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Abstract. For a nontrivial connected graph G, let c : V (G)→ N be a vertex coloring of G
where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood
color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set
coloring if NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G. The minimum
number of colors required of such a coloring is called the set chromatic number χs(G). A
study is made of the set chromatic number of the join G+H of two graphs G and H . Sharp
lower and upper bounds are established for χs(G+H) in terms of χs(G), χs(H), and the
clique numbers ω(G) and ω(H).
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1. Introduction

Many methods have been introduced that use graph colorings to distinguish all

vertices of a graph or the two vertices in each pair of adjacent vertices. Certainly

the most common graph colorings used to distinguish every two adjacent vertices in

a graph G are the proper colorings, where distinct colors are assigned to every two

adjacent vertices of G. The minimum number of colors required in a proper coloring

of G is the chromatic number χ(G). In [1] another vertex coloring of graphs for the

purpose of distinguishing every two adjacent vertices of G which may require fewer

than χ(G) colors was introduced.

For a nontrivial connected graph G, let c : V (G) → N be a vertex coloring of G

where adjacent vertices may be colored the same. For a set S ⊆ V (G), define the

set c(S) of colors of S by

c(S) = {c(v) : v ∈ S}.
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For a vertex v in a graph G, let N(v) be the neighborhood of v (the set of all

vertices adjacent to v in G). The neighborhood color set NCc(v) = c(N(v)) is the

set of colors of the neighbors of v. (If the coloring c under consideration is clear,

we write NC(v) for the neighborhood color set of v.) The coloring c is called set

neighbor-distinguishing or simply a set coloring if NC(u) 6= NC(v) for every pair u, v

of adjacent vertices of G. The minimum number of colors required of such a coloring

is called the set chromatic number of G and is denoted by χs(G). This concept was

introduced and studied in [1] where it was observed that

1 6 χs(G) 6 χ(G) 6 n

for every graph G of order n. To illustrate these concepts, we consider the graph G

of Fig. 1. The chromatic number of G is χ(G) = 4. In fact, the set chromatic number

of G is χs(G) = 3. Fig. 1 shows a set 3-coloring of G and so χs(G) 6 3. We now

show that χs(G) > 3. Suppose that there is a set 2-coloring c of G using the colors 1

and 2. Then NC(v) ∈ {{1}, {2}, {1, 2}} for each vertex v of G. This implies that

NC(vi) = NC(vj) for some integers i and j with 1 6 i < j 6 4, which is impossible.

Thus χs(G) = 3, as claimed.
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{1, 2, 3}

{1}{1}

{1, 3}{1, 2}

{1}

v2

v1 v3

v4

u1 u2

Figure 1. A set coloring of a graph.

If G is a connected graph of order n, then χs(G) = 1 if and only if χ(G) = 1 (in

which case G = K1) and χs(G) = n if and only if χ(G) = n (in which case G = Kn).

It was shown in [1] that χs(G) = n− 1 if and only if χ(G) = n− 1 and that for each

pair k, n of integers with 2 6 k 6 n, there is a connected graph G of order n with

χs(G) = k. The following observation will be useful to us.
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Observation 1.1 ([1]). If u and v are two adjacent vertices in a graph G such

that N(u) − {v} = N(v) − {u}, then c(u) 6= c(v) for every set coloring c of G.

Furthermore, if S = N(u) − {v} = N(v) − {u}, then {c(u), c(v)} 6⊆ c(S).

In [1] the set chromatic numbers of some well-known graphs (namely cycles, bi-

partite graphs, and complete multipartite graphs) were determined. Furthermore,

several bounds were established for the set chromatic number of a graph G in terms

of other graphical parameters, namely the chromatic number χ(G) and the clique

number ω(G), which is the order of a largest complete subgraph (clique) in G. Some

of these results are stated below.

Theorem 1.2 ([1]). A nonempty graph G has set chromatic number 2 if and only

if G is bipartite. Furthermore, if G is a 3-chromatic graph, then χs(G) = 3.

Theorem 1.3 ([1]). For every graph G,

(1) χs(G) > 1 + ⌈log2 ω(G)⌉.

Theorem 1.4 ([1]). Let G be a graph. If v is a vertex of G, then

χs(G) − 1 6 χs(G − v) 6 χs(G) + deg v.

If e is an edge of G, then

|χs(G) − χs(G − e)| 6 2.

Furthermore, if e = uv is not a bridge in G such that the distance between u and v

in G − e is at least 4, then |χs(G) − χs(G − e)| 6 1.

For two vertex-disjoint graphs G and H , the join G + H of G and H is the graph

whose vertex set is V (G)∪V (H) and whose edge set consists of E(G)∪E(H) together

with all edges joining a vertex ofG and a vertex ofH . While χ(G+H) = χ(G)+χ(H)

for every two graphs G and H , such is not the case for the set chromatic number.

Our goal here is to study the set chromatic number of the join of two graphs G and

H and establish sharp lower and upper bounds for χs(G + H). It is convenient to

introduce some notation. For each integer k, let

Nk = {1, 2, . . . , k}.

For integers a and b with a < b, let

[a..b] = {x ∈ Z : a 6 x 6 b}.
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In particular, [1..b] = Nb. We refer to the book [2] for graph theory notation and

terminology not described in this paper.

2. Lower bounds for χs(G + H)

We begin by presenting a lower bound for the set chromatic number χs(G + H)

of two graphs G and H in terms of χs(G) and χs(H). The following lemma will be

useful to us.

Lemma 2.1. Let G and H be two graphs. If c is a set coloring of G + H , then

c restricted to G is a set coloring of G.

P r o o f. For a vertex v in G and a set coloring c of G + H , observe that

(2) NC(v) = c(NG(v)) ∪ c(V (H))

and for every two adjacent vertices x and y of G, NC(x) 6= NC(y). By (2), it follows

that c(NG(x)) 6= c(NG(y)) and so c restricted to V (G) is a set coloring of G. �

The following is an immediate consequence of Lemma 2.1.

Corollary 2.2. For every two graphs G and H ,

χs(G + H) > max{χs(G), χs(H)}.

Next we present a necessary condition for graphs G and H such that the equality

holds in Corollary 2.2.

Proposition 2.3. If G and H are nonempty graphs, then

χs(G + H) > max{χs(G), χs(H)}.

P r o o f. Suppose that χs(G + H) = max{χs(G), χs(H)} = χs(G) = k and let a

set k-coloring c : V (G+H) → Nk of G+H be given. Since the restriction of c to G is

a set coloring of G by Lemma 2.1, it follows that c(V (G)) = Nk. Then NC(v) = Nk

for every vertex v in H . Hence no two vertices in H are adjacent. �

The converse of Proposition 2.3 does not hold in general. While there are graphs G

for which χs(G + Kn) = χs(G), there are also graphs G for which χs(G + Kn) >

χs(G). To see this, let H = Kn for some n > 1. For the graph C5 of order 5, observe

that χs(C5) = 3 since χ(C5) = 3. Consider the set 3-coloring c1 of C5 given by

c1(vi) = 1 for 1 6 i 6 3 and c1(vi) = i − 2 for i = 4, 5 (see Fig. 2). Furthermore,

observe that {1} ⊆ NC(v) 6= N3 for every vertex v in C5.
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Figure 2. The graph C5.

Define the 3-coloring c2 of C5 + H by c2(v) = c1(v) if v ∈ V (C5) and c2(v) = 1 if

v ∈ V (H). Then

NCc2
(v) =

{

NCc1
(v) if v ∈ V (C5),

N3 if v ∈ V (H).

Since c2 is a set 3-coloring of C5 + H , it follows that χs(C5 + H) = χs(C5) = 3.

On the other hand, for the graph F = C5 + K1, observe that F + K1 = C5 + K2.

By Proposition 2.3, χs(F + K1) > χs(C5) = χs(F ) = 3. In fact, χs(F + H) = 4 =

χs(F ) + χs(H).

From the example above, we see that for a graph G, χs(G + Kn) = χs(G) = k

if and only if there exists a set k-coloring c of G such that NC(v) 6= Nk for every

vertex v of G. However, it is not clear which graphs G have this property.

From Proposition 2.3, we saw that

χs(G + H) > max{χs(G), χs(H)}

if both G and H are nonempty. We now present a sharp lower bound for χs(G+H),

where G and H are general graphs.

Theorem 2.4. For every two graphs G and H ,

χs(G + H) > max{χs(G) + ⌈log2 ω(H)⌉, χs(H) + ⌈log2 ω(G)⌉}.

P r o o f. Suppose that χs(G+ H) = l and let a set l-coloring of G+ H using the

colors in Nl be given. It suffices to show that

χs(G + H) > χs(G) + ⌈log2 ω(H)⌉.

Permuting the colors assigned to the vertices of G + H , if necessary, we can obtain

a set coloring c : V (G + H) → Nl such that c(V (G)) = Nl′ for some positive integer
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l′ 6 l. By Lemma 2.1, l′ > χs(G). Therefore, the neighborhood color set of each

vertex belonging to H contains Nl′ as a subset. Since there are 2l−l′ subsets of Nl

containing Nl′ as a subset, it follows that

ω(H) 6 2l−l′ .

Hence

⌈log2(ω(H))⌉ 6 l − l′ 6 χs(G + H) − χs(G),

which implies that

χs(G) + ⌈log2(ω(H))⌉ 6 χs(G + H),

producing the desired result. �

To see that the bound in Theorem 2.4 is sharp, we construct graphs Gk and

Hk with ω(Gk) = 2k−1 = ω(Hk) + 1 and χs(Gk) = χs(Hk) = k for each integer

k > 3. We start with the complete graph F = K2k−1 of order 2k−1 with V (F ) =

{v1, v2, . . . , v2k−1}. Let S1, S2, . . . , S2k−1 be the 2k−1 subsets of Nk−1, where |S1| 6

|S2| 6 . . . 6 |S2k−1 |. Hence S1 = ∅ and S2k−1 = Nk−1. For 2 6 i 6 2k−1, we add

|Si| pendant edges at the vertex vi, obtaining a graph Gk with ω(Gk) = 2k−1 and

χs(Gk) = k by Theorem 1.3. This graph Gk was constructed in [1] to show that

the bound given in Theorem 1.3 is sharp. The graph Hk is obtained from Gk by

removing the vertex v2k−1 and the k−1 end-vertices adjacent to v2k−1 . Observe that

ω(Hk) = 2k−1 − 1 and χs(Hk) = k. The graphs G4 and H4 are shown in Fig. 3

together with set 4-colorings.
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Figure 3. The graphs G4 and H4.

For two integers k1, k2 > 3, Theorem 2.4 implies that χs(Gk1
+Hk2

) > k1 +k2−1.

On the other hand, we obtain a set k1-coloring of Gk1
using the colors 1, 2, . . . , k1

such that the vertices belonging to K2k1−1 are assigned the color k1. Similarly, we

obtain a set k2-coloring of Hk2
using the colors k1, k1 + 1, . . . , k1 + k2 − 1 such that
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the vertices belonging to K2k2−1−1 are assigned the color k1. Combining these two

colorings, we obtain a set (k1 + k2 − 1)-coloring of Gk1
+ Hk2

. Hence in this case,

χs(Gk1
) + ⌈log2 ω(Hk2

)⌉ = χs(Hk2
) + ⌈log2 ω(Gk1

)⌉ = χs(Gk1
+ Hk2

),

establishing the sharpness of the lower bound presented in Theorem 2.4.

3. On the set chromatic numbers of G + Kp

It is well known that χ(G + K1) = χ(G) + 1 for every graph G. However, the

analogous statement is not true for the set chromatic numbers since χs(C5) = χs(C5+

K1) = 3, for example. On the other hand, if χs(G +K1) 6= χs(G) + 1, then only one

possibility remains.

Proposition 3.1. For every graph G,

χs(G) 6 χs(G + K1) 6 χs(G) + 1.

P r o o f. Since the inequality χs(G) 6 χs(G + K1) is an immediate consequence

of Corollary 2.2, we show that χs(G + K1) 6 χs(G) + 1. Suppose that χs(G) = l

and let c be a set l-coloring of G. Construct G + K1 by adding a new vertex u to G

and joining u to every vertex in G. Since the (l + 1)-coloring c′ of G + K1 defined

by c′(v) = c(v) if v ∈ V (G) and c′(u) = l + 1 is a set coloring, χs(G + K1) 6 l + 1 =

χs(G) + 1. �

We now consider the set chromatic number of G + Kp for all positive integers p.

Theorem 2.3. For a graph G and a positive integer p,

χs(G) + p − 1 6 χs(G + Kp) 6 χs(G) + p.

P r o o f. Since the result is true for p = 1 (by Proposition 3.1), we may assume

that p > 2. Since G + Kp = (G + Kp−1) + K1, it follows by repeated application of

Proposition 3.1 that χs(G + Kp) 6 χs(G) + p. It therefore remains only to verify

that χs(G + Kp) > χs(G) + p − 1.

Suppose that χs(G + Kp) = k and let c be a set k-coloring of G + Kp. Then

c|V (G) is a set coloring of G by Lemma 2.1. Hence |c(V (G))| > χs(G). On the other

hand, if x and y are distinct vertices in Kp, then N(x) − {y} = N(y) − {x}. Hence

Observation 1.1 implies that each vertex in V (Kp) must be assigned a distinct color,
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that is, |c(V (Kp))| = p. Furthermore, at most one of the p vertices in V (Kp) can be

assigned a color in c(V (G)). Hence

|c(V (G)) ∩ c(V (Kp))| 6 1

and so

χs(G + Kp) = |c(V (G))| + |c(V (Kp))| − |c(V (G)) ∩ c(V (Kp))|

> χs(G) + p − 1,

completing the proof. �

4. An upper bound for χs(G + H)

While χ(G+H) equals χ(G)+χ(H) for all graphs G and H , the number χs(G)+

χs(H) is not even an upper bound in general for χs(G + H).

Theorem 4.1. For every two graphs G and H ,

χs(G + H) 6 χs(G) + χs(H) + 1.

P r o o f. Let χs(G) = k and χs(H) = l. Suppose that cG : V (G) → Nk and

cH : V (H) → Nl are set colorings of G and H , respectively.

If NCcG
(v) 6= Nk for every vertex v in G, then let c′H be an l-coloring of H defined

by c′H(v) = cH(v) + k for every v in H and define a coloring c1 of G + H by

c1(v) =

{

cG(v) if v ∈ V (G),

c′H(v) if v ∈ V (H).

Thus c1 uses k + l colors. We show that c1 is a set coloring of G + H . Let x and

y be adjacent vertices in G + H . Observe that for every vertex v in G,

NCcG
(v) = NCc1

(x) − [(k + 1)..(k + l)].

If x, y ∈ V (G), then observe that NCcG
(x) 6= NCcG

(y) and so NCc1
(x) 6= NCc1

(y).

A similar argument applies for the case with x, y ∈ V (H).

Hence suppose that x ∈ V (G) and y ∈ V (H). Since y is adjacent to every vertex

in G, it follows that Nk ⊆ NCc1
(y). On the other hand, since NCcG

(x) 6= Nk by

assumption, Nk 6⊆ NCc1
(x) and so NCc1

(x) 6= NCc1
(y).
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Thus c1 is a set (k+l)-coloring ofG+H and so χs(G+H) 6 k+l = χs(G)+χs(H).

Similarly, if NCcH
(v) 6= Nl for every vertex v in H , then χs(G+H) 6 χs(G)+χs(H).

Hence assume now that there are vertices u∗ ∈ V (G) and v∗ ∈ V (H) such that

NCcG
(u∗) = Nk and NCcH

(v∗) = Nl. Then let c′′H be an (l+1)-coloring of H defined

by c′′H(v) = cH(v)+k if v ∈ V (H)−{v∗} and c′′H(v∗) = k + l +1. Observe that c′′H is

a set (l + 1)-coloring. Let c2 be a coloring of G + H given by

c2(v) =

{

cG(v) if v ∈ V (G),

c′′H(v) if v ∈ V (H).

Thus c2 uses k + l + 1 colors. We show that c2 is a set coloring. Let x and y be

adjacent vertices in G + H .

Observe that if x, y ∈ V (G) or x, y ∈ V (H), then an argument similar to that

used before implies that NCc2
(x) 6= NCc2

(y), since c2|V (G) = cG and c2|V (H) = c′′H
are set colorings of G and H , respectively.

We now consider the case where x ∈ V (G) and y ∈ V (H). If y is not adjacent

to v∗, then notice that k + l + 1 /∈ NCc2
(y), while k + l + 1 ∈ NCc2

(x). Hence

NCc2
(x) 6= NCc2

(y). If y is adjacent to v∗, then NCcH
(y) 6= NCcH

(v∗) = Nl. Hence

there exists an integer i∗ ∈ Nl − NCcH
(y), that is, there is a color i∗ ∈ Nl such that

no vertex colored i∗ in H by cH is adjacent to y. Since v∗ is adjacent to y, it follows

that cH(v∗) 6= i∗ and so every vertex in H that is colored i∗ by cH is now colored

i∗ + k in G + H by c2. This implies that i∗ + k /∈ NCc2
(y), while i∗ + k ∈ NCc2

(x).

Hence NCc2
(x) 6= NCc2

(y).

Therefore, c2 is a set (k + l + 1)-coloring of G + H and we obtain χs(G + H) 6

k + l + 1 = χs(G) + χs(H) + 1. �

We next show that the upper bound in Theorem 4.1 is sharp. We have seen in

Theorem 1.3 that χs(G) > 1 + ⌈log2 ω(G)⌉. Furthermore, for each integer k > 2

there exists a graph G with χs(G) = k and ω(G) = 2k−1, that is,

χs(G) = 1 + log2 ω(G).

In particular, if χs(G) > 3, then χs(G) < ω(G). The following lemma will be useful

to us.

Lemma 4.2. Let k > 3 be an integer and suppose that G is a graph with

χs(G) = k and ω(G) = 2k−1. Then for every set k-coloring of G, each clique in G of

order 2k−1 is monochromatic.

P r o o f. Let ω = ω(G) and suppose that H is a clique in G of order ω with

V (H) = {v1, v2, . . . , vω}. Let c be a set k-coloring of G. Since k < ω, some vertices
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in V (H) are assigned the same color. Without loss of generality, let c(v1) = c(v2) = 1.

We show that H is monochromatic, for otherwise, say, c(vω) = 2. Then {1, 2} ⊆

NC(vi) for 1 6 i 6 ω − 1. Since there are 2k−2 subsets of Nk containing 1 and 2, it

follows that ω − 1 6 2k−2. However, this implies that

2k−1 = ω 6 2k−2 + 1,

which occurs only when k 6 2, a contradiction. �

Theorem 4.3. For each integer k > 3, there is a connected graph G such that

χs(G) = k and χs(G + G) = 2k + 1.

P r o o f. Let k > 3 be an integer. We now construct a connected graph G as

follows. Let S1, S2, . . . , S2k−1 be the 2k−1 subsets of Nk−1, where |S1| 6 |S2| 6 . . . 6

|S2k−1 |. Hence S1 = ∅ and S2k−1 = Nk−1. Then the graph F1 is obtained from K2k−1

with V (K2k−1) = {v1, v2, . . . , v2k−1} by adding |Si| new vertices ui,1, ui,2, . . . , ui,|Si|

and joining them to vi for each i (2 6 i 6 2k−1). Hence F1 is a connected graph of

order

2k−1 +

k−1
∑

i=1

i ·

(

k − 1

i

)

and we observe that F1
∼= Gk, where Gk is the graph with ω(Gk) = 2k−1 and

χs(Gk) = k mentioned after Theorem 2.4. Let F2 be a vertex-disjoint copy of F1

with the vertices v2k−1+1, v2k−1+2, . . . , v2k forming K2k−1 and wi,1, wi,2, . . . , wi,|Si|

being the end-vertices adjacent to the vertex v2k−1+i for 2 6 i 6 2k−1. Then the

graph G is obtained from F1 and F2 by (i) removing the vertices u2,1 and w2k−1,k−1

and (ii) joining v2 and v2k . Fig. 4 shows the graph G for k = 4. Hence G is a

connected graph of order

2k + 2

[ k−1
∑

i=1

i ·

(

k − 1

i

)]

− 2

and ω(G) = 2k−1.

We first show that χs(G) = k. Observe that χs(G) > k by Theorem 1.3. On

the other hand, let R1, R2, . . . , R2k−1 and T1, T2, . . . , T2k−1 be the 2k−1 subsets of Nk

containing 1 and 2, respectively, where |R1| 6 |R2| 6 . . . 6 |R2k−1 | and |T1| 6

|T2| 6 . . . 6 |T2k−1 |. Hence R1 = {1}, T1 = {2}, and R2k−1 = T2k−1 = Nk. Then the

coloring c∗ : V (G) → Nk of G such that

c∗(vi) =

{

1 if 1 6 i 6 2k−1,

2 if 2k−1 + 1 6 i 6 2k
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w8,3

Figure 4. The graph G in the proof of Theorem 4.3 for k = 4.

and that the end-vertices are assigned colors such that

NC(vi) = Ri and NC(v2k−1+i) = Ti

for 1 6 i 6 2k−1 is a set k-coloring. Therefore, χs(G) = k.

We now show that c∗ is a unique set k-coloring of G (up to the permutation

of colors). Suppose that c is an arbitrary set k-coloring of G, say c : V (G) → A,

where A = {a1, a2, . . . , ak}. By Lemma 4.2, we may assume that c(vi) = a1 for

1 6 i 6 2k−1. Then NC(vi) = Ai for 1 6 i 6 2k−1, where A1, A2, . . . , A2k−1

are the 2k−1 subsets of A containing a1 and |A1| 6 |A2| 6 . . . 6 |A2k−1 |. Hence

NC(v1) = A1 = {a1}, NC(v2k−1) = A2k−1 = A, and without loss of generality we

may assume that NC(v2) = A2 = {a1, a2}. Hence c(v2k) = a2. Since v2k belongs to

a clique of order 2k−1 = ω(G), it follows again by Lemma 4.2 that c(v2k−1+i) = a2

for 1 6 i 6 2k−1, and furthermore, NC(v2k−1+i) = Bi for 1 6 i 6 2k−1, where

B1, B2, . . . , B2k−1 are the 2k−1 subsets of A containing a2 and |B1| 6 |B2| 6 . . . 6

|B2k−1 |. However, this implies that c is the coloring c∗ discussed before with the

colors renamed (and possibly some vi’s relabeled). In particular, observe that there

are two vertices (namely v2k−1 and v2k) whose neighborhood color set must be A.

We next consider set colorings of G + G. In particular, we will show that χs(G +

G) = 2k +1. Let G and G′ be the two copies of G in G+G. Note that χs(G+G) 6

χs(G) + χs(G
′) + 1 = 2k + 1 by Theorem 4.1. To show that χs(G + G′) > 2k + 1,

assume, to the contrary, that χs(G + G′) = l 6 2k and let c : V (G + G′) → Nl be

a set l-coloring of G + G′. Let C = c(V (G)) and C′ = c(V (G′)) and without loss of

generality, assume that |C| 6 |C′|. By Lemma 2.1, observe that c|V (G) and c|V (G′) are
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set colorings of G and G′, respectively. Since χs(G) = χs(G
′) = k, it then follows

that k 6 |C| 6 |C′| 6 l 6 2k. We now consider three cases.

Case 1: |C′| > k+2, say Nk+2 ⊆ C′. Then the neighborhood color set of each vertex

in G contains Nk+2 as a subset. Since there are 2l−(k+2) subsets of Nl containing

Nk+2 as a subset and G contains 2k−1 vertices that are mutually adjacent, it follows

that 2l−(k+2) > 2k−1. Thus l > 2k + 1, which is a contradiction.

Case 2: |C| = k, say C = Nk. Then c|V (G) is a set k-coloring and we may assume,

without loss of generality, that c is defined so that c|V (G) = c∗, where c∗ is the set

k-coloring of G discussed earlier. Let a be an arbitrary color in Nk and observe that

there exist adjacent vertices x and y in G such that either NCc∗(x)−NCc∗(y) = {a}

or NCc∗(y) − NCc∗(x) = {a}. Then a /∈ C′, since otherwise NCc(x) = NCc(y),

contradicting the fact that c is a set coloring. Therefore, C ∩ C′ = ∅ and so l = 2k

and C′ = [(k+1)..2k]. Furthermore, by an earlier observation, there exists a vertex z

in G such that NCc∗(z) = Nk. Similarly, since c′∗ = c|V (G′) is a set k-coloring of G′,

it follows that there exists a vertex z′ in G′ such that NCc′∗(z
′) = [(k + 1)..2k].

However, this implies that NCc(z) = NCc(z
′) = N2k, which is impossible since z and

z′ are adjacent in G + G′.

Case 3: |C| = |C′| = k + 1, say C = Nk+1. Then the neighborhood color set of

every vertex v in G′ contains Nk+1 as a subset. Since there are 2l−(k+1) subsets of Nl

containing Nk+1 as a subset and G′ contains 2k−1 vertices that are mutually adjacent,

say the vertices z′1, z
′
2, . . . , z

′
2k−1 form K2k−1 in G′, it follows that 2l−(k+1) > 2k−1,

that is, l = 2k. Thus we may assume that C′ = [k..2k]. Furthermore, observe that the

neighborhood color set of one of the 2k−1 vertices is Nl = N2k, say NCc(z
′
1) = N2k.

Now, since there are 2k−1 subsets of N2k containing [k..2k] as a subset and G con-

tains 2k−1 vertices that are mutually adjacent, say the vertices z1, z2, . . . , z2k−1 form

K2k−1 in G, we may apply an argument similar to that used above to show that

the neighborhood color set of one of the 2k−1 vertices is N2k, say NCc(z1) = N2k.

However, this is impossible since z1 and z′1 are adjacent in G + G′ and c is a set

coloring.

Hence none of the three cases occurs. We now conclude that χs(G + G) = 2k + 1.
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