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Abstract. For a nontrivial connected graph G, let ¢: V(G) — N be a vertex coloring of G
where adjacent vertices may be colored the same. For a vertex v of GG, the neighborhood
color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set
coloring if NC(u) # NC(v) for every pair u,v of adjacent vertices of G. The minimum
number of colors required of such a coloring is called the set chromatic number xs(G). A
study is made of the set chromatic number of the join G+ H of two graphs G and H. Sharp
lower and upper bounds are established for xs(G + H) in terms of xs(G), xs(H), and the
clique numbers w(G) and w(H).
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1. INTRODUCTION

Many methods have been introduced that use graph colorings to distinguish all
vertices of a graph or the two vertices in each pair of adjacent vertices. Certainly
the most common graph colorings used to distinguish every two adjacent vertices in
a graph G are the proper colorings, where distinct colors are assigned to every two
adjacent vertices of G. The minimum number of colors required in a proper coloring
of G is the chromatic number x(G). In [1] another vertex coloring of graphs for the
purpose of distinguishing every two adjacent vertices of G which may require fewer
than x(G) colors was introduced.

For a nontrivial connected graph G, let ¢: V(G) — N be a vertex coloring of G
where adjacent vertices may be colored the same. For a set S C V(G), define the
set ¢(S) of colors of S by

c(S) ={c(v): ve S}
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For a vertex v in a graph G, let N(v) be the neighborhood of v (the set of all
vertices adjacent to v in G). The neighborhood color set NC.(v) = ¢(N(v)) is the
set of colors of the neighbors of v. (If the coloring ¢ under consideration is clear,
we write NC(v) for the neighborhood color set of v.) The coloring ¢ is called set
neighbor-distinguishing or simply a set coloring if NC(u) # NC(v) for every pair u, v
of adjacent vertices of G. The minimum number of colors required of such a coloring
is called the set chromatic number of G and is denoted by xs(G). This concept was
introduced and studied in [1] where it was observed that

1< xs(G) < x(G) <n

for every graph G of order n. To illustrate these concepts, we consider the graph G
of Fig. 1. The chromatic number of G is x(G) = 4. In fact, the set chromatic number
of G is xs(G) = 3. Fig. 1 shows a set 3-coloring of G and so x(G) < 3. We now
show that xs(G) > 3. Suppose that there is a set 2-coloring ¢ of G using the colors 1
and 2. Then NC(v) € {{1},{2},{1,2}} for each vertex v of G. This implies that
NC(v;) = NC(v;) for some integers ¢ and j with 1 < ¢ < j < 4, which is impossible.
Thus xs(G) = 3, as claimed.

{1}

Figure 1. A set coloring of a graph.

If G is a connected graph of order n, then xs(G) = 1 if and only if x(G) =1 (in
which case G = K1) and x5(G) = n if and only if x(G) = n (in which case G = K,).
It was shown in [1] that xs(G) = n— 1 if and only if x(G) = n —1 and that for each
pair k,n of integers with 2 < k < n, there is a connected graph G of order n with
Xs(G) = k. The following observation will be useful to us.
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Observation 1.1 ([1]). If v and v are two adjacent vertices in a graph G such
that N(u) — {v} = N(v) — {u}, then c(u) # c(v) for every set coloring c of G.
Furthermore, if S = N(u) — {v} = N(v) — {u}, then {c(u),c(v)} Z ¢(S).

In [1] the set chromatic numbers of some well-known graphs (namely cycles, bi-
partite graphs, and complete multipartite graphs) were determined. Furthermore,
several bounds were established for the set chromatic number of a graph G in terms
of other graphical parameters, namely the chromatic number x(G) and the clique
number w(G), which is the order of a largest complete subgraph (clique) in G. Some
of these results are stated below.

Theorem 1.2 ([1]). A nonempty graph G has set chromatic number 2 if and only
if G is bipartite. Furthermore, if G is a 3-chromatic graph, then x(G) = 3.

Theorem 1.3 ([1]). For every graph G,

(1) Xs(G) 2 1+ [logy w(G)].

Theorem 1.4 ([1]). Let G be a graph. If v is a vertex of G, then
Xs(G) =1 < xs(G = v) < xs(G) + degw.
If e is an edge of G, then
Xs(G) = xs(G —e)f < 2.

Furthermore, if e = uv is not a bridge in G such that the distance between u and v
in G — e is at least 4, then |xs(G) — xs(G —e)| < 1.

For two vertex-disjoint graphs G and H, the join G+ H of G and H is the graph
whose vertex set is V(G)UV (H) and whose edge set consists of E(G)UE(H) together
with all edges joining a vertex of G and a vertex of H. While x(G+H) = x(G)+x(H)
for every two graphs G and H, such is not the case for the set chromatic number.
Our goal here is to study the set chromatic number of the join of two graphs G and
H and establish sharp lower and upper bounds for xs(G + H). It is convenient to
introduce some notation. For each integer k, let

Ne ={1,2,...,k}.
For integers a and b with a < b, let
[a.b) ={x € Z: a <z <b}
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In particular, [1..b] = N;. We refer to the book [2] for graph theory notation and
terminology not described in this paper.

2. LOWER BOUNDS FOR (G + H)

We begin by presenting a lower bound for the set chromatic number x(G + H)
of two graphs G and H in terms of x,(G) and x(H). The following lemma will be
useful to us.

Lemma 2.1. Let G and H be two graphs. If c is a set coloring of G + H, then
¢ restricted to G is a set coloring of G.

Proof. For a vertex v in G and a set coloring ¢ of G + H, observe that
(2) NC(v) = ¢(Na(v)) Uc(V(H))
and for every two adjacent vertices x and y of G, NC(z) # NC(y). By (2), it follows
that ¢(Ng(z)) # ¢(N¢(y)) and so ¢ restricted to V(G) is a set coloring of G. O

The following is an immediate consequence of Lemma 2.1.

Corollary 2.2. For every two graphs G and H,

Xs(G + H) > max{x,(G), xs(H)}-

Next we present a necessary condition for graphs G and H such that the equality
holds in Corollary 2.2.

Proposition 2.3. If G and H are nonempty graphs, then

Xs(G + H) > max{x,(G), xs(H)}.

Proof. Suppose that xs(G + H) = max{xs(G), xs(H)} = xs(G) = k and let a
set k-coloring c¢: V(G+H) — Ny, of G+ H be given. Since the restriction of ¢ to G is
a set coloring of G by Lemma 2.1, it follows that ¢(V(G)) = Ni. Then NC(v) = Ny,
for every vertex v in H. Hence no two vertices in H are adjacent. (]

The converse of Proposition 2.3 does not hold in general. While there are graphs G
for which xs(G + K,) = xs(G), there are also graphs G for which x4(G + K,,) >
xs(@G). To see this, let H = K, for some n > 1. For the graph C5 of order 5, observe
that xs(Cs) = 3 since x(C5) = 3. Consider the set 3-coloring ¢; of Cs given by
c1(v;)) =1for 1 <i<3andei(v;) =i—2fori=4,5 (see Fig. 2). Furthermore,
observe that {1} C NC(v) # N3 for every vertex v in Cs.
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Figure 2. The graph Cs.

Define the 3-coloring ¢ of C5 + H by ca(v) = ¢1(v) if v € V(C5) and ca(v) =1 if
v e V(H). Then
NC., (v) if v e V(C5),
N3 if ve V(H).
Since ¢y is a set 3-coloring of C5 + H, it follows that xs(Cs + H) = xs(C5) = 3.
On the other hand, for the graph F' = C5 + K1, observe that F'+ K; = C5 + Ks.
By Proposition 2.3, xs(F + K1) > xs(C5) = xs(F) = 3. In fact, xs(F + H) =4 =
Xs () + xs(H). _

From the example above, we see that for a graph G, xs(G + K,) = xs(G) = k

NC,,(v) = {

if and only if there exists a set k-coloring ¢ of G such that NC(v) # Ny for every
vertex v of G. However, it is not clear which graphs G have this property.
From Proposition 2.3, we saw that

Xs(G + H) > max{x,(G), xs(H)}

if both G and H are nonempty. We now present a sharp lower bound for (G + H),
where G and H are general graphs.

Theorem 2.4. For every two graphs G and H,

Xs(G + H) > max{x;(G) + [logy w(H)], xs(H) + [log, w(G)1}.

Proof. Suppose that xs(G+ H) =1 and let a set I-coloring of G + H using the
colors in N; be given. It suffices to show that

Xs(G + H) = xs(G) + [logyw(H)].

Permuting the colors assigned to the vertices of G + H, if necessary, we can obtain
a set coloring ¢: V(G + H) — N; such that ¢(V(G)) = Ny for some positive integer
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I <l. By Lemma 2.1, I' > xs(G). Therefore, the neighborhood color set of each
vertex belonging to H contains N as a subset. Since there are 2=1" subsets of N;
containing N, as a subset, it follows that

w(H) < 277

Hence
[logy(w(H))] <1 =1 < xs(G + H) = x5(G),

which implies that
Xs(G) + [logy(w(H))] < xs(G + H),

producing the desired result. O

To see that the bound in Theorem 2.4 is sharp, we construct graphs Gy and
Hy. with w(Gy) = 2F1 = w(Hy) + 1 and xs(Gx) = xs(Hy) = k for each integer
k > 3. We start with the complete graph F' = Koyr—1 of order 2¥~! with V(F) =
{v1,v2,...,v9k-1}. Let S1,S2,...,S5k1 be the 2871 subsets of Nj_1, where |S;] <
|S2] < ... < |Sgk-1]. Hence S; = 0 and Syr—1 = Ni_3. For 2 < i < 2k=1 we add
|S;| pendant edges at the vertex v;, obtaining a graph G} with w(Gy) = 2¥~1 and
Xs(Gx) = k by Theorem 1.3. This graph G was constructed in [1] to show that
the bound given in Theorem 1.3 is sharp. The graph Hj is obtained from Gy by
removing the vertex vyr—1 and the £ — 1 end-vertices adjacent to vox—1. Observe that
w(Hy) = 251 — 1 and yxs(Hy) = k. The graphs G4 and H, are shown in Fig. 3
together with set 4-colorings.

Figure 3. The graphs G4 and Hy.

For two integers k1, ko > 3, Theorem 2.4 implies that xs(Gg, + Hy,) = k1 +ka— 1.
On the other hand, we obtain a set ki-coloring of Gy, using the colors 1,2,...,k;
such that the vertices belonging to Kor, -1 are assigned the color k. Similarly, we
obtain a set ko-coloring of Hy, using the colors k1,k; + 1,..., k1 + k2 — 1 such that
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the vertices belonging to Kyr,-1_; are assigned the color k1. Combining these two
colorings, we obtain a set (k + k2 — 1)-coloring of G, + Hy,. Hence in this case,

XS(le) + DOgQ w(Hk2)—| = XS(Hk2) + |—10g2 W(le )-| = XS(G/ﬂ + HkQ)a

establishing the sharpness of the lower bound presented in Theorem 2.4.

3. ON THE SET CHROMATIC NUMBERS OF G + K,

It is well known that x(G + K1) = x(G) + 1 for every graph G. However, the
analogous statement is not true for the set chromatic numbers since x(Cs) = xs(Cs+
K,) = 3, for example. On the other hand, if x,(G + K1) # xs(G) + 1, then only one
possibility remains.

Proposition 3.1. For every graph G,

XS(G) < XS(G + Kl) < XS(G) + 1

Proof. Since the inequality xs(G) < xs(G + K1) is an immediate consequence
of Corollary 2.2, we show that xs(G + K1) < xs(G) + 1. Suppose that xs(G) =1
and let ¢ be a set [-coloring of GG. Construct G + K; by adding a new vertex u to G
and joining u to every vertex in G. Since the (I + 1)-coloring ¢’ of G + K defined
by ¢/(v) = ¢(v) if v € V(G) and ¢/(u) =1+ 1 is a set coloring, xs(G+ K1) <1+1=
xs(G) + 1. O

We now consider the set chromatic number of G + K, for all positive integers p.
Theorem 2.3. For a graph G and a positive integer p,

XS(G) +p—1< XS(G+K1)) < XS(G) + p.

Proof. Since the result is true for p = 1 (by Proposition 3.1), we may assume
that p > 2. Since G + K, = (G + K,_1) + K, it follows by repeated application of
Proposition 3.1 that xs(G + K,) < xs(G) + p. It therefore remains only to verify
that X+(G + 1) > x+(G) +p — 1.

Suppose that xs(G + K,) = k and let ¢ be a set k-coloring of G + K,. Then
clv(q) is a set coloring of G' by Lemma 2.1. Hence |c(V(G))| = xs(G). On the other
hand, if  and y are distinct vertices in K,,, then N(z) — {y} = N(y) — {z}. Hence
Observation 1.1 implies that each vertex in V(K ) must be assigned a distinct color,
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that is, |¢(V (Kp))| = p. Furthermore, at most one of the p vertices in V(K,) can be
assigned a color in ¢(V(G)). Hence

le(V(G) Ne(V(Ey))| <1

and so

Xs (G + Kp) = [e(V(G))] + [e(V ()| = [e(V(G)) N e(V(KDp))|
2 XS(G) +p - ]-a

completing the proof. O

4. AN UPPER BOUND FOR xs(G + H)

While x(G + H) equals x(G)+ x(H) for all graphs G and H, the number x,(G) +
Xs(H) is not even an upper bound in general for xs(G + H).

Theorem 4.1. For every two graphs G and H,

Xs(G+ H) < xs(G) + xs(H) + 1.

Proof. Let xs(G) = k and xs(H) = . Suppose that cg: V(G) — N and
cu: V(H) — N; are set colorings of G and H, respectively.

If NC¢,, (v) # Ny, for every vertex v in G, then let ¢y be an I-coloring of H defined
by ¢ (v) = cu(v) + k for every v in H and define a coloring ¢; of G + H by

1) = {CG(U) it v e V(G),
dy() if veV(H).

Thus c¢; uses k + [ colors. We show that c¢; is a set coloring of G + H. Let z and
y be adjacent vertices in G + H. Observe that for every vertex v in G,

NCyy (v) = NC,, (z) — [(k + 1)..(k + )]

If z,y € V(G), then observe that NC., (z) # NC,,(y) and so NC,, (z) # NCq, (v).
A similar argument applies for the case with z,y € V(H).

Hence suppose that z € V(G) and y € V(H). Since y is adjacent to every vertex
in G, it follows that Ny C NC,, (y). On the other hand, since NC., (z) # Nj by
assumption, N, ¢ NC,, () and so NC, () # NCq, (v).
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Thus ¢; is a set (k+1)-coloring of G+ H and so xs(G+H) < k+1 = xs(G)+xs(H).
Similarly, if NC.,, (v) # N for every vertex v in H, then xs(G+ H) < xs(G) +xs(H).

Hence assume now that there are vertices u* € V(G) and v* € V(H) such that
NC,, (u*) = Nj and NC,, (v*) = N;. Then let ¢/, be an (4 1)-coloring of H defined
by f;(v) = cg(v)+kifve V(H)—{v*} and ¢;(v*) = k+1+ 1. Observe that ¢/, is
a set (I + 1)-coloring. Let ¢z be a coloring of G + H given by

er(o) = {CG(U) it v e V(G),
? ¢(v) if ve V(H).

Thus ¢y uses k + [ + 1 colors. We show that ¢y is a set coloring. Let x and y be
adjacent vertices in G + H.

Observe that if z,y € V(G) or z,y € V(H), then an argument similar to that
used before implies that NC,(z) # NC,,(y), since c2|y(q) = cg and 2|y gy =
are set colorings of G and H, respectively.

We now consider the case where x € V(G) and y € V(H). If y is not adjacent
to v*, then notice that k + 1+ 1 ¢ NC,,(y), while k + 1+ 1 € NC,,(z). Hence
NC,, (z) # NC,,(y). If y is adjacent to v*, then NC,, (y) # NC,, (v*) = N;. Hence
there exists an integer i* € N; — NC.,, (y), that is, there is a color ¢* € N; such that
no vertex colored i* in H by cp is adjacent to y. Since v* is adjacent to y, it follows
that cg(v*) # ¢* and so every vertex in H that is colored ¢* by cy is now colored
i*+k in G + H by cp. This implies that i* + k ¢ NC,,(y), while i* + k € NC,, (z).
Hence NCg, (2) # NCq, (y).

Therefore, ¢ is a set (k + [ + 1)-coloring of G + H and we obtain x(G + H) <
E4+141=xs(G)+xs(H)+ 1. O

We next show that the upper bound in Theorem 4.1 is sharp. We have seen in
Theorem 1.3 that xs(G) > 1+ [log,w(G)]. Furthermore, for each integer k¥ > 2
there exists a graph G with x,(G) = k and w(G) = 2F~1 that is,

Xs(G) =1+ logy w(G).

In particular, if xs(G) > 3, then x5(G) < w(G). The following lemma will be useful
to us.

Lemma 4.2. Let £ > 3 be an integer and suppose that G is a graph with
xs(G) =k and w(G) = 2*~1. Then for every set k-coloring of G, each clique in G of

order 25— is monochromatic.

Proof. Letw = w(G) and suppose that H is a clique in G of order w with
V(H) = {v1,v2,...,0s}. Let ¢ be a set k-coloring of G. Since k < w, some vertices
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in V(H) are assigned the same color. Without loss of generality, let c(vi) = ¢(v2) = 1.
We show that H is monochromatic, for otherwise, say, c¢(v,) = 2. Then {1,2} C
NC(v;) for 1 < i < w — 1. Since there are 2~2 subsets of N containing 1 and 2, it
follows that w — 1 < 2¥~2. However, this implies that

oh=1 — < 22 4 1,
which occurs only when k£ < 2, a contradiction. O
Theorem 4.3. For each integer k > 3, there is a connected graph G such that

Xs(G) =k and xs(G+G)=2k+1.

Proof. Let k > 3 be an integer. We now construct a connected graph G as
follows. Let S1,S2,...,Sor—1 be the 2°~1 subsets of Ny_1, where |S;| < [S2| < ... <
|Sok-1]|. Hence S1 = 0 and Sgr—1 = Ng_1. Then the graph F} is obtained from Kyx-1
with V(Kor-1) = {v1,v2,...,v9c-1} by adding |S;| new vertices w;1,u; 2, ..., u; s,
and joining them to v; for each i (2 < i < 2¥~!). Hence F} is a connected graph of

k—1
k-1
2k—1 .
()
and we observe that Fy = G}, where Gy is the graph with w(Gy) = 2! and
Xs(Gk) = k mentioned after Theorem 2.4. Let F» be a vertex-disjoint copy of Fy

order

with the vertices vor—1.,1,Vor-149,...,v2x forming Kox—1 and w; 1, w;2, ..., w; s,
being the end-vertices adjacent to the vertex vou-14; for 2 < i < 2k=1 Then the
graph G is obtained from F; and F; by (i) removing the vertices ug 1 and war—1 j_1
and (ii) joining vy and wvor. Fig. 4 shows the graph G for kK = 4. Hence G is a

k—1
ﬁ+2[ i-<hf§]—2
1
=1

(2

connected graph of order

and w(G) = 2F1.

We first show that xs(G) = k. Observe that xs(G) > k by Theorem 1.3. On
the other hand, let Ry, R, ..., Rox—1 and Ty, Th, ..., The—1 be the 28! subsets of Ny
containing 1 and 2, respectively, where |R1| < |Rz| < ... < |Rgr-1| and |T3] <
|T2| < ... < |Tor-1|. Hence Ry = {1}, Th = {2}, and Rgr—1 = Tor—1 = Nj. Then the
coloring ¢*: V(G) — Ni of G such that

y 1oif 1<a <2k,
Cc \v;) =
' 2 if 2F 141 a2k
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ug,2 U1 Ur2 Ur1 Us2 Us1 Us52 Us 1 Ug,1 U311 u%,l
Q [ Q [ Q o Q (o) 4 Q

Wg,2 Wg1 Wr2 Wr1 We2 W1 W52 Ws51 Wy,1 W31 W21

Figure 4. The graph G in the proof of Theorem 4.3 for k = 4.
and that the end-vertices are assigned colors such that
NC(UZ‘) = Ri and NC(UQk—l_;’_,L') = Ti

for 1 <i < 2%71 is a set k-coloring. Therefore, x(G) = k.
We now show that ¢* is a unique set k-coloring of G (up to the permutation
of colors). Suppose that c¢ is an arbitrary set k-coloring of G, say c¢: V(G) — A,

where A = {aj,as,...,a;}. By Lemma 4.2, we may assume that c¢(v;) = a1 for
1 < i < 21 Then NC(v;) = A; for 1 < i < 281 where Ay, As, ..., Agis
are the 2¥~1 subsets of A containing a; and |A;| < [A2] < ... < |Agk-1|. Hence

NC(v1) = A1 = {a1}, NC(vge-1) = Agr—1 = A, and without loss of generality we
may assume that NC(ve) = As = {a1,a2}. Hence c(var) = az. Since vyr belongs to
a clique of order 287! = w(@), it follows again by Lemma 4.2 that c¢(vyr—1,4;) = a2
for 1 < i < 2F1, and furthermore, NC(vgr-1,;) = B; for 1 < i < 2k=1 where
Bi,Bs, ..., Byk-1 are the 2871 subsets of A containing as and |By| < |Ba| < ... <
| Boi—1|. However, this implies that ¢ is the coloring ¢* discussed before with the
colors renamed (and possibly some v;’s relabeled). In particular, observe that there
are two vertices (namely vor-1 and vor) whose neighborhood color set must be A.
We next consider set colorings of G + G. In particular, we will show that x(G +
G) =2k +1. Let G and G’ be the two copies of G in G+ G. Note that xs(G+ G) <
Xs(G) + xs(G') + 1 = 2k + 1 by Theorem 4.1. To show that x,(G + G') > 2k + 1,
assume, to the contrary, that xs(G + G') =1 < 2k and let ¢: V(G +G’) — N; be
a set [-coloring of G + G'. Let C = ¢(V(G)) and C’ = ¢(V(G')) and without loss of
generality, assume that |C| < |C’|. By Lemma 2.1, observe that c|y (g and c|y (g are
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set colorings of G and G, respectively. Since xs(G) = xs(G') = k, it then follows
that k < |C| < |C'] <1 < 2k. We now consider three cases.

Case 1: |C'| = k+2, say Ni2 C C’. Then the neighborhood color set of each vertex
in G contains Ng o as a subset. Since there are 2!=(k+2) gubsets of N; containing
N2 as a subset and G contains 2°~! vertices that are mutually adjacent, it follows
that 2!~ (k+2) > 2k=1 Thus | > 2k + 1, which is a contradiction.

Case 2: |C| = k, say C = Nj. Then c|y () is a set k-coloring and we may assume,
without loss of generality, that c is defined so that c|y(g) = ¢*, where c* is the set
k-coloring of G discussed earlier. Let a be an arbitrary color in N and observe that
there exist adjacent vertices z and y in G such that either NC.«(z) — NC¢«(y) = {a}
or NCe«(y) — NCe«(2) = {a}. Then a ¢ C’, since otherwise NC.(x) = NC.(y),
contradicting the fact that c is a set coloring. Therefore, CNC' = ) and so | = 2k
and ¢’ = [(k+1)..2k]. Furthermore, by an earlier observation, there exists a vertex z
in G such that NC..(z) = Nj. Similarly, since ¢”* = [y (¢ is a set k-coloring of G,
it follows that there exists a vertex 2z’ in G’ such that NC.+(2') = [(k + 1)..2k].
However, this implies that NC.(z) = NC.(z') = N, which is impossible since z and
2" are adjacent in G + G'.

Case 3: |C| = |C'| = k+ 1, say C = Njy1. Then the neighborhood color set of
every vertex v in G’ contains N1 as a subset. Since there are 2!=(k+1) gubsets of N,
containing Ny, as a subset and G’ contains 2! vertices that are mutually adjacent,
say the vertices z}, 2}, ...,z , form Kor-1 in G’ it follows that 2/~ (F+1) > 2k=1,
that is, [ = 2k. Thus we may assume that C’ = [k..2k]. Furthermore, observe that the
neighborhood color set of one of the 2~! vertices is N; = Ny, say NC.(2]) = Na.

Now, since there are 2~1 subsets of Ny, containing [k..2k] as a subset and G con-

2k—1

tains vertices that are mutually adjacent, say the vertices z1, z2, . . ., zZor—1 form

Kok—1 in G, we may apply an argument similar to that used above to show that

2F=1 vertices is Nay, say NC,.(z1) = Nag.

the neighborhood color set of one of the
However, this is impossible since z; and 2] are adjacent in G + G’ and c is a set
coloring.

Hence none of the three cases occurs. We now conclude that xs(G + G) = 2k + 1.
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