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Abstract. We prove that weakly Lindelöf determined Banach spaces are characterized by
the existence of a “full” projectional generator. Some other results pertaining to this class
of Banach spaces are given.

Keywords: projectional generator, projectional resolution of the identity, weakly Lindelöf
determined Banach space, Markushevich base, Corson compacta

MSC 2010 : 46B26, 46B20

A Banach space is weakly Lindelöf determined (in short, WLD) if its dual unit ball,

equipped with the weak*-topology, is Corson, i.e., it is a compact subspace of the

topological space Σ(Γ) consisting of all elements in RΓ with only a countable number

of non-zero coordinates. Here, RΓ is endowed with the product (i.e., pointwise)

topology Tp. This note gives a characterization of WLD Banach spaces in terms of

the existence of a certain projectional generator.

As it is usual, given a Banach space X , we denote by BX its closed unit ball

and by SX its unit sphere. By slightly abusing the notation, given a subset W of a

Banach space X we put BW := BX ∩ W and SW := SX ∩ W . For other undefined

notions and for notations we refer to [4].

Let X be a Banach space. A Markushevich basis (in short, an M-basis) in X×X∗

is a biorthogonal system {xγ ; x∗
γ}γ∈Γ such that {xγ}γ∈Γ is fundamental, i.e. linearly

dense in X and {x∗
γ}γ∈Γ is total, i.e. weak*-linearly dense in X∗.

The possibility of introducing a “system of coordinates” in a separable (or non-

separable) Banach space effectively reduces some of the arguments associated to
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certain constructions to analytic computations. In the case of a separable Banach

space, a Schauder basis (if there exists one) or, more generally, a countable M-basis

(which always exists) do the job. In the non-separable case, an M-basis is not always

available, although the “natural” non-separable Banach spaces posses one. A related

“coordinatewise” structure is a projectional resolution of the identity—i.e., a long

sequence of norm-one projections somehow “splitting” the space. A device to produce

in a natural way such a structure is a projectional generator, introduced by Valdivia

(precedents can be traced back to John and Zizler, Vašak and Plichko) and Orihuela

and Valdivia, see references in [2, Section 6.3].

Definition 1. A couple (N, Φ) is a projectional generator (in short, a PG) for a

Banach spaceX if N is a 1-norming subset ofX∗ such that spanQ(N), the linear span

of N with rational coefficients, coincides with N , and Φ: N → 2X is a countably-

valued mapping such that for all W ⊂ N with spanQ(W ) = W we have

(Φ(W ))⊥ ∩ BW
w∗

= {0}.

A good account of this concept and the way a projectional resolution of the identity

is constructed from it can be found, for example, in [2, Section 6.3]. Projectional

generators appear in a natural way: for example, it is easy to prove that, in a WCG

Banach space X (i.e., X has a linearly dense weakly compact subset K), the couple

(X∗, Φ), where Φ(x∗) is an element of K where x∗ attains its maximum, is a PG.

We illustrate this fact in Proposition 16. This PG is a particular instance of the

following class.

Definition 2. Given a Banach space X , we say that a PG (N, Φ) for X is full

if N = X∗.

Definition 3. Let W ⊂ X∗ be a non-empty subset of X∗. A set G ⊂ X in a

Banach space X is said to countably support W if

supp
G

(x∗) := {x ∈ G; 〈x, x∗〉 6= 0}

is countable for every x∗ ∈ W .

Remark 4. A well known result says that for every WCG Banach space X

there exists an M-basis {xγ ; x∗
γ}γ∈Γ in X × X∗ with the following property: given

x∗ ∈ X∗ and ε > 0 the set {γ ∈ Γ; |〈xγ , x∗〉| > ε} is finite (see, for example, [8,

Theorem 6.8]). In particular, {xγ ; γ ∈ Γ} ∪ {0} is weakly compact, and {xγ ; γ ∈ Γ}

countably supports X∗. A sketch of the proof of this fact is given on page 9 prior to

the statement of Proposition 16, and it is based on that result.
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The following lemma will be used in the proof of Theorem 7. Although its proof

is simple, we include it here for the sake of completeness.

Lemma 5. Let X be a Banach space with a full PG (X∗, Φ). Then, every

complemented subspace Y of X has also a full PG.

P r o o f. Let P : X → Y be a continuous linear projection. Put Φ̂(y∗) :=

P (Φ(P ∗y∗)) for all y∗ ∈ Y ∗. We shall prove that (Y ∗, Φ̂) is a PG for Y . Let

W ⊂ Y ∗ be such that spanQ(W ) = W . Let y∗ ∈ BW
w∗

∩ [Φ̂(W )]⊥. It follows that

P ∗y∗ ∈ P ∗(BW
w∗

) ⊂ P ∗(BW )
w∗

⊂ ‖P‖ · BP∗(W )

w∗

.

It is easy to prove that P ∗y∗ ∈ [Φ(P ∗(W ))]⊥. Indeed, for every w∗ ∈ W and every

x ∈ Φ(P ∗w∗), we have Px ∈ Φ̂(w∗), and so

〈x, P ∗y∗〉 = 〈x, y∗ ◦ P 〉 = 〈Px, y∗〉 = 0.

It follows that ‖P‖−1P ∗y∗ ∈ BP∗(W )
w∗

∩ [Φ(P ∗(W ))]⊥ (= {0}), hence P ∗y∗ = 0

and so y∗ = 0. �

Remark 6. Every Banach space X with a full PG has an M-basis. This can

be proved by a standard transfinite induction argument. Indeed, the classical Mar-

kushevich theorem gives an M-basis in every separable Banach space. Now assume

that, given an uncountable cardinal number ℵ, the result has been proved for every

Banach space with density < ℵ. Let X be a Banach space with a full PG and such

that densX = ℵ. Then X has a PRI (Pα)ω06α6µ, where µ is the first ordinal with

cardinal dens X . Every subspace (Pα+1 − Pα)X , ω0 6 α < µ, has a full PG thanks

to Lemma 5, so it has an M-basis by the induction hypothesis. A standard argument

(see, e.g., [2, Proposition 6.2.4]) concludes that X itself has an M-basis.

The following result characterizes Banach spaces having a full PG. It is known

that a WLD Banach space has such a PG (see, for example, [2, Proposition 8.3.1]).

That a WLD is characterized by the existence of an M-basis (or just a linearly

dense subset) that countably supports X∗ is also known (see, for example, [3] or [4,

Theorem 12.50]).

Theorem 7. Let X be a Banach space. Then the following are equivalent.

(i) X is WLD.

(ii) X has a full PG.

(iii) X has an M-basis {xγ ; x∗
γ}γ∈Γ such that {xγ ; γ ∈ Γ} countably supports X∗.

(iv) X has a linearly dense subset set G which countably supports X∗.
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In fact, if one of the above conditions hold, then every M-basis {xγ ; x∗
γ}γ∈Γ in

X × X∗ has the property that {xγ ; γ ∈ Γ} countably supports X∗.

P r o o f. (i) ⇒ (ii) is proved, for example, in [2, Proposition 8.3.1]. We provide

here a (somehow) streamlined proof. (BX∗ , w∗) is Corson; hence, for some non-

empty Γ, it is a subspace of (Σ(Γ), Tp). Given γ ∈ Γ, let πγ : Σ(Γ) → R be the

γ-th coordinate mapping; its restriction to BX∗ , denoted again πγ , is an element in

C((BX∗ , w∗)). In this last space, the algebra generated by the elements in X and

the constant functions is norm-dense, so there exists a countable set Xγ ⊂ X such

that πγ is in the norm-closure of the algebra A (Xγ , Iconst) generated by Xγ and the

constant function Iconst on (BX∗ , w∗). Define Φ: X∗ → 2X as

(1) Φ(x∗) =















{0}, if x∗ = 0,

{0}, if x∗ 6∈ BX∗ ,
⋃

πγ(x∗) 6=πγ(0)

Xγ , if x∗ ∈ BX∗ , x∗ 6= 0.

We Claim that (X∗, Φ) is a PG. To prove the Claim take W ⊂ X∗ such that

spanQ W = W . Let x∗ ∈ Φ(W )⊥ ∩ BW
w∗

. Assume x∗ 6= 0. Then there exists

γ ∈ Γ such that πγ(x∗) 6= πγ(0). As x∗ ∈ BW
w∗

, there exists w∗ ∈ BW such that

πγ(w∗) 6= πγ(0). Then Xγ ⊂ Φ(w∗). Since x∗ ∈ Φ(W )⊥ and Φ(w∗) ⊂ Φ(W ), we

have 〈Xγ , x∗〉 = 0. Now, every element of A (Xγ , 1), where 1 denotes the constant

1 function, is of the form f := a0 +
k
∑

i=1

ai

ni
∏

j=1

xi,j , where a0, ai are constant func-

tions and xi,j ∈ Xγ . It follows that f(x∗) = a0 = f(0). Then, since πγ is in the

norm-closure of A (Xγ , 1) we get πγ(x∗) = πγ(0), a contradiction.

(ii) ⇒ (iii) We proved in Remark 6 that every Banach space with a full PG has

an M-basis. We shall prove now that every M-basis {xγ ; x∗
γ}γ∈Γ in X × X∗ satisfies

that {xγ ; γ ∈ Γ} countably supports X∗. Given x∗ ∈ X∗, put supp(x∗) := {γ ∈

Γ; 〈xγ , x∗〉 6= 0}, and let #S be the cardinal number of a set S.

Let S := {x∗ ∈ X∗; # supp(x∗) 6 ℵ0}; it is a linear subspace of X∗. Since S

contains all x∗
γ , it is weak*-dense. We shall prove that S∩BX∗ is weak*-closed. Then

the Banach-Dieudonné Theorem will yield that S is w∗-closed, hence S = X∗ and so

{xγ ; γ ∈ Γ} countably supports X∗, as we wish to prove. Let then x∗
0 ∈ S ∩ BX∗

w∗

.

Put W1 = spQ{x
∗
0}; this is a countable set. Φ(W1) is also a countable set. Let

us enumerate it as Φ(W1) =
{

x1
1, x

1
2, . . .

}

. Find x∗
1 ∈ S ∩ BX∗ so that

∣

∣〈x1
1, x

∗
1 −

x∗
0〉

∣

∣ < 1. Put W2 = spQ

{

x∗
0, x

∗
1

}

. The set Φ(W2) is again countable. Write then

Φ(W2) =
{

x2
1, x

2
2, . . .

}

. Find x∗
2 ∈ S ∩ BX∗ so that

∣

∣〈xi
j , x

∗
2 − x∗

0〉
∣

∣ < 1
2 for each

i, j ∈ {1, 2}. Put W3 = spQ

{

x∗
0, x

∗
1, x

∗
2

}

. The set Φ(W3) is again countable. Write

then Φ(W3) =
{

x3
1, x

3
2, . . .

}

. Find x∗
3 ∈ S ∩ BX∗ so that

∣

∣〈xi
j , x

∗
3 − x∗

0〉
∣

∣ < 1
3 for each
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i, j ∈ {1, 2, 3}. Continuing in a obvious way, we get a sequence (x∗
n)∞n=1 in S ∩ BX∗ ,

“rationally” linear countable sets W1 ⊂ W2 ⊂ . . . ⊂ X∗, and vectors xi
j , i, j ∈ N.

Put W := W1 ∪ W2 ∪ . . .; then spQW = W . Let y∗ ∈ BX∗ be a weak* cluster point

of the sequence (x∗
n). Pick any x ∈ Φ(W ). Then x = xi

j for suitable i, j ∈ N. Then

for n ∈ N, with n > max{i, j}, we have
∣

∣〈x, x∗
n − x∗

0〉
∣

∣ =
∣

∣〈xi
j , x

∗
n − x∗

0〉
∣

∣ < 1/n, and

hence 〈x, y∗ − x∗
0〉 = 0. We thus showed that y∗ − x∗

0 ∈ Φ(W )⊥. On the other hand
1
2 (y∗ − x∗

0) ∈ BW
w∗

. Therefore y∗ − x∗
0 = 0. And, since y∗, as a weak* cluster

point of the sequence (x∗
n), has at most a countable support, we can conclude that

x∗
0 = y∗ ∈ S ∩ BX∗ .

(iii) ⇒ (iv) is trivial.

(iv) ⇒ (i) is obvious; the mapping x∗ 7→ (〈γ, x∗〉)γ∈Γ from X∗ into RΓ shows that

(BX∗ , w∗) is a Corson compactum. �

Remark 8. Lemma 5 and Remark 6 give that every complemented subspace of a

Banach space with a full PG has an M-basis. This holds, too, for an arbitrary (closed)

subspace Y of a Banach space X with a full PG. The proof uses again a transfinite

induction argument on the density of Y . Assume first that Y is separable. Then

the result follows from the classical Markushevich theorem. Let ℵ be an uncountable

cardinal number. Assume that the result holds for every Banach space of density < ℵ

which is a subspace of a Banach space with a full PG. Let Y be a subspace of density

ℵ of X . Since X has a PG, there exists a complemented subspace Z of X such that

Y ⊂ Z ⊂ X and dens Z = dens Y . Let µ be the first ordinal with cardinal densZ.

Lemma 5 ensures that Z has also a full PG, so there exists a PRI (Pα)ω06α6µ on

Z such that every Pα fixes Y (see the proof of [2, Proposition 6.1.10]), and then

the long sequence of their restrictions to Y provides a PRI on Y . By the induction

hypothesis, every (Pα+1 − Pα)Y , ω0 6 α < µ, has an M-basis. Finally, a standard

argument gives an M-basis on Y .

This result is less general than the one stated in Corollary 9. However, to prove

it we did not need the full strength of Theorem 7.

It is known that a subspace of a WLD Banach space is itself WLD. This result

is a consequence of the fact that the continuous image of a Corson compactum is

again Corson compactum, a deep result of Gul’ko and, independently, Valdivia [12].

In Corollary 9 below we shall prove in a more simple way the hereditability by

subspaces of the WLD property. This fact has been also proved in [3]; the proof here

is even simpler.

A compact topological space K is angelic if for every non-empty subset A of K,

every element in A is the limit of a sequence in A. We shall use the following

fact. Let f : K → T be a continuous onto mapping, K an angelic compact space,

T a compact space. Then T is also angelic. Indeed, let ∅ 6= B ⊂ T . The family
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A := {A ⊂ K, A closed; f(A) = B} is non-empty and has, by Zorn’s Lemma, a

minimal element, say A. Let A0 := {a ∈ A; f(a) ∈ B}. Observe that f(A0) ⊂ B by

the definition of A0. If b ∈ B, then there exists a ∈ A such that b = f(a). Hence

a ∈ A0. Therefore f(A0) = B. Now, B = f(A0) = f(A0) ⊂ f(A) = B, hence

f(A0) = B. Note that A0 ⊂ A and that A is minimal. It follows that A0 = A.

Given b ∈ B there exists a ∈ A such that f(a) = b and, by angelicity, there exists a

sequence (an) in A0 such that an → a. It follows that (bn) (:= f(an)) is a sequence

in B which converges to b.

Corollary 9. Let X be a WLD Banach space. Then, every subspace Y of X is

again WLD.

P r o o f. By Remark 8, Y has an M-basis {yγ ; y∗
γ}γ∈Γ. By the preceding ob-

servation, (BY ∗ , w∗) is angelic and therefore, by the Banach-Dieudonné Theorem,

{yγ ; γ ∈ Γ} countably supports Y ∗. It follows from Theorem 7 that Y is WLD. �

Remark 10. Under Martin’s Axiom (MAω1
), every Corson compactum has prop-

erty (M), a result of Archangelskii, Šapirovskii and Kunen (see, for example, [6]

and [8]). If this is the case, as a consequence of Corollary 9 we obtain the result

mentioned above that the continuous image of a Corson compactum is again Corson.

Another simple consequence of Theorem 7 and Proposition 1 in [3] is the following

corollary (see [12] and [14]).

Corollary 11. Let X be a WLD Banach space and let Y be a closed subspace

of X . Then, every M-basis (resp. norming M-basis, resp. uniformly minimal M-

basis) on Y can be extended to an M-basis (resp. norming M-basis, resp. uniformly

minimal M-basis) on X .

P r o o f. Proceed by induction on the density character of X . If X is separable,

the result follows from [7] (resp. [11], resp. [10]). Let ℵ be an uncountable cardinal

number. Assume that the corollary has been proved for all WLD Banach spaces

of density < ℵ. Suppose that X is a WLD Banach space of density ℵ. Let {yγ ;

y∗
γ}γ∈Γ an M-basis on Y . Let G be a total subset of X countably supporting X∗.

Then {yγ ; γ ∈ Γ} ∪ G is a total subset of X and countably supports X∗. By [3,

Proposition 1] there exists (Pα)ω06α6µ, a PRI onX subordinated to {yγ ; γ ∈ Γ}∪G,

i.e., Pα(x) ∈ {x, 0} for every x ∈ {yγ ; γ ∈ Γ} ∪ G. Using the aforesaid PRI, and

letting Qα := Pα+1 − Pα, ω0 6 α < µ, extend the M-basis Qα{yγ ; γ ∈ Γ} of QαY

to an M-basis (resp. norming M-basis, resp. uniformly minimal M-basis) of QαX ,

by the induction hypothesis. Now, using [2, Proposition 6.2.4], “glue together” those

M-bases in one on X , which becomes an extension of {yγ ; y∗
γ}γ∈Γ with the required

properties. �
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Remark 12. Corollary 9 is a simple consequence of Corollary 11 and the fact

that an M-basis {xγ ; x∗
γ}γ∈Γ of a Banach space with a weak*-angelic dual unit ball

has the property that {xγ ; γ ∈ Γ} countably supports X∗.

We say that a Banach space X is DENS if the density of X is equal to the density

of (X∗, w∗). Another simple consequence of Theorem 7 is the following well-known

fact.

Corollary 13. Every WLD Banach space is DENS.

P r o o f. Let {xγ ; x∗
γ}γ∈Γ be an M-basis inX (which always exists, and {xγ ; γ ∈

Γ} countably supports X∗, see Theorem 7), and let D be a weak*-dense subset of

X∗ with #D = w∗-dens X∗. Then S := {xγ ; γ ∈ Γ, 〈xγ , d∗〉 6= 0 for some d∗ ∈ D}

is fundamental in X (assume not: there exists 0 6= x∗ ∈ X∗ such that 〈s, x∗〉 = 0

for all s ∈ S. We can find γ ∈ Γ such that 〈xγ , x∗〉 6= 0. Find d∗ ∈ D such that

〈xγ , d∗〉 6= 0. Then xγ ∈ S and 〈xγ , x∗〉 = 0, a contradiction), and #S = #D, so we

have dens X 6 w∗-dens X∗ (6 dens X) and so X is DENS. �

The next theorem completes the information given in [9] and depends essentially

upon the following Valdivia’s result in [13]: (a) Let X be an Asplund space. Then X

has a biorthogonal system {xγ ; x∗
γ}γ∈Γ such that spanw∗

{x∗
γ ; γ ∈ Γ} = X∗ and,

moreover, {xγ ; x∗
γ ↾E}γ∈Γ is a shrinking M-basis in E, where E := span{xγ ;

γ ∈ Γ}.

We say that a Banach space is 〈F 〉 if it has an equivalent Fréchet differentiable

norm. An M-basis {xγ ; x∗
γ}γ∈Γ in X×X∗, where X is a Banach space, is shrinking if

span{x∗
γ ; γ ∈ Γ} = X∗. We say that a Banach space X is Asplund if every separable

subspace of X has a separable dual.

Theorem 14. Let E be a Banach space. Then, the following are equivalent.

(i) There is a subspace X ⊂ E with a shrinking M-basis.

(ii) There is a subspace Y ⊂ E which is Asplund and WCG.

(iii) There is a subspace Z ⊂ E which is Asplund and DENS.

(iv) There is a subspace U ⊂ E which is Asplund.

(v) There is a subspace V ⊂ E which is 〈F 〉 and WCG.

(vi) There is a subspace W ⊂ E which is 〈F 〉 and DENS.

(vii) There is a subspace H ⊂ E which is 〈F 〉.

P r o o f. (i) ⇒ (ii) Every Banach space with a shrinking M-basis is Asplund and

WCG (and conversely, see, for example, [2, p. 112 and Theorem 8.3.3]).

(ii) ⇒ (iii) Every WCG space is WLD. Apply now Corollary 13.

(iii) ⇒ (iv) is trivial.
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(iv) ⇒ (i) follows from Valdivia’s result (a).

(i) ⇒ (v) See, for example, [4, Theorem 11.23].

(v) ⇒ (vi) follows again from Corollary 13.

(vi) ⇒ (vii) is trivial.

(vii) ⇒ (iv) Every 〈F 〉 space is Asplund (see, for example, [4, Cor. 10.9]). �

Remark 15. As it is well-known (see, for example, [2, Theorem 8.3.3], in the

framework of Asplund spaces all concepts WCG, subspace of WCG, WCD and WLD

coincide. However, this is not the case with the concept DENS: the Banach space

C[0, ω1] is DENS (see, for example, [15]), Asplund ([0, ω1] is scattered) but not WLD

([0, ω1] is not Corson).

If K is the Kunen compactum (see, for example, [8]) then C(K) is Asplund, not

WLD (K is not Corson) and no non-separable subspace of C(K) has an M-basis

(see, for example, [15]).

The following well-known result is less general than Theorem 7. However, it gives

in a very natural way a full projectional generator (X∗, Φ) in aWCG Banach spaceX ,

reencountering Amir-Lindenstrauss classical result in [1] (see also [4, Theorem 11.6]).

The fact that, moreover, the range of the mapping Φ is contained in a weakly compact

set generating X gives the well-known result that X contains a weakly compact M-

basis, i.e., an M-basis {xγ , x∗
γ}γ∈Γ such that {xγ ; γ ∈ Γ} ∪ {0} is a weakly compact

set.

Proposition 16. Let X be a WCG Banach space generated by an absolutely

convex and weakly compact set K. Then, X has a full (single-valued) projectional

generator (X∗, Φ) such that Φ(x∗) ∈ K for all x∗ ∈ X∗

P r o o f. Given x∗ ∈ X∗, let Φ(x∗) be an element in K such that 〈Φ(x∗), x∗〉 =

sup |〈K, x∗〉|. We Claim that (X∗, Φ) is a PG. In order to prove the Claim let

W ⊂ X∗ be such that spanQ(W ) = W . By the Mackey Arens theorem, let x∗ ∈

Φ(W )⊥∩B
w∗

W = Φ(W )⊥∩BW
µ(X∗,X)

, where µ(X∗, X) is the Mackey topology onX∗

of the dual pair 〈X, X∗〉, i.e., the topology of the uniform convergence on the family

of all absolutely convex weakly compact subsets of X . Note that BW
µ(X∗,X)

⊂

BW
TK , where TK is the topology on X∗ of the uniform convergence on K. Let

(x∗
n) be a sequence in BW such that x∗

n

TK−→ x∗. Fix ε > 0 and find n0 ∈ N such

that sup |〈K, x∗ − x∗
n〉| < ε for all n > n0. Then, in particular, |〈Φ(x∗

n), x∗
n〉| =

|〈Φ(x∗
n), x∗ − x∗

n〉| < ε for all n > n0. This implies that sup |〈K, x∗
n〉| < ε for all

n > n0, so sup |〈K, x∗〉| 6 ε. As ε > 0 is arbitrary, we get x∗|K ≡ 0, and so x∗ = 0,

This proves the Claim and the result. �
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