradiction. �

Corollary 4.7. Let V be a Carathéodory Banach space. Then each orthogonal

subset of V is finite.

Theorem 4.8. Let V be a Carathéodory Banach space. Then V fails to be a

solution of the Schröder-Bernstein problem.

P r o o f. From Corollary 4.7 we conclude that V is orthogonally σ-complete.
Thus in view of Lemma 4.4, V is not a solution of the Schröder-Bernstein problem.

�
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