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Abstract. For the Azimi-Hagler spaces more geometric and topological properties are
investigated. Any constructed space is denoted by Xα,p. We show

(i) The subspace [(enk )] generated by a subsequence (enk) of (en) is complemented.

(ii) The identity operator from Xα,p to Xα,q when p > q is unbounded.

(iii) Every bounded linear operator on some subspace of Xα,p is compact. It is known that
if any Xα,p is a dual space, then

(iv) duals of Xα,1 spaces contain isometric copies of ℓ∞ and their preduals contain asymp-
totically isometric copies of c0.

(v) We investigate the properties of the operators from Xα,p spaces to their predual.
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1. Introduction and preliminaries

In this paper we continue the study of properties of the classes of Azimi-Hagler

Banach spaces which were constructed by Hagler and the first named author. These

spaces are denoted by Xα,p. In [3] classes of spaces containing hereditarily ℓ1 which

fail the Schur property were constructed and studied. In [1] classes of Xα,p Banach

spaces were constructed which are hereditarily complementably ℓp. Here further

geometric and topological investigation of the spaces is carried out. In the first result

subclasses are constructed where each member has an unconditional basis (ui) such

that ui
w
→ 0 but not in norm. Among the other interesting properties, all constructed

Azimi-Hagler spaces are dual spaces. We consider properties of the operators from

the spaces to their predual. In [11] Popov showed that the classical Pitt theorem on

compactness of operators from ℓp to ℓq for 1 6 q < p < ∞ it fails in general setting

of hereditarily ℓp and ℓq spaces.
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By the Pitt theorem every bounded linear operator from ℓp to ℓq when 1 6 q < p <

∞ is compact. The proof of this theorem is based on the fact that any block basis

of (en) in ℓp is equivalent to (en) in ℓp. But this is not the case for Xα,p spaces. In

fact there are block basis sequences of (en) in Xα,p which are not equivalent to (en).

Before beginning our detailed analysis, we pass to the construction of Xα,p spaces

of Azimi and Hagler. Consider a nonnegative sequence (αi) of reals which satisfies

the following conditions:

1. α1 = 1 and αi+1 6 αi for i = 1, 2, . . .,

2. limαi = 0,

3.
∞
∑

i=1

αi = ∞.

A block F is a finite or infinite interval F ⊂ N and a sequence of blocks (Fi)i

where the Fi (finite or infinite) is called admissible if maxFi < min Fi+1 (i ∈ N).

We now define a norm which uses the α′
is and admissible sequences of blocks in its

definition. For a block F and a finitely non-zero sequence x = (x1, x2, x3 . . .) of reals

we let 〈x, F 〉 =
∑

i∈F

xi. For 1 6 p < ∞ we define

‖x‖ = max

[ n
∑

i=1

αi|〈x, Fi〉|
p

]1/p

where the maximum is taken over all n and an admissible sequence F1, F2, . . . , Fn.

The Banach spaceXα,p is the completion of the finitely non-zero sequencees of scalars

in this norm. Let X̃α,p = [uj ] where uj = e2j − e2j−1. In [3] it is shown that X̃α,p

is weakly sequentially complete and (ui)i is an unconditional basis such that ui → 0

weakly but ‖ui‖ = (1+α2)
1/p. Let us present the main properties of Xα,p spaces [1].

Theorem 1.1. Let Xα,p denote a specific space of the class. Then

(1) Xα,p is hereditarily complementably ℓp.

(2) The sequence (ei) is a normalized boundedly complete basis for Xα,p. Thus

Xα,p is a dual space.

(3) The predual of Xα,p contains complemented subspaces isomorphic to ℓq where

1/p + 1/q = 1.

(4) Each complemented non weakly sequentially complete subspace of Xα,p con-

tains a complemented isomorph of Xα,p. Since Xα,p contains ℓp hereditarily

complementably thus

(5) Xα,p spaces are not prime.

Definition and notation are standard. Nevertheless, we list the most important of

them. The dual space of a Banach space X is denoted by X∗. Let Y be a subspace

of X , then we say that X contains Y hereditarily if every infinite dimensional sub-

space of X contains an isomorphic copy of Y . A subspace Y is complemented in X
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if there is a bounded projection P : X −→ Y such that P (X) = Y . Also [xn] is the

closed linear span of (xn).

The space of all bounded linear operators from X to Y is denoted by L(X, Y ) and

B(X) is the unit ball of X . Let T ∈ L(X, Y ), then T is called a compact operator

(weakly compact operator) if TB(X) is relatively norm compact (relatively weakly

compact) in Y . Equivalently, T is compact if for every bounded sequence (xn)n

in X , the sequence (Txn)n contains a convergent subsequence. We will denote the

collection of all compact operators from X to Y by K(X, Y ).

Definition 1.2. A Banach space X is called weakly conditionally compact if

every bounded sequence in X has a weakly Cauchy subsequence. It is known that all

reflexive spaces, as well as any Banach space with a separable dual space, are weakly

conditionally compact.

The following theorem is known [9].

Theorem 1.3. LetX be weakly conditionally compact. T ∈ L(X, Y ) is a compact

operator if and only if whenever (xn)n converges to zero weakly in X this implies

that (Txn)n converges to zero in norm (in Y ).

Definition 1.4. Let X and Y be Banach spaces. Two bases, (xn) of X and

(yn) of Y , are called equivalent provided a series
∞
∑

n=1

anxn converges if and only if

∞
∑

n=1

anyn converges.

Thus the bases are equivalent if the sequence space associated with X by (xn) is

identical to the sequence space associated with Y by (yn). It follows from the closed

graph theorem that (xn) is equivalent to (yn) if and only if there is an isomorphism T

from X to Y for which Txn = yn for all n.

2. The results

From the definition of the norm of Xα,p, we can see that the unit vector basis is

spreading (equivalent to each of its subsequence) and bi-monotone. That is ‖(Pm −

Pn)x‖ 6 ‖x‖ for each x = (x1, x2, x3, . . .) ∈ Xα,p and n < m. Observe that each

block F defines a functional which is bounded on Xα,p. In fact 〈x, F 〉 =
∑

i∈F

xi =
∑

i∈F

e∗i (x).

873



Theorem 2.1. If (eik
) is a subsequence of (ek) in Xα,p, then

(1) [(eik
)] is asymptotically isometric to ℓp,

(2) [(eik
)] is complemented in Xα,p.

P r o o f. Part (1) is an immediate consequence of Theorem 1.1. For the proof

of (2) let (Fi) be a sequence of blocks without gaps (max Fi + 1 = minFi+1) such

that if ik ∈ Fk, then [(eik
)] is complemented by the projection

Px =

∞
∑

i=1

〈x, Fk〉 eik
.

Since (Fi) has no gaps, any estimate of ‖Px‖ is also an estimate of ‖x‖, so ‖P‖ = 1.

�

Lemma 2.2. For each non-increasing sequence of positive numbers (βi) and

v = (β1,−β1, β2,−β2, . . . , βn,−βn)

in the space Xα,p we have

‖v‖p = (α1 + α2)β
p
1 + (α3 + α4)β

p
2 + . . . + (α2n−1 + α2n)βp

n.

P r o o f. Let each block F be a singleton with Fi = {i}. Then |〈v, F2i−1〉| =

|〈v, F2i〉| = βi. This implies

‖v‖p > (α1 + α2)β
p
1 + (α3 + α4)β

p
2 + . . . + (α2n−1 + α2n)βp

n.

We claim that the sequence of (Fi) is the norming sequence for v, otherwise there

is a sequence (F1, F2, . . . , Fk) of consecutive blocks such that k < 2n and ‖v‖p =
n
∑

i=1

αi|〈v, Fi〉|
p, since for any block F , 〈v, F 〉 is βi or 0, the number of blocks such

that 〈v, F 〉 6= 0 is equal at most to k, and since {βi} is non-increasing and k < 2n,

‖v‖p =
∑

αiβ
p
i 6 (α1 + α2)β

p
1 + (α3 + α4)β

p
2 + . . . + (α2n−1 + α2n)βp

n.

So

‖v‖p = (α1 + α2)β
p
1 + (α3 + α4)β

p
2 + . . . + (α2n−1 + α2n)βp

n.

�
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Corollary 2.3. In the space Xα,p and for any integer n we have

(2)

∥

∥

∥

∥

n
∑

i=1

ui

∥

∥

∥

∥

=

∥

∥

∥

∥

n
∑

i=1

(e2i − e2i−1)

∥

∥

∥

∥

=

( 2n
∑

i=1

αi

)1/p

.

P r o o f. Put βi = 1 in Lemma 3.2 . �

We know that if p > q the identity operator from ℓp to ℓq is unbounded. Here is

a similar result for Xα,p.

Theorem 2.4. The identity operator fromXα,p toXα,q when p > q is unbounded.

P r o o f. Let I be bounded, then for any scalars ai

∥

∥

∥

∥

n
∑

i=1

aiei

∥

∥

∥

∥

Xα,q

=

∥

∥

∥

∥

n
∑

i=1

Iaiei

∥

∥

∥

∥

Xα,q

=

∥

∥

∥

∥

I

n
∑

i=1

aiei

∥

∥

∥

∥

Xα,q

6 ‖I‖

∥

∥

∥

∥

n
∑

i=1

aiei

∥

∥

∥

∥

Xα,p

with ai = (−1)i and Corollary 3.3 yields

( n
∑

i=1

αi

)1/q

=

∥

∥

∥

∥

n
∑

i=1

(−1)iei

∥

∥

∥

∥

Xα,q

6 ‖I‖

∥

∥

∥

∥

n
∑

i=1

(−1)naiei

∥

∥

∥

∥

Xα,p

= ‖I‖

( n
∑

i=1

αi

)1/p

,

therefore
( n

∑

i=1

αi

)1/q−1/p

6 ‖I‖.

This is a contradiction, since
∞
∑

1

αi diverges. So I is unbounded. �

We use the following lemma from [3].

Lemma 2.5. Let (ui) be a sequence of norm one vectors in Xα,p and (Gi) an

admissible sequence of blocks such that {j : ui(j) 6= 0} ⊂ Gi. For each i put si =

s(ui). If lim si = 0 then a subsequence (vk) of (uk) is equivalent to the usual basis

of ℓp.
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Theorem 2.6. Let T : X̃α,p −→ X̃α,q, 1 < q < p be a bounded linear operator

and for any normalized block basis let yn =
qn+1
∑

i=qn+1

aiui where un = e2n−1 − e2n and

lim ai = 0. Then T is compact.

P r o o f. It is enough to show that for every sequence (xn) in Xα,p such that

xn
w
→ 0 we have Txn

‖·‖
→ 0. Assume that T is not a compact operator, then there is

a sequence (xn) in Xα,p such that xn
w
→ 0 and ‖Txn‖ > ε for some ε > 0 and all

integers n. By passing to a subsequence and using the Bessaga-Pelczynski selection

we can assume that (xn) is equivalent to the unit vector basis in X̃α,p and (Txn) is

equivalent to the vector unit basis in X̃α,q. In fact xn ∼ yn where

yk = ank−1+1unk−1+1 + . . . + ank
unk

, k = 1, 2, 3, . . .

Now let sk = max|〈yk, F 〉| where the maximum is taken over all blocks F . Then

(sk) is a subsequence of (ak). We observe that by Lemma 3.5 and the fact that

sk → 0 the sequences (yn), and so (xn), are equivalent to the unit vector basis

of ℓp. A similar argument shows that (Txn) is equivalent to the unit vector basis

of ℓq. Then there are bounded linear operators S1 and S2 such that xn = S1en and

S2Txn = en. Now for every scalars an we have

( m
∑

n=1

|an|
q

)1/q

=

∥

∥

∥

∥

m
∑

n=1

anen

∥

∥

∥

∥

Xα,q

=
∥

∥

∥

∑

anS2Txn

∥

∥

∥

6 ‖S2‖‖T ‖
∥

∥

∥

∑

anxn

∥

∥

∥
6 ‖S2‖‖T ‖

∥

∥

∥

∑

anS1en

∥

∥

∥

6 ‖S2‖‖T ‖‖S1‖
∥

∥

∥

∑

anen

∥

∥

∥

Xα,p

= M‖T ‖

( m
∑

1

|an|
p

)1/p

where M = ‖S2‖‖S1‖. If ai = 1 for all i then m1/q 6 M‖T ‖m1/p, i.e. m1/q−1/p 6

M‖T ‖. This shows that T is not bounded and this is a contradiction. So T is a

compact operator. �

Now we deduce some more results concerning the subspace structure of Xα,p

spaces.

Definition 2.7. A Banach spaceX is called a Grothendieck space if every weak∗-

convergent sequence inX∗ is weakly convergent. For example, every reflexive Banach

space is a Grothendieck space.

Definition 2.8. A Banach space X is said to be weakly compactly generated

whenever there exists a weakly compact subset K of X such that the closed linear

span of K is all X ([K] = X). Every reflexive and separable Banach space is weakly

compactly generated.

876



Now we state the following theorem from [9].

Theorem 2.9. Given a Banach space X , the following conditions are equivalent:

(1) X is a Grothendieck space;

(2) every continuous linear operator T : X −→ Y , where Y is separable, is weakly

compact;

(3) every continuous linear operator T : X −→ Y where Y is weakly compactly

generated, is weakly compact;

(4) every continuous linear operator T : X −→ c0 is weakly compact;

(5) if Y is any Banach space, and for each n ∈ N, Tn : X −→ Y is weakly compact

operator such that (weak) lim
n

Tn(x) ≡ T0(x) exists for every x ∈ X , then

T0 : X −→ Y is weakly compact;

(6) the “weak convergence” of Tn(x) in condition (5) can be replaced by “norm

convergence”.

Let Yα,p be the predual of Xα,p. We have the following corollary.

Corollary 2.10. Every bounded linear operator from Xα,p to Xα,q and also

from Yα,p to Yα,q where 1/p + 1/q = 1 is weakly compact.

Definition 2.11. A Banach space X is said to contain an asymptotically iso-

metric copy of c0 if there is a null sequence (εn)n in (0, 1) and a sequence (xn)n in X

such that

sup
n

(1 − εn)|tn| 6

∥

∥

∥

∥

∞
∑

n=1

tnxn

∥

∥

∥

∥

6 sup
n

|tn|.

We say that a Banach spaceX is asymptotically isometric to c0 ifX has a basis (xn)n

with the above property.

Definition 2.12. A Banach space X is said to contain an asymptotically iso-

metric copy of l∞ if there is a null sequence (εn)n in (0, 1) and a bounded linear

operator T : l∞ −→ X such that

sup
n

(1 − εn)|tn| 6 ‖T ((tn)n)‖ 6 sup
n

|tn|.

Theorem 1.1 and a result of S. Chen and B. L. Lin yield

Theorem 2.13. For the Xα,1 spaces

(1) the predual of Xα,1 contains asymptotically isometric copies of c0;

(2) the dual of Xα,1 contains an asymptotically isometric copy of ℓ∞.
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Kw∗(X∗, Y ) denotes the Banach spaces of compact and weak∗-weakly continuous

linear operators from X∗ into Y , endowed with the usual operator norm.

Remark. In [7] Dowling showed that a Banach space containing an asymptoti-

cally isometric copy of ℓ∞ must contain an isometric copy of ℓ∞.

The following theorems are due to D. Chen [4].

Theorem 2.14. Let X and Y be two infinite dimensional Banach spaces. If

Y contains an asymptotically isometric copy of c0, then Kw∗(X, Y ) contains a com-

plemented asymptotically isometric copy of c0.

Theorem 2.15. Let X be an infinite-dimensional normed linear space and Y a

Banach space containing an asymptotically isometric copy of c0. Then L(X, Y ) con-

tains an isometric copy of ℓ∞.

Suppose that Y is the predual of Xα,1. Then we have

Theorem 2.16. L(Xα,1, Y ) contains an isometric copy of ℓ∞.

Theorem 2.17. Kw∗(Xα,1, Y ) contains complemented asymptotically isometric

copies of c0.
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