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Abstract. In this paper spaces of entire functions of Θ-holomorphy type of bounded type
are introduced and results involving these spaces are proved. In particular, we “construct
an algorithm” to obtain a duality result via the Borel transform and to prove existence
and approximation results for convolution equations. The results we prove generalize pre-
vious results of this type due to B. Malgrange: Existence et approximation des équations
aux dérivées partielles et des équations des convolutions. Annales de l’Institute Fourier
(Grenoble) VI, 1955/56, 271–355; C. Gupta: Convolution Operators and Holomorphic
Mappings on a Banach Space, Séminaire d’Analyse Moderne, 2, Université de Sherbrooke,
Sherbrooke, 1969; M. Matos: Absolutely Summing Mappings, Nuclear Mappings and Con-
volution Equations, IMECC-UNICAMP, 2007; and X. Mujica: Aplicações τ (p; q)-somantes
e σ(p)-nucleares, Thesis, Universidade Estadual de Campinas, 2006.
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1. Introduction

The starting point of this paper is the set of existence and approximation results

for convolution equations due to B. Malgrange [8] and their generalizations to spaces

of nuclear entire functions of bounded type due to C. Gupta [6].

In this context, special classes of homogeneous polynomials between Banach spaces

play a crucial role. Historically, there are two abstract approaches to deal with spe-

cial classes of polynomials, namely, holomorphy types and modules of homogeneous

polynomials, which go back to L. Nachbin [14] and A. Pietsch [15], respectively. Us-

The first author is supported by Fapesp, project 07/50811-4. The second author is
supported by CNPq.
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ing modules of homogeneous polynomials, M. Matos [12] generalized the aforemen-

tioned results to modules of (s; (r, q))-quasi-nuclear polynomials and X. Mujica [13]

proved results about the Borel transform and convolution operators for modules of

σ(p)-nuclear polynomials.

In this paper we show how all these cases can be generalized using holomorphy

types instead of modules of homogeneous polynomials. As usual, the Borel transform

is used to obtain duality results. Furthermore, convolution operators on spaces of

functions of Θ-holomorphy type of bounded type are characterized and existence

and approximation results for convolution equations are proved. The main point

is to consider holomorphy types enjoying some special properties. In the fashion of

Dineen [2], we identify the properties a holomorphy type must enjoy for the results to

hold true (see Definitions 2.3 and 3.2). The construction of the spaces of functions of

Θ-holomorphy type of bounded type and the duality results using the Borel transform

were also inspired by Dineen [2].

2. Holomorphy types

In this work, N denotes the set of positive integers and N0 denotes the set N∪{0}.

The letters E and F will always denote complex Banach spaces and E′ represents

the topological dual of E. The space of all continuous m-homogeneous polynomials

from E into F is denoted by P(mE; F ) and the space of all entire mappings from E

into F is denoted by H(E; F ). When F = C we write P(mE) and H(E) instead of

P(mE;C) and H(E;C), respectively.

Definition 2.1. A holomorphy type Θ from E to F is a sequence of Banach

spaces (PΘ(mE; F ))∞m=0, the norm on each of them being denoted by ‖ · ‖Θ, such

that the following conditions hold true:

(1) Each PΘ(mE; F ) is a vector subspace of P(mE; F ).

(2) PΘ(0E; F ) coincides with P(0E; F ) = F as a normed vector space.

(3) There is a real number σ > 1 for which the following is true: given any k ∈ N0,

m ∈ N0, k 6 m, a ∈ E, and P ∈ PΘ(mE; F ), we have

d̂kP (a) ∈ PΘ(kE; F ),
∥

∥

∥

1

k!
d̂kP (a)

∥

∥

∥

Θ
6 σm‖P‖Θ‖a‖

m−k.

It is obvious that each inclusion PΘ(mE; F ) ⊂ P(mE; F ) is continuous and ‖P‖ 6

σm‖P‖Θ.

Definition 2.2. Let (PΘ(mE; F ))∞m=0 be a holomorphy type from E to F . A

mapping f ∈ H(E; F ) is said to be of Θ-holomorphy type of bounded type if
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(i) (m!)−1d̂mf(0) ∈ PΘ(mE; F ) for all m ∈ N0,

(ii) lim
m→∞

((m!)−1‖d̂mf(0)‖Θ)1/m = 0.

The vector subspace of H(E; F ) of all such f of Θ-holomorphy type of bounded

type is denoted by HΘb(E; F ).

Remark 2.1. The inequality ‖ ·‖ 6 σm‖ ·‖Θ implies that each entire mapping f

of Θ-holomorphy type of bounded type is an entire mapping of bounded type in the

sense introduced by Gupta in [6], that is, f is bounded on bounded subsets of E.

It is easy to see that the following result holds.

Proposition 2.1. The space PΘ(mE; F ) is contained in HΘb(E; F ) for each

m ∈ N0.

Proposition 2.2. Let f ∈ H(E; F ). Then f ∈ HΘb(E; F ) if and only if

(i) (m!)−1d̂mf(a) ∈ PΘ(mE; F ), for all a ∈ E and m ∈ N0,

(ii) lim
m→∞

(‖(m!)−1d̂mf(a)‖Θ)1/m = 0 for all a ∈ E.

P r o o f. Given f ∈ HΘb(E; F ) and a ∈ E, let ε > 0 be such that ε‖a‖ < 1.

Considering σ > 1 as in condition (3) of Definition 2.1, there is C(ε) > 0 such that

1

m!
‖d̂mf(0)‖Θ 6 C(ε)

( ε

σ

)m

for all m ∈ N0. Since

1

m!
d̂mf(a) =

∞
∑

k=0

1

m!
d̂m

( 1

(m + k)!
d̂m+kf(0)

)

(a)

and d̂m+kf(0) ∈ PΘ(m+kE; F ) for all m, k ∈ N0, it follows by condition (3) of

Definition 2.1 that

d̂m
( 1

(m + k)!
d̂m+kf(0)

)

(a) ∈ PΘ(mE; F )

and
∥

∥

∥

1

m!
d̂m

( 1

(m + k)!
d̂m+kf(0)

)

(a)
∥

∥

∥

Θ
6 σm+k

∥

∥

∥

1

(m + k)!
d̂m+kf(0)

∥

∥

∥

Θ
‖a‖k.

Furthermore,

1

m!
‖d̂mf(a)‖Θ 6

∞
∑

k=0

σm+k‖
1

(m + k)!
d̂m+kf(0)‖Θ‖a‖

k

6 C(ε)
∞
∑

k=0

σm+k
( ε

σ

)m+k

‖a‖k = C(ε)
εm

1 − ε‖a‖
,
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since ε‖a‖ < 1. Therefore

lim
m→∞

( 1

m!
‖d̂mf(a)‖Θ

)1/m

= 0.

�

For each ̺ > 0 we define a natural seminorm on HΘb(E; F ) by

f ∈ HΘb(E; F ) → ‖f‖Θ,̺ =

∞
∑

m=0

̺m

m!
‖d̂mf(0)‖Θ < ∞.

Condition (ii) of Definition 2.2 implies that ‖ · ‖Θ,̺ is a well defined seminorm. Now

we are considering on HΘb(E; F ) the topology generated by the seminorms ‖ · ‖Θ,̺,

̺ > 0. This topology is denoted by τΘ and it is Hausdorff.

Proposition 2.3. [HΘb(E; F ), τΘ] is a Fréchet space.

P r o o f. Since the sequence (‖ · ‖Θ,n)n∈N generates the topology of HΘb(E; F ), it

follows that this topological vector space is a metrizable locally convex space. We

consider a Cauchy sequence (fk)∞k=1 in HΘb(E; F ). This implies that (d̂mfk(0))∞k=1

is a Cauchy sequence in PΘ(mE; F ) for all m ∈ N0. Hence there is Pm ∈ PΘ(mE; F ),

m ∈ N0, such that

lim
k→∞

1

m!
d̂mfk(0) = Pm.

For every ̺ > 0 there is 0 6 M̺ < ∞ such that ‖fk‖Θ,̺ 6 M̺ for all k ∈ N. It

follows that
∥

∥

∥

1

m!
d̂mfk(0)

∥

∥

∥

Θ
6

M̺

̺m

for all k ∈ N and m ∈ N0. Hence we have ‖Pm‖Θ 6 M̺/̺m for all m ∈ N0, and we

can write

lim
m→∞

‖Pm‖
1/m
Θ 6

1

̺

for all ̺ > 0. This implies that

lim
m→∞

‖Pm‖
1/m
Θ = 0

and

f(x) :=
∞
∑

m=0

Pm(x)

belongs to HΘb(E; F ). For every ε > 0 and ̺ > 0 we have k(ε) ∈ N such that

∞
∑

m=0

̺m
∥

∥

∥

1

m!
d̂mfk(0) −

1

m!
d̂mfj(0)

∥

∥

∥

Θ
< ε
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for all k, j > k(ε). Now we pass to the limit for j tending to infinity and have

∞
∑

m=0

̺m
∥

∥

∥

1

m!
d̂mfk(0) − Pm

∥

∥

∥

Θ
6 ε

for all k > k(ε). Thus (fk)∞k=1 converges to f in the topology of HΘb(E; F ). �

If f belongs to HΘb(E; F ) we may consider Taylor’s polynomial of f at 0 with

degree n, given by

τn,f,0(x) =

n
∑

k=0

1

k!
d̂kf(0)(x)

for all x ∈ E. Since, for each ̺ > 0, we have

‖f − τn,f,0‖Θ,̺ =
∞
∑

k=n+1

̺k

k!
‖d̂kf(0)‖Θ,

hence (τn,f,0)
∞
n=1 converges to f in the topology of HΘb(E; F ).

Definition 2.3. Let (PΘ(mE; F ))∞m=0 be a holomorphy type from E to F . The

holomorphy type Θ is said to be a π1-holomorphy type if the following conditions

hold:

(1) ‖ϕm ⊗ b‖Θ = ‖ϕ‖m‖b‖ for all ϕ ∈ E′, b ∈ F and m ∈ N0;

(2) for each m ∈ N0, Pf (mE; F ) is dense in (PΘ(mE; F ), ‖ · ‖Θ), where Pf (mE; F )

denotes the space of all m-homogeneous polynomials of finite type.

Example 2.1. (a) C. Gupta in [6], M. Matos in [12] and X. Mujica in [13] proved

that sequences of spaces of nuclear polynomials, (s; (r, q))-quasi-nuclear polynomi-

als and σ(p)-nuclear polynomials, from E to F , satisfy conditions (1) and (2) of

Definition 2.3. Hence, each of these sequences is a π1-holomorphy type from E to F .

(b) More generally, let (PΘ(mE; F ))∞m=0 be a holomorphy type from E to F sat-

isfying (1) of Definition 2.3 and such that Pf (mE; F ) is contained in PΘ(mE; F ) for

each m in N. If we denote the closure of Pf (mE; F ) for the topology of PΘ(mE; F )

by Pf (mE; F )
Θ
, then the sequence

(

Pf(mE; F )
Θ)∞

m=0
is a π1-holomorphy type.

Proposition 2.4. For each π1-holomorphy type from E to F , PN (mE; F ) is con-

tained in PΘ(mE; F ) and the inclusion mapping is continuous.

P r o o f. If P ∈ PN (mE; F ) then P =
∞
∑

i=1

x′
i
m
⊗ yi, where (x′

i)
∞
i=1 ⊂ E′, (yi)

∞
i=1 ⊂

F and
∞
∑

i=1

‖x′
i‖

m‖yi‖ < ∞. Let Pn =
n
∑

i=1

x′
i
m ⊗ yi, then for n > j we have

‖Pn − Pj‖Θ 6

n
∑

i=j+1

‖x′
i
m
⊗ yi‖Θ =

n
∑

i=j+1

‖x′
i‖

m‖yi‖.
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Hence (Pn)∞n=1 is a Cauchy sequence in PΘ(mE; F ) and converges to Q ∈ PΘ(mE;

F ). Since

‖Pn − Q‖ 6 σm‖Pn − Q‖Θ,

we have that P = Q ∈ PΘ(mE; F ). It is obvious that the inclusion is continuous. �

The next result is a trivial consequence of the previous proposition.

Corollary 2.1. For each π1-holomorphy type from E to F , HNb(E; F ) is con-

tained in HΘb(E; F ) and the inclusion mapping is continuous.

Proposition 2.5. If Θ is a π1-holomorphy type from E to F , then the vector

subspace S of HΘb(E; F ) generated by {eϕb : ϕ ∈ E′, b ∈ F} is dense in HΘb(E; F ).

P r o o f. It is clear that eϕb ∈ HΘb(E; F ) for all ϕ ∈ E′ and b ∈ F . Since

(τm,f,0)
∞
m=1 converges to f in the topology of HΘb(E; F ), it is enough to prove that

PΘ(mE; F ) ⊆ S for all m ∈ N, where S is the closure of S in the topology of

HΘb(E; F ). We show this by induction on m. For λ ∈ C, λ 6= 0, ϕ ∈ E′ and b ∈ F ,

we have

eλϕb =

∞
∑

j=0

λjϕjb

j!

converging in HΘb(E; F ) and

lim
|λ|→0

∥

∥

∥

eλϕb − b

λ
− ϕb

∥

∥

∥

Θ,̺
= lim

|λ|→0
|λ|

∥

∥

∥

∥

∞
∑

j=2

1

j!
λj−2ϕjb

∥

∥

∥

∥

Θ,̺

= 0

for every ̺ > 0, since

∥

∥

∥

∥

∞
∑

j=2

1

j!
λj−2ϕjb

∥

∥

∥

∥

Θ,̺

=

∞
∑

j=2

̺j |λ|j−2
∥

∥

∥

ϕjb

j!

∥

∥

∥

Θ

6

∞
∑

j=2

̺j
∥

∥

∥

ϕjb

j!

∥

∥

∥

Θ
=

∥

∥

∥

∥

∞
∑

j=2

ϕjb

j!

∥

∥

∥

∥

Θ,̺

< ∞

for |λ| 6 1. Hence ϕb ∈ S. Now, if we suppose that ϕjb ∈ S for j = 1, . . . , m − 1,

ϕ ∈ E′ and b ∈ F , then we have

lim
|λ|→0

∥

∥

∥

∥

1

λm

(

eλϕb −

m−1
∑

j=0

1

j!
λjϕjb

)

−
ϕmb

m!

∥

∥

∥

∥

Θ,̺

= lim
|λ|→0

|λ|

∥

∥

∥

∥

∞
∑

j=m+1

1

j!
λj−mϕjb

∥

∥

∥

∥

Θ,̺

= 0.

Hence ϕmb ∈ S and, consequently, Pf (mE; F ) ⊆ S. Since the closure of Pf (mE; F )

in HΘb(E; F ) is PΘ(mE; F ), we have proved that PΘ(mE; F ) ⊆ S for all m ∈ N. �

914



Now if we suppose that Θ is a π1-holomorphy type from E to F , then we can

define the Borel transform

BΘ : [PΘ(mE; F )]′ → P(mE′; F ′)

given by BΘT (ϕ)(y) = T (ϕmy) for all T ∈ [PΘ(mE; F )]′, ϕ ∈ E′ and y ∈ F . It

is clear that BΘ is well-defined and linear. By (1) of Definition 2.3, we have that

BΘ is continuous and ‖BΘT ‖ 6 ‖T ‖ and using (2) of Definition 2.3, we obtain the

injectivity of BΘ.

We denote by PΘ′(mE′; F ′) the range of BΘ in P(mE′; F ′) and define the norm in

PΘ′(mE′; F ′) by ‖BΘT ‖Θ′ = ‖T ‖. Thus ([PΘ(mE; F )]′, ‖ · ‖) is isomorphic isometri-

cally to (PΘ′(mE′; F ′), ‖ · ‖Θ′).

Now we have an interesting result involving the Borel transform.

Proposition 2.6. Let (PΘ(mE; F ))∞m=0 be a π1-holomorphy type from E to F .

If the Borel transform

BΘ : ([PΘ(mE; F )]′, ‖ · ‖) → (P(mE′; F ′), ‖ · ‖)

is a topological isomorphism onto its range, then PN (mE; F ) = PΘ(mE; F ) as sets,

and the identity mapping PN(mE; F ) → PΘ(mE; F ) is a topological isomorphism.

Here we are considering the usual norm on P(mE′; F ′).

P r o o f. We use the canonical notation of (symmetric) projective tensor prod-

ucts used by K. Floret in [5]. Let ΦΘ = iΘ ◦ ΦN , where iΘ denotes the inclusion

PN (mE; F ) →֒ PΘ(mE; F ) and ΦN : ⊗̃
m,s
πs

E′⊗̃πF −→ PN(mE; F ) is defined by

ΦN ((x′⊗ . . .⊗x′)⊗ y) = x′(·)my. We have that the Borel transform BΘ is the trans-

pose of ΦΘ. Since BΘ is a topological isomorphism, it follows by a classical result of

Banach [1], page 146, Théorème 2, that ΦΘ is surjective. Hence iΘ is surjective and

the results follow. �

Definition 2.4. Let Θ be a π1-holomorphy type from E to C. If T ∈ [HΘb(E)]′,

then the Borel transform of T , denoted by BT , is the function on E′ defined by

BT (ϕ) = T (eϕ) ∈ C.

The function BT is well-defined since eϕ ∈ HΘb(E) for all ϕ ∈ E′.

Definition 2.5. Let (PΘ(mE))∞m=0 be a π1-holomorphy type from E to C. We

say that f ∈ H(E′) is of Θ′-exponential type if d̂mf(0) ∈ PΘ′(mE′) for all m ∈ N0,

and there are C > 0, c > 0 such that

‖d̂mf(0)‖Θ′ 6 Ccm

for all m ∈ N0.

The vector space of all these functions is denoted by ExpΘ′(E′).
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Theorem 2.1. If Θ is a π1-holomorphy type from E to C, then the mapping

B : [HΘb(E)]′ → ExpΘ′(E′),

given by BT (ϕ) = T (eϕ) for all T ∈ [HΘb(E)]′ and ϕ ∈ E′, establishes an algebraic

isomorphism between these spaces.

P r o o f. Let T ∈ [HΘb(E)]′ and ϕ ∈ E′, then

BT (ϕ) = T (eϕ) = T

( ∞
∑

m=0

1

m!
ϕm

)

=
∞
∑

m=0

1

m!
T (ϕm).

If we define Tm = T |PΘ(mE) ∈ [PΘ(mE)]′, then there is P ′
m ∈ PΘ′(mE′) such that

Tm(ϕm) = P ′
m(ϕ) with ‖Tm‖ = ‖P ′

m‖Θ′ for all m ∈ N0. If f ∈ HΘb(E), then there

are C > 0 and ̺ > 0 such that

|T (f)| 6 C‖f‖Θ,̺.

In particular, for each Qm ∈ PΘ(mE) we have

|Tm(Qm)| 6 C̺m‖Qm‖Θ

and

‖P ′
m‖Θ′ = ‖Tm‖ = sup

‖Qm‖Θ61

|Tm(Qm)| 6 C̺m

for all m ∈ N0. Since

BT (ϕ) =
∞
∑

m=0

1

m!
T (ϕm) =

∞
∑

m=0

1

m!
P ′

m(ϕ),

it follows by Definition 2.5 that BT ∈ ExpΘ′(E′).

The linearity is clear and the injectivity is a consequence of Proposition 2.5. Thus

we only have to prove that B is surjective.

Let H ∈ ExpΘ′(E′), then by Definition 2.5

H(ϕ) =

∞
∑

m=0

1

m!
P ′

m(ϕ)

with P ′
m ∈ PΘ′(mE′), and there are C > 0, ̺ > 0 such that

‖P ′
m‖Θ′ 6 C̺m
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for all m ∈ N0. Let Hm ∈ [PΘ(mE)]′ such that Hm(ϕm) = P ′
m(ϕ), and ‖Hm‖ =

‖P ′
m‖Θ′ for all ϕ ∈ E′, and m ∈ N0. For f ∈ HΘb(E) we define

TH(f) =

∞
∑

m=0

1

m!
Hm(d̂mf(0)).

Hence

|TH(f)| 6

∞
∑

m=0

1

m!
‖Hm‖‖d̂mf(0)‖Θ =

∞
∑

m=0

1

m!
‖P ′

m‖Θ′‖d̂mf(0)‖Θ

6 C

∞
∑

m=0

̺m

m!
‖d̂mf(0)‖Θ = C‖f‖Θ,̺.

Therefore TH ∈ [HΘb(E)]′ and

BTH(ϕ) = TH(eϕ) =

∞
∑

m=0

1

m!
Hm(ϕm) =

∞
∑

m=0

1

m!
P ′

m(ϕ) = H(ϕ)

for all ϕ ∈ E′, that is, BTH = H . �

Example 2.2. (a) C. Gupta proved in [6] that if E′ has the λ-bounded approxi-

mation property, then the Borel transform BN establishes an isometric isomorphism

between [PN(mE; F )]′ and P(mE′; F ′).

(b) M. Matos proved in [12] that if E′ has the λ-bounded approximation property,

then the Borel transform BÑ,(s;(r,q)) establishes an isometric isomorphism between

[PÑ,(s;(r,q))(
mE)]′ and P(s′,m(r′;q′))(

mE′), where PÑ,(s;(r,q))(
mE) denotes the space of

all (s; (r, q))-quasi-nuclear m-homogeneous polynomials on E and P(s′,m(r′;q′))(
mE′)

denotes the space of all (s′, m(r′; q′))-summing m-homogeneous polynomials on E′.

(c) X. Mujica proved in [13] that if E′ has the λ-bounded approximation prop-

erty and F is reflexive, then the Borel transform Bσ(p) establishes an isometric

isomorphism between [Pσ(p)(
mE; F )]′ and Pτ(p)(

mE′; F ′), where Pσ(p)(
mE; F ) de-

notes the space of all σ(p)-nuclear m-homogeneous polynomials from E into F , and

Pτ(p)(
mE′; F ′) denotes the space of all τ(p)-summing m-homogeneous polynomials

from E′ into F ′. In particular, the result follows when F is equal to C.

In the same way, Theorem 2.1 was obtained in all these cases in the corresponding

references.

For more details on the indexes s, r, q, s′, r′, q′ and p, see the corresponding

references.
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3. Convolution operators on HΘb(E)

We need some notation to introduce the convolution operators. If a ∈ E and f ∈

HΘb(E), we denote by τaf the complex function on E defined by (τaf)(x) = f(x−a)

for all x ∈ E. By Proposition 2.2 we have τaf ∈ HΘb(E).

Definition 3.1. A continuous linear mapping O : HΘb(E) → HΘb(E) is called

a convolution operator on HΘb(E) if it is translation invariant, that is, for all a ∈ E

and f ∈ HΘb(E), O(τaf) = τa(Of).

If we denote the set of all convolution operators on HΘb(E) by AΘ, then AΘ is an

algebra with unity under the usual vector space operations and under composition

as multiplication.

Proposition 3.1. Let a ∈ E and f ∈ HΘb(E). Then

(i) d̂mf(·)(a) ∈ HΘb(E) and

d̂mf(x)(a) =

∞
∑

k=0

1

k!
¤dm+kf(0)xk(a)

in the sense of the topology of HΘb(E) for all m ∈ N0;

(ii)

(τ−af)(x) =

∞
∑

m=0

1

m!
d̂mf(x)(a)

in the sense of the topology of HΘb(E).

P r o o f. (i) It is known (see Nachbin [14], page 29) that the following pointwise

equalities are true:

d̂mf(x)(a) =

∞
∑

k=0

1

k!
¤dm+kf(0)xk(a) =

∞
∑

k=0

1

k!
¤dm+kf(0)am(x).

Since d̂mf(0) ∈ PΘ(mE) for all m ∈ N0, it follows by condition (3) of Definition 2.1

that ¤dm+kf(0)am ∈ PΘ(kE) and

∥

∥

∥

¤dm+kf(0)am
∥

∥

∥

Θ
6

σm+km!k!

(m + k)!
‖d̂m+kf(0)‖Θ‖a‖

m.

Hence

lim
k→∞

(∥

∥

∥

1

k!
¤dm+kf(0)am

∥

∥

∥

Θ

)1/k

6 lim
k→∞

(

m!σm+k
∥

∥

∥

1

(m + k)!
d̂m+kf(0)

∥

∥

∥

Θ
‖a‖m

)1/k

= σ lim
k→∞

(

(σ‖a‖)mm!
∥

∥

∥

1

(m + k)!
d̂m+kf(0)

∥

∥

∥

Θ

)1/k

= 0
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for all m ∈ N0, and this shows that d̂mf(·)(a) ∈ HΘb(E). Now, for ̺ > 0 we have

∥

∥

∥

∥

d̂mf(·)(a) −
ν

∑

k=0

1

k!

[

¤dm+kf(0)(·)k
]

(a)

∥

∥

∥

∥

Θ,̺

6

∞
∑

k=ν+1

σm+km!̺k
∥

∥

∥

1

(m + k)!
d̂m+kf(0)

∥

∥

∥

Θ
‖a‖m

=
m!‖a‖m

̺m

∞
∑

k=ν+1

(̺σ)m+k

(m + k)!

∥

∥

∥
d̂m+kf(0)

∥

∥

∥

Θ

=
‖a‖mm!

̺m

∥

∥

∥

∥

∞
∑

k=ν+1

1

(m + k)!
d̂m+kf(0)

∥

∥

∥

∥

Θ,̺σ

.

Since the last member of the inequality goes to zero as ν tends to infinity, we have

proved (i).

(ii) For ̺ > 0 we have

∥

∥

∥

∥

τ−af −
v

∑

m=0

1

m!
d̂mf(·)(a)

∥

∥

∥

∥

Θ,̺

=

∞
∑

k=0

̺k

k!

∥

∥

∥

∥

∞
∑

m=v+1

1

m!
¤dm+kf(0)am

∥

∥

∥

∥

Θ

6

∞
∑

k=0

̺k
∞
∑

m=v+1

1

k!m!

∥

∥

∥

¤dm+kf(0)am
∥

∥

∥

Θ

6

∞
∑

k=0

∞
∑

m=v+1

̺kσm+k

(m + k)!
‖d̂m+kf(0)‖Θ‖a‖

m.

Since

lim
m→∞

( 1

m!
‖d̂mf(0)‖Θ

)1/m

= 0,

given ε > 0 there is C(ε) > 0 such that

1

m!
‖d̂mf(0)‖Θ 6 C(ε)εm

for all m ∈ N0. If we choose ε > 0 such that σε̺ < 1 and ‖a‖σε < 1, then we have

∥

∥

∥

∥

τ−af −

v
∑

m=0

1

m!
d̂mf(·)(a)

∥

∥

∥

∥

Θ,̺

6

∞
∑

k=0

∞
∑

m=v+1

̺kσm+k‖a‖mC(ε)εm+k

6 C(ε)

( ∞
∑

k=0

(σε̺)k

)( ∞
∑

m=v+1

(‖a‖σε)m

)

.
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Since the last member of the inequality goes to zero as ν tends to infinity, we have

proved (ii). �

If T ∈ [HΘb(E)]′, then there are C > 0 and ̺ > 0 such that

(3.1) |T (f)t| 6 C‖f‖Θ,̺

for all f ∈ HΘb(E). For each P ∈ PΘ(mE) with A ∈ Ls(
mE) (the space of all m-

linear symmetric mappings on Em) such that P = Â, we may define the polynomial

T (’A(·)k) : E −→ C

y 7−→ T (A(·)kym−k)

which belongs to P(m−kE) for each k ∈ N0, k 6 m.

Now we are interested in polynomials of the type T (’A(·)k) that have a certain

stability property:

Definition 3.2. Let (PΘ(mE))∞m=0 be a holomorphy type from E to C. The

holomorphy type Θ is said to be a π2-holomorphy type if T (’A(·)k) ∈ PΘ(m−kE) and

‖T (’A(·)k)‖Θ 6 C̺k‖P‖Θ

for all k ∈ N0, k 6 m, T ∈ [HΘb(E)]′ and P ∈ PΘ(mE).

Here C and ̺ are as in (3.1).

Definition 3.3. If T ∈ [HΘb(E)]′ and f ∈ HΘb(E), we define the convolution

product T ∗ f by

(T ∗ f)(x) = T (τ−xf),

for all x ∈ E.

Theorem 3.1. If (PΘ(mE))∞m=0 is a π2-holomorphy type, T ∈ [HΘb(E)]′ and

f ∈ HΘb(E), then T ∗ f ∈ HΘb(E) and the mapping T ∗ defines a convolution

operator on HΘb(E).

P r o o f. By Proposition 3.1, for all x ∈ E we have

(T ∗ f)(x) = T (τ−xf) = T

( ∞
∑

m=0

1

m!
d̂mf(x)

)

(3.2)

=
∞
∑

m=0

1

m!

∞
∑

k=0

1

k!
T ( ¤dk+mf(0)(·)k)(x).
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By Definition 3.2 we have T ( ¤dk+mf(0)(·)k) ∈ PΘ(mE) for all m ∈ N0 and

∥

∥

∥
T ( ¤dk+mf(0)(·)k)

∥

∥

∥

Θ
6 C̺k‖d̂m+kf(0)‖Θ.

For ̺0 > ̺ we can write

∥

∥

∥

∥

∞
∑

k=0

1

k!
T

(

¤dk+mf(0)(·)k
)

∥

∥

∥

∥

Θ

6

∞
∑

k=0

1

k!

∥

∥

∥
T

(

¤dk+mf(0)(·)k
)∥

∥

∥

Θ
6

∞
∑

k=0

1

k!
C̺k‖d̂m+kf(0)‖Θ

6

∞
∑

k=0

1

k!
C̺k

0‖d̂
m+kf(0)‖Θ

6 C
m!

̺m
0

∞
∑

k=0

2m+k

(m + k)!
̺m+k
0 ‖d̂m+kf(0)‖Θ

= C
m!

̺m
0

∥

∥

∥

∥

∞
∑

k=m

1

k!
d̂kf(0)

∥

∥

∥

∥

Θ,2̺0

6 C
m!

̺m
0

‖f‖Θ,2̺0 < ∞.

This means that

Pm =

∞
∑

k=0

1

k!
T

(

¤dk+mf(0)(·)k
)

belongs to PΘ(mE) and

(3.3) ‖Pm‖Θ 6 C
m!

̺m
0

‖f‖Θ,2̺0.

Hence

lim
m→∞

( 1

m!
‖Pm‖Θ

)1/m

6
1

̺0

for all ̺0 > ̺. This implies that

lim
m→∞

( 1

m!
‖Pm‖Θ

)1/m

= 0.

Therefore, it follows from (3.2) that

(T ∗ f) =

∞
∑

m=0

1

m!
Pm

belongs to HΘb(E).
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It is clear that T ∗ is linear. For ̺1 > 0 it follows from (3.3) that

‖T ∗ f‖Θ,̺1 =
∞
∑

m=0

̺m
1

m!
‖Pm‖Θ

6

∞
∑

m=0

̺m
1

m!

Cm!

(̺1 + ̺)m
‖f‖Θ,2(̺1+̺)

6 C

( ∞
∑

m=0

̺m
1

(̺1 + ̺)m

)

‖f‖Θ,2(̺1+̺).

Thus T ∗ is continuous. Now we have

(T ∗ τaf)(x) = T (τ−x ◦ τaf) = T (τ−x+af)

= (T ∗ f)(−(−x + a)) = (T ∗ f)(x − a)

= τa(T ∗ f)(x)

for all x, a ∈ E. This completes the proof that T ∗ is a convolution operator. �

Now we are able to characterize all convolutions operators on HΘb(E).

Theorem 3.2. Let (PΘ(mE))∞m=0 be a π2-holomorphy type and define a map-

ping ΓΘ from AΘ into [HΘb(E)]′ by ΓΘ(O)(f) = (Of)(0) for each O in AΘ and f

in HΘb(E). Then ΓΘ is a linear bijection between AΘ and [HΘb(E)]′.

P r o o f. We define a mapping Γ̄Θ from [HΘb(E)]′ into AΘ by Γ̄Θ(T )(f) = T ∗ f

for all T in [HΘb(E)]′ and f in HΘb(E). This linear mapping is well-defined by

Theorem 3.1. Now we have

[(Γ̄Θ ◦ ΓΘ)(O)](f) = [Γ̄Θ(ΓΘ(O))](f) = ΓΘ(O) ∗ f,

but for all x ∈ E we have

(ΓΘ(O) ∗ f)(x) = ΓΘ(O)(τ−xf) = O(τ−xf)(0) = τ−x(Of)(0) = (Of)(x).

Hence

[(Γ̄Θ ◦ ΓΘ)(O)](f) = Of

and Γ̄Θ ◦ ΓΘ is the identity mapping on AΘ. Also we have

(ΓΘ ◦ Γ̄Θ)(T )(f) = ΓΘ(Γ̄ΘT )(f) = (Γ̄ΘT )(f)(0) = (T ∗ f)(0) = T (f).

Thus ΓΘ ◦ Γ̄Θ is the identity mapping on [HΘb(E)]′ and this completes the proof. �
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Definition 3.4. Let (PΘ(mE))∞m=0 be a π2-holomorphy type. For T1, T2 ∈

[HΘb(E)]′ we define the convolution product of T1 and T2 in [HΘb(E)]′ by

T1 ∗ T2 := ΓΘ(O1 ◦ O2) ∈ [HΘb(E)]′,

where O1 = T1∗ and O2 = T2∗.

It is easy to see that [HΘb(E)]′ is an algebra under this convolution product with

unity δ given by δ(f) = f(0) for all f in HΘb(E), and the convolution product

satisfies (T1 ∗ T2) ∗ f = T1 ∗ (T2 ∗ f).

Theorem 3.3. If (PΘ(mE))∞m=0 is a π1-π2-holomorphy type, then the Borel trans-

form is an algebra isomorphism between [HΘb(E), τΘ]′ and ExpΘ′(E′).

P r o o f. By Theorem 2.1, B is a vector space isomorphism between [HΘb(E), τΘ]′

and ExpΘ′(E′). We only have to show that the multiplication operation is preserved.

For T1 and T2 in [HΘb(E)]′ and ϕ in E′ we have

B(T1 ∗ T2)(ϕ) = (T1 ∗ T2)(e
ϕ) = [(O1 ◦ O2)(e

ϕ)](0) = [T1 ∗ (T2 ∗ eϕ)](0)

= T1(T2 ∗ eϕ) = T1(e
ϕT2(e

ϕ)) = T1(e
ϕ)T2(e

ϕ)

= BT1(ϕ) · BT2(ϕ).

Hence B(T1 ∗ T2) = BT1 · BT2 as we wanted to prove. �

Example 3.1. C. Gupta in [6], M. Matos in [12] and X. Mujica in [13] proved

that if E′ has the λ-bounded approximation property, then the sequences of spaces

of nuclear polynomials, (s; (r, q))-quasi-nuclear polynomials and σ(p)-nuclear poly-

nomials from E to C satisfy the condition of Definition 3.2. Hence, each of these

sequences is a π2-holomorphy type from E to C.

Results of the type of Theorems 3.2 and 3.3 were obtained to the corresponding

cases in the corresponding references.

4. Approximation and existence theorems

Division theorems for entire functions play a fundamental role in proving the

approximation and existence theorems for convolution equations. In order to obtain

division theorems involving the Borel transform we need to introduce a new concept.

Definition 4.1. Let U be an open subset of E and F(U) a collection of holo-

morphic functions from U into C. We say that F(U) is closed under division if for

each f and g in F(U) with g 6= 0 and h = f/g a holomorphic function on U , we have

h in F(U).

The quotient notation h = f/g means that f(x) = h(x) · g(x) for all x ∈ U .
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It is not easy to prove division results in the sense of Definition 4.1 for the spaces of

entire functions of exponential type. Some examples were obtained by C. Gupta in [6]

and by M. Matos in [12] for the spaces Exp(E) and Exp(s,m(r;q))(E), respectively.

The next useful result was proved by Gupta in [6].

Lemma 4.1. Let U be an open connected subset ofE. Let f and g be holomorphic

functions on U , with g no identically zero, such that for any affine subspace S of E

of dimension one and for any connected component S′ of S ∩ U on which g is not

identically zero, the restriction f |S′ is divisible by the restriction g|S′ , with the

quotient being holomorphic in S′. Then f is divisible by g and the quotient is

holomorphic on U .

Theorem 4.1. Let (PΘ(mE))∞m=0 be a π1-π2-holomorphy type. If ExpΘ′(E′) is

closed under division and T1, T2 ∈ [HΘb(E)]′ are such that T2 6= 0 and T1(P exp ϕ) =

0 whenever T2 ∗ P exp ϕ = 0 with ϕ ∈ E′ and P ∈ PΘ(mE), m ∈ N0, then BT1 is

divisible by BT2 with the quotient being an element of ExpΘ′(E′).

P r o o f. Let S be a one dimensional affine subspace of E. It is clear that S is of

the form {ϕ1 + tϕ2; t ∈ C}, where ϕ1, ϕ2 ∈ E′ are fixed. We suppose that t0 is a

zero of order k of

g2(t) = B(T2)(ϕ1 + tϕ2) = T2(exp(ϕ1 + tϕ2)).

Then we have

T2(ϕ
j
2 exp(ϕ1 + t0ϕ2)) = 0

for each j < k, and this implies

T2 ∗ ϕj
2 exp(ϕ1 + t0ϕ2)

=

j
∑

m=0

(

j

m

)

ϕj−m
2 exp(ϕ1 + t0ϕ2)T2(ϕ

m
2 exp(ϕ1 + t0ϕ2)) = 0

for each j < k. Hence it follows that T1(ϕ
j
2 exp(ϕ1 + t0ϕ2)) = 0 for all j < k, and

this implies that t0 is a zero of order at least k of g1(t) = BT1(ϕ1 + tϕ2). Therefore

BT1|S is divisible by BT2|S and the quotient is holomorphic on S. By Lemma 4.1

we have that BT1 is divisible by BT2 on E′ and the quotient is entire. Therefore it

follows by Definition 4.1 that the quotient is in ExpΘ′(E′). �

Theorem 4.2. If (PΘ(mE))∞m=0 is a π1-π2-holomorphy type, ExpΘ′(E′) is closed

under division and O is in AΘ, then the vector subspace of HΘb(E) generated by
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the exponential polynomial solutions of the homogeneous equation O =0 is dense in

the closed subspace of all solutions of the homogeneous equation, that is, the vector

subspace of HΘb(E) generated by

L ={P expϕ; P ∈ PΘ(mE), m ∈ N0, ϕ ∈ E′, O(P expϕ) = 0}

is dense in

kerO = {f ∈ HΘb(E); Of = 0}.

P r o o f. If O is equal to 0, the result follows by Proposition 2.5. Let O be

different from 0. By Theorem 3.2, there is T in [HΘb(E)]′, T different from 0, such

that O =T ∗. Now we suppose that X in [HΘb(E)]′ is such that X |L = 0. Thus by

Theorem 4.1, there is h in ExpΘ′(E′) such that B(X) = h · B(T ). By Theorem 3.3,

there is S in [HΘb(E)]′ such that h = B(S) and B(X) = B(S) · B(T ) = B(S ∗ T ).

Hence X = S ∗ T and for each f in kerO we have X ∗ f = S ∗ (T ∗ f) = 0 and

X(f) = (X ∗ f)(0) = 0. We have shown that every X in [HΘb(E)]′ vanishing on the

vector subspace of HΘb(E) generated by L vanishes on kerO. Now the result follows

as a consequence of the Hahn-Banach Theorem. �

Theorem 4.3. If (PΘ(mE))∞m=0 is a π1-π2-holomorphy type, ExpΘ′(E′) is closed

under division and O is in AΘ, then its transpose mapping Ot has the following

properties:

(i) Ot([HΘb(E)]′) is the orthogonal of kerO in [HΘb(E)]′.

(ii) Ot([HΘb(E)]′) is closed for the weak star topology in [HΘb(E)]′ defined by

HΘb(E).

P r o o f. If O is equal to 0, the result is clear. Let O be different from 0 and T in

[HΘb(E)]′ such that O =T ∗. For each X in Ot([HΘb(E)]′) there is S in [HΘb(E)]′

satisfying X = Ot(S). Hence, for each f in kerO we have X(f) = Ot(S)(f) =

S(Of) = 0, and then Ot([HΘb(E)]′) is contained in the orthogonal of kerO. Con-

versely, if X is in the orthogonal of kerO, by Theorem 4.1 there is h in ExpΘ′(E′)

such that B(X) = h · B(T ) and by Theorem 3.3 there is S in [HΘb(E)]′ such that

h = B(S) and B(X) = B(S) · B(T ) = B(S ∗ T ). Hence X = S ∗ T , and for each f

in HΘb(E) we have

X(f) = (S ∗ T )(f) = ((S ∗ T ) ∗ f)(0) = (S ∗ (T ∗ f))(0)

= S(T ∗ f) = S(Of) = Ot(S)(f)

and this implies that X is equal to Ot(S) and belongs to Ot([HΘb(E)]′). Thus (i) is

proved.
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Now we note that the orthogonal of kerO is equal to
⋂

f∈kerO

{T ∈ [HΘb(E)]′; T (f) = 0}.

Since for each f in HΘb(E), the set {T ∈ [HΘb(E)]′; T (f) = 0} is closed in weak star

topology, (ii) is proved. �

Our last result concerns the existence of solutions of convolution equations. The

following result due to Dieudonné and Schwartz (see [7], page 308) is needed.

Lemma 4.2. If E and F are Fréchet spaces and u : E −→ F is a linear continuous

mapping, then the following conditions are equivalent:

(a) u(E) = F ;

(b) ut : F ′ −→ E′ is injective and ut(F ′) is closed in the weak star topology of E′

defined by E.

Theorem 4.4. If (PΘ(mE))∞m=0 is a π1-π2-holomorphy type, ExpΘ′(E′) is closed

under division and O is a non zero convolution operator, then O(HΘb(E)) is equal

to HΘb(E).

P r o o f. By Proposition 2.3,HΘb(E) is a Fréchet space. By Lemma 4.2 (b) and by

Theorem 4.3 (ii), it is enough to show that Ot is injective. Since O =T ∗ for some T

in [HΘb(E)]′, hence for all S in [HΘb(E)]′ and f in HΘb(E) we have (OtS)(f) =

S(Of) = S(T ∗ f) = (S ∗ T )(f). Thus OtS = S ∗ T and if OtS = 0, then S ∗ T = 0

and B(S ∗T ) = 0. Since O = T ∗ is non zero it follows that BT is non zero and since

B(S ∗ T ) = BS · BT , we get BS = 0. Hence S = 0 and Ot is injective. �

Example 4.1. In conclusion, if E′ has the λ-bounded approximation property,

then the holomorphy types

(PN (mE))∞m=0, (PÑ,(s;(r,q))(
mE))∞m=0 and (Pσ(p)(

mE))∞m=0

are π1-π2-holomorphy types, and the spaces Exp(E′) and Exp(s′,m(r′;q′))(E
′) are

closed under division. In particular, we obtain Theorems 4.1, 4.2 and 4.4 for the

cases of C. Gupta [6] and M. Matos [12].

Open problems. The following open problems related to the subject of this

paper seem to be interesting:

(1) Is the space Expτ(p)
(E) of X. Mujica [13] closed under division? If yes, existence

and approximation results (Theorems 4.2 and 4.4) hold true for convolution

equations on Hσ(p)(
mE).

(2) Is there an “algorithm” similar to the one in this paper for spaces of functions

of a given type and order? Results in this direction will generalize those of

A. Martineau [9], M. Matos [10], [11] and V. Fávaro [3], [4].
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