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Abstract. The set of all non-increasing nonnegative integer sequences π = (d(v1),
d(v2), . . . , d(vn)) is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the
degree sequence of a simple graph G on n vertices, and such a graph G is called a realization
of π. The set of all graphic sequences in NSn is denoted by GSn. A graphical sequence π

is potentially H-graphical if there is a realization of π containing H as a subgraph, while π

is forcibly H-graphical if every realization of π contains H as a subgraph. Let Kk denote a
complete graph on k vertices. Let Km−H be the graph obtained from Km by removing the
edges set E(H) of the graph H (H is a subgraph of Km). This paper summarizes briefly
some recent results on potentially Km−G-graphic sequences and give a useful classification
for determining σ(H,n).
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1. Introduction

The set of all non-increasing nonnegative integer sequences π = (d(v1), d(v2), . . . ,

d(vn)) is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the degree

sequence of a simple graph G on n vertices, and such a graph G is called a realization

of π. The set of all graphic sequences in NSn is denoted byGSn. A graphical sequence

π is potentially H-graphical if there is a realization of π containing H as a subgraph,

while π is forcibly H-graphical if every realization of π contains H as a subgraph. If

π has a realization in which the r + 1 vertices of largest degree induce a clique, then

π is said to be potentially Ar+1-graphic. Let σ(π) = d(v1)+ d(v2) + . . . + d(vn), and

[x] denote the largest integer less than or equal to x. We denote by G+H the graph

Project Supported by NSF of Fujian(2008J0209), Fujian Provincial Training Foundation
for “Bai-Quan-Wan Talents Engineering”, Project of Fujian Education Department and
Project of Zhangzhou Teachers College (SK07009).
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with V (G+H) = V (G)∪V (H) and E(G+H) = E(G)∪E(H)∪{xy : x ∈ V (G), y ∈

V (H)}. Let Kk, Ck, Tk, and Pk denote a complete graph on k vertices, a cycle on

k vertices, a tree on k + 1 vertices, and a path on k + 1 vertices, respectively. Let

Fk denote the friendship graph on 2k + 1 vertices, that is, the graph of k triangles

intersecting in a single vertex. For 0 6 r 6 t, denote the generalized friendship graph

on kt − kr + r vertices by Ft,r,k, where Ft,r,k is the graph of k copies of Kt meeting

in a common r set. We use the symbol Z4 to denote K4 − P2. Let Km − H be the

graph obtained from Km by removing the edges set E(H) of the graph H (H is a

subgraph of Km).

Given a graphH , what is the maximum number of edges of a graph with n vertices

not containing H as a subgraph? This number is denoted ex(n, H), and is known as

the Turán number. In terms of graphic sequences, the number 2ex(n, H) + 2 is the

minimum even integer l such that every n-term graphical sequence π with σ(π) > l

is forcibly H-graphical. Erdös, Jacobson and Lehel [13] first consider the following

variant: determine the minimum even integer l such that every n-term graphical

sequence π with σ(π) > l is potentially H-graphical. We denote this minimum l by

σ(H, n). Erdös, Jacobson and Lehel [13] showed that σ(Kk, n) > (k−2)(2n−k+1)+2

and conjectured that equality holds. They proved that if π does not contain zero

terms, this conjecture is true for k = 3, n > 6. The conjecture was confirmed in

[19] and [43]–[46]. Li et al. [46] and Mubayi [55] also independently determined

the values σ(Kr, 2k) for any k > 3. Li and Yin [51] further determined σ(Kr, n)

for r > 7 and n > 2r + 1. The problem of determining σ(Kr, n) is completely

solved.

Gould, Jacobson and Lehel [19] also proved that σ(pK2, n) = (p − 1)(2n − p) + 2

for p > 2; σ(C4, n) = 2[(1/2)(3n − 1)] for n > 4. Lai [29] gave a lower bound of

σ(Ck, n) and proved that σ(C5, n) = 4n − 4 for n > 5 and σ(C6, n) = 4n − 2 for

n > 7. Lai [32] proved that σ(C2m+1, n) = m(2n − m − 1) + 2, for m > 2, n > 3m;

and σ(C2m+2, n) = m(2n − m − 1) + 4, for m > 2, n > 5m − 2. Li and Luo [41]

gave a lower bound for σ(3Cl, n) and determined σ(3Cl, n), 4 6 l 6 6, n > l. Li,

Luo and Liu [42] determined σ(3Cl, n) for 3 6 l 6 8, and n > l. and σ(3C9, n) for

n > 12. Li and Yin [48] determined σ(3Cl, n) for n sufficiently large. Yin, Li and

Chen [68] determined σ(kCl, n), l > 7, 3 6 k 6 l. Chen and Yin [9] determined

the values σ(W5, n) for n > 11, where Wr is a wheel graph on r vertices. For r × s

complete bipartite graphKr,s, Gould, Jacobson and Lehel [19] determined σ(K2,2, n).

Yin et al. [63], [65], [69], [70] determined σ(Kr,s, n) for s > r > 2 and sufficiently

large n. For r × s × t complete 3-partite graph Kr,s,t, Erdös, Jacobson and Lehel

[13] determined σ(K1,1,1, n). Lai [30] determined σ(K1,1,2, n). Yin [58] and Lai [34]

independently determined σ(K1,1,3, n). Chen [7] determined σ(K1,1,t, n) for t > 3,

n > 2[14 (t + 5)2] + 3. Chen[5] determined σ(K1,2,2, n) for 5 6 n 6 8 and σ(K2,2,2, n)
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for n > 6. Let Kt
s denote the complete t partite graph such that each partite set

has exactly s vertices. Guantao Chen, Michael Ferrara, Ronald J.Gould and John

R. Schmitt [11] showed that σ(Kt
s, n) = π(K(t−2)s + Ks,s, n) and obtained the exact

value of σ(Kj+Ks,s, n) for n sufficiently large. Consequently, they obtained the exact

value of σ(Kt
s, n) for n sufficiently large. For n > 5, Ferrara, Jacobson and Schmitt

[17] determined σ(Fk, n) where Fk denotes the graph of k triangles intersecting at

exactly one common vertex. In [16], Ferrara, Gould and Schmitt determined a lower

bound for σ(Kt
s, n), where Kt

s denotes the complete multipartite graph with t partite

sets each of size s, and proved equality in the case s = 2. They also provided a graph

theoretic proof for the value of σ(Kt, n). Michael J. Ferrara [15] determined σ(H, n)

for the graph H = Km1
∪ Km2

∪ . . . ∪ Kmk
, where n is sufficiently large integer.

Ferrara, M., Jacobson, M., Schmitt, J. and Siggers M. [18] determined σ(Ks,t, m, n),

σ(Pt, m, n) and σ(C2t, m, n) where σ(H, m, n) is the minimum integer k such that

every bigraphic pair S = (A, B) with |A| = m, |B| = n and σ(S) > k is potentially

H-bigraphic. For an arbitrarily chosen H , Schmitt, J. R. and Ferrara, M. [56] gave

a good lower bound for σ(H, n). Yin and Li [67] determined σ(Kr1,r2,...,rl,r,s,n) for

sufficiently large n. Moreover, Yin, Chen and Schmitt [62] determined σ(Ft,r,k, n)

for k > 2, t > 3, 1 6 r 6 t − 2 and sufficiently large, where Ft,r,k denotes the graph

of k copies of Kt meeting in a common r set. Gupta, Joshi and Tripathi [20] gave

a necessary and sufficient condition for the existence of a tree of order n with a

given degree set. Yin [59] gave a new necessary and sufficient condition for π to

be potentially Kr+1-graphic. Jiong-sheng Li and Jianhua Yin [50] gave a survey on

graphical sequences.

2. Potentially Km − G-graphical sequences

Let H be a graph with m vertices, then H = Km − (Km −H). Let G = Km −H,

then σ(H, n) = σ(Km − G, n). If Problems 1–5 in the Open Problems section are

solved, then the problem of determining σ(H, n) is completely solved. We think

Problems 3 and 4 are a useful classification for determining σ(H, n).

Gould, Jacobson and Lehel [19] pointed out that it would be nice to see where in

the range from 3n − 2 to 4n − 4 the value σ(K4 − e, n) lies. Later, Lai [30] proved

that

Theorem 1. For n = 4, 5 and n > 7

σ(K4 − e, n) =

{

3n − 1 if n is odd,

3n − 2 if n is even.
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For n = 6, if S is a 6-term graphical sequence with σ(S) > 16, then either there is a

realization of S containing K4 − e or S = (36). (Thus σ(K4 − e, 6) = 20.)

Huang [26] gave a lower bound of σ(Km − e, n). Yin, Li and Mao [71] and Huang

[27] independently determined the values σ(K5 − e, n) as follows.

Theorem 2. If n > 5, then

σ(K5 − e, n) =

{

5n− 7, if n is odd,

5n− 6, if n is even.

Lai [35]–[36] determined σ(K5 − C4, n), σ(K5 − P3, n) and σ(K5 − P4, n).

Theorem 3. For n > 5, σ(K5−C4, n) = σ(K5−P3, n) = σ(K5−P4, n) = 4n−4.

Yin and Li [66] gave a good method for determining the values σ(Kr+1 − e, n)

(in fact, Yin and Li [66] also determined the values σ(Kr+1 − ke, n) for r > 2 and

n > 3r2 − r − 1).

Theorem 4. Let n > r + 1 and π = (d1, d2, . . . , dn) ∈ GSn with dr+1 > r. If

di > 2r − i for i = 1, 2, . . . , r − 1, then π is potentially Ar+1-graphic.

Theorem 5. Let n > 2r + 2 and π = (d1, d2, . . . , dn) ∈ GSn with dr+1 > r. If

d2r+2 > r − 1, then π is potentially Ar+1-graphic.

Theorem 6. Let n > r + 1 and π = (d1, d2, . . . , dn) ∈ GSn with dr+1 > r − 1. If

di > 2r − i for i = 1, 2, . . . , r − 1, then π is potentially Kr+1 − e-graphic.

Theorem 7. Let n > 2r + 2 and π = (d1, d2, . . . , dn) ∈ GSn with dr−1 > r. If

d2r+2 > r − 1, then π is potentially Kr+1 − e-graphic.

Theorem 8. If r > 2 and n > 3r2 − r − 1, then

σ(Kr+1 − ke, n) =

{

(r − 1)(2n − r) − (n − r) + 1 if n − r is odd,

(r − 1)(2n − r) − (n − r) + 2 if n − r is even.

After reading [66], Yin [72] determined the values σ(Kr+1 − K3, n) for r > 3,

n > 3r + 5.
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Theorem 9. If r > 3 and n > 3r + 5, then σ(Kr+1 − K3, n) = (r − 1)(2n − r) −

2(n − r) + 2.

Determining σ(Kr+1 − H, n), where H is a tree on 4 vertices, is more useful than

a cycle on 4 vertices (for example, C4 6⊂ Ci, but P3 ⊂ Ci for i > 5). So, after reading

[66] and [72], Lai and Hu [38] determined σ(Kr+1 − H, n) for n > 4r + 10, r > 3,

r + 1 > k > 4 and H a graph on k vertices which containing a tree on 4 vertices but

does not contain a cycle on 3 vertices and σ(Kr+1 − P2, n) for n > 4r + 8, r > 3.

Theorem 10. If r > 3 and n > 4r + 8, then σ(Kr+1 − P2, n) = (r − 1)(2n− r)−

2(n − r) + 2.

Theorem 11. If r > 3, r + 1 > k > 4 and n > 4r + 10, then σ(Kr+1 − H, n) =

(r− 1)(2n− r)− 2(n− r), where H is a graph on k vertices which contains a tree on

4 vertices but not contains a cycle on 3 vertices.

There are a number of graphs on k vertices which contain a tree on 4 vertices but

do not containing a cycle on 3 vertices (for example, the cycle on k vertices, the tree

on k vertices, and the complete 2-partite graph on k vertices, etc).

Lai and Sun [39] determined σ(Kr+1 − (kP2 ∪ tK2), n) for n > 4r + 10, r + 1 >

3k + 2t, k + t > 2, k > 1, t > 0.

Theorem 12. If n > 4r + 10, r + 1 > 3k + 2t, k + t > 2, k > 1, t > 0, then

σ(Kr+1 − (kP2 ∪ tK2), n) = (r − 1)(2n − r) − 2(n − r).

As yet, the problem of determining σ(Kr+1 − H, n) for H not containing a cycle

on 3 vertices and n sufficiently large has not been solved.

Lai [37] determined σ(Kr+1 − Z, n) for n > 5r + 19, r + 1 > k > 5, j > 5 and Z

a graph on k vertices and j edges which contains a graph Z4 but does not contain

a cycle on 4 vertices. In the same paper, the author also determined the values of

σ(Kr+1 −Z4, n), σ(Kr+1 − (K4 − e), n) and σ(Kr+1 −K4, n) for n > 5r + 16, r > 4.

Theorem 13. If r > 4 and n > 5r + 16, then

σ(Kr+1 − K4, n) = σ(Kr+1 − (K4 − e), n) =

σ(Kr+1 − Z4, n) =

{

(r − 1)(2n − r) − 3(n − r) + 1 if n − r is odd,

(r − 1)(2n − r) − 3(n − r) + 2 if n − r is even.
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Theorem 14. If n > 5r + 19, r + 1 > k > 5, and j > 5, then

σ(Kr+1 − Z, n) =

{

(r − 1)(2n − r) − 3(n − r) − 1 if n − r is odd,

(r − 1)(2n − r) − 3(n − r) − 2 if n − r is even

where Z is a graph on k vertices and j edges which contains a graph Z4 but does

not contain a cycle on 4 vertices.

There are a number of graphs on k vertices and j edges which contain a graph

Z4 but do not contain a cycle on 4 vertices. (For example, the graph obtained

by C3, Ci1 , Ci2 , . . . , Cip
intersecting in a single vertex (ij 6= 4, j = 1, 2, 3, . . . , p) (if

ij = 3, j = 1, 2, 3, . . . , p, then this graph is the friendship graph Fp+1), the graph

obtained by C3, Pi1 , Pi2 , . . . , Pip
intersecting in a single vertex (i1 > 1), the graph

obtained by C3, Pi1 , Ci2 , . . . , Cip
(ij 6= 4, j = 2, 3, . . . , p, i1 > 1) intersecting in a

single vertex, etc.)

Lai and Yan [40] proved that

Theorem 15. If n > 5r + 18, r + 1 > k > 7, and j > 6, then

σ(Kr+1 − U, n) =

{

(r − 1)(2n − r) − 3(n − r) − 1 if n − r is odd,

(r − 1)(2n − r) − 3(n − r) if n − r is even

where U is a graph on k vertices and j edges which contains a graph (K3 ∪ P3) but

does not contain a cycle on 4 vertices and not contains Z4.

There are a number of graphs on k vertices and j edges which contains a graph

(K3 ∪ P3) but do not contain a cycle on 4 vertices and do not contain Z4. (For

example, C3∪Ci1∪Ci2∪. . .∪Cip
(ij 6= 4, j = 2, 3, . . . , p, i1 > 5), C3∪Pi1∪Pi2∪. . .∪Pip

(i1 > 3), C3 ∪ Pi1 ∪ Ci2 ∪ . . . ∪ Cip
(ij 6= 4, j = 2, 3, . . . , p, i1 > 3), etc.)

A harder question is to characterize the potentially H-graphic sequences without

zero terms. Luo [53] characterized the potentially Ck-graphic sequences for each

k = 3, 4, 5.

Theorem 16. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 3. Then

π is potentially C3-graphic if and only if d3 > 2 except for 2 case: π = (24) and

π = (25).

Theorem 17. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 4. Then

π is potentially C4-graphic if and only if the following conditions hold:

(1) d4 > 2.

(2) d1 = n − 1 implies d2 > 3.

(3) If n = 5, 6, then π 6= (2n).
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Theorem 18. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially C5-graphic if and only if the following conditions hold:

(1) d5 > 2.

(2) For i = 1, 2, d1 = n − i implies d4−i > 3.

(3) If π = (d1, d2, 2
k, 1n−k−2), then d1 + d2 6 n + k − 2.

Chen [2] characterized the potentially Ck-graphic sequences for k = 6.

Theorem 19. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 6. Then

π is potentially C6-graphic if and only if the following conditions hold:

(1) d6 > 2.

(2) If n = 7, 8, then π 6= (2n).

(3) For i = 1, 2, 3, d1 = n − i implies d5−i > 3.

(4) If π = (d1, d2, 2
k, 1n−k−2), then d1 +d2 6 n+k−2; if π = (d1, d2, 3, 2k, 1n−k−3),

then d1 + d2 6 n + k; if π = (d1, d2, 3, 3, 2k, 1n−k−4), then d1 + d2 6 n + k + 2.

Yin, Chen and Chen [60] characterized the potentially kCl-graphic sequences for

each k = 3, 4 6 l 6 5 and k = 4, l = 5.

Theorem 20. Let π = (d1, d2, . . . , dn) ∈ GSn be a potentially C4-graphic se-

quence. Then π is potentially 3C4-graphic if and only if π satisfies one of the following

conditions:

(1) d2 > 3 and π 6= (32, 24);

(2) π = (d1, 2
k, 1n−k−1) with 2 6 d1 6 3 and k > 6, and π 6= (28) and (29);

(3) π = (d1, 2
k, 1n−k−1) with 4 6 d1 6 n− 2 and k > 5, and π 6= (4, 26) and (4, 27).

Theorem 21. Let π = (d1, d2, . . . , dn) ∈ GSn be a potentially C5-graphic se-

quence. Then π is potentially 3C5-graphic if and only if π satisfies one of the following

conditions:

(1) d2 > 3 and π 6= (32, 24) and (32, 25);

(2) π = (d1, 2
k, 1n−k−1) with 2 6 d1 6 3 and k > 11, and π 6= (213) and (214);

(3) π = (d1, 2
k, 1n−k−1) with 4 6 d1 6 5 and k > 10, and π 6= (4, 211) and (4, 212);

(4) π = (d1, 2
k, 1n−k−1) with 6 6 d1 6 n − 4 and k > 9, and π 6= (4, 210) and

(4, 211).

Theorem 22. Let π = (d1, d2, . . . , dn) ∈ GSn be a potentially C5-graphic se-

quence. Then π is potentially 4C5-graphic if and only if π satisfies one of the following

conditions:

(1) d2 > 3;

(2) π = (d1, 2
k, 1n−k−1) with 2 6 d1 6 3 and k > 8, and π 6= (210) and (211);
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(3) π = (d1, 2
k, 1n−k−1) with 4 6 d1 6 n− 4 and k > 7, and π 6= (4, 28) and (4, 29).

Chen, Yin and Fan [10] characterized the potentially kCl-graphic sequences for

each 3 6 k 6 5, l = 6.

Theorem 23. Let π = (d1, d2, . . . , dn) ∈ GSn, n > 6, and π 6= (32, 210), (219),

(220), (4, 217), (4, 218), (6, 216), (6, 217), (8, 215), (8, 216). Then π is potentially 3C6-

graphic if and only if π be a potentially C6-graphic sequence, and π satisfies one of

the following conditions:

(1) d3 > 3, and if d1 = d3 = 3, d4 = 2, then d10 = 2;

(2) d2 > 4, d3 = 2, d7 = 2;

(3) d2 = 3, d3 = 2, and if 4 > d1 > 3, then d10 = 2, and if n − 4 > d1 > 5, then

d9 = 2;

(4) d2 = 2, and if 3 > d1 > 2, then d18 = 2, and if 5 > d1 > 4, then d17 = 2, and if

7 > d1 > 6, then d16 = 2, and if n − 7 > d1 > 8, then d15 = 2.

Theorem 24. Let π = (d1, d2, . . . , dn) ∈ GSn, n > 6, and π 6= (216), (217),

(4, 214), (4, 215), (6, 213), (6, 214), Then π is potentially 4C6-graphic if and only if π

is a potentially C6-graphic sequence, and π satisfies one of the following conditions:

(1) d3 > 3, and if d1 = d3 = 3, d4 = 2, then d10 = 2;

(2) d2 > 4, d3 = 2, d7 = 2;

(3) d2 = 3, d3 = 2, and if 4 > d1 > 3, then d10 = 2, and if n − 4 > d1 > 5, then

d9 = 2;

(4) d2 = 2, and if 3 > d1 > 2, then d15 = 2, and if 5 > d1 > 4, then d14 = 2, and if

n − 7 > d1 > 6, then d13 = 2.

Theorem 25. Let π = (d1, d2, . . . , dn) ∈ GSn, n > 6, and π 6= (212), (213),

(4, 210), (4, 211), Then π is potentially 5C6-graphic if and only if π is a potentially

C6-graphic sequence, and π satisfies one of the following conditions:

(1) d2 > 3;

(2) 3 > d1 > 2, d2 = 2, d11 = 2;

(3) n − 6 > d1 > 4, d2 = 2, d10 = 2.

Luo and Warner [54] characterized the potentially K4-graphic sequences.

Theorem 26. Let π = (d1, d2, . . . , dn) be a graphic sequence without zero terms

and with d4 > 3 and n > 4. Then π is potentially K4-graphic if and only if d4 > 3

and π 6= (n − 1, 3s, 1n−s−1) for each s = 4, 5 except the following sequences:

n = 5: (4, 34), (34, 2);

n = 6: (46), (42, 34), (4, 34, 2), (36), (35, 1), (34, 22);
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n = 7: (47), (43, 34), (4, 36), (4, 35, 1), (36, 2), 35, 2, 1);

n = 8: (37, 1), (36, 12).

Eschen and Niu [14] and Lai [31] independently characterized the potentially K4−

e-graphic sequences.

Theorem 27. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 4. Then

π is potentially (K4 − e)-graphic if and only if the following conditions hold:

(1) d2 > 3.

(2) d4 > 2.

(3) If n = 5, 6, then π 6= (32, 2n−2) and π 6= (36).

Yin and Yin [73] characterized the potentially K5 − e and K6-graphic sequences.

Theorem 28. Let n > 5 and π = (d1, d2, . . . , dn) ∈ NSn be a positive graphic

sequence with d3 > 4 and d5 > 3. Then π is potentially K5 − e-graphic if and

only if π is not one of the following sequences: (n− 1, 46, 1n−7), (n− 1, 42, 34, 1n−7),

(n − 1, 42, 33, 1n−6);

n = 6: (46), (44, 32), (43, 32, 2);

n = 7: (43, 34), (52, 4, 34), (47), (45, 32), (5, 43, 33), (52, 45), (5, 45, 3), (43, 32, 22),

(44, 32, 2), (5, 42, 33, 2), (46, 2), (43, 33, 1);

n = 8: (58), (48), (52, 46), (6, 47), (44, 34), (5, 42, 35), (46, 32), (5, 46, 3), (43, 34, 2),

(47, 2), (44, 33, 1), (5, 42, 34, 1), (43, 33, 2, 1), (46, 3, 1), (5, 46, 1);

n = 9: (49), (43, 35, 1), (48, 2), (47, 3, 1), (5, 47, 1), (43, 34, 12), (47, 12);

n = 10: (48, 12).

Theorem 29. Let n > 18 and π = (d1, d2, . . . , dn) ∈ NSn be a positive

graphic sequence with d6 > 5. Then π is potentially A6-graphic if and only if

π6 6∈ {(2), (22), (3, 1), (32), (3, 2, 1), (32, 2), (33, 1), (32, 12)}.

Yin and Chen [61] characterized the potentially Kr,s-graphic sequences for r = 2,

s = 3 and r = 2, s = 4.

Theorem 30. Let n > 5 and π = (d1, d2, . . . , dn) ∈ GSn. Then π is potentially

K2,3-graphic if and only if π satisfies the following conditions:

(1) d2 > 3 and d5 > 2;

(2) if d1 = n − 1 and d2 = 3, then d5 = 3;

(3) π 6= (32, 24), (32, 25), (43, 23), (n − 1, 35, 1n−6) and (n − 1, 36, 1n−7).
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Theorem 31. Let n > 6 and π = (d1, d2, . . . , dn) ∈ GSn. Then π is potentially

K2,4-graphic if and only if π satisfies the following conditions:

(1) d2 > 4 and d6 > 2;

(2) if d1 = n − 1 and d2 = 4, then d3 = 4 and d6 > 3;

(3) π 6= (43, 24), (42, 25), (42, 26), (52, 4, 24), (53, 3, 23), (6, 52, 25), (53, 24, 1),

(63, 26), (n − 1, 42, 34, 1n−7), (n − 1, 42, 35, 1n−8), (n − 2, 42, 23, 1n−6), and

(n − 2, 43, 22, 1n−6).

Chen [3] characterized the potentially K5 − 2K2-graphic sequences for 5 6 n 6 8.

Hu and Lai [23] characterized the potentially K5−P3, K5−A3, K5 −K3, K5−K1,3

and K5 − 2K2-graphic sequences where A3 is P2 ∪ K2.

Theorem 32. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − P3-graphic if and only if the following conditions hold:

(1) d1 > 4, d3 > 3 and d5 > 2.

(2) π 6= (4, 32, 23), (4, 32, 24) and (4, 36).

Theorem 33. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − A3-graphic if and only if the following conditions hold:

(1) d4 > 3 and d5 > 2.

(2) π 6= (n − 1, 33, 2n−k, 1k−4) where n > 6 and k = 4, 5, . . . , n − 2, n and k have

the same parity.

(3) π 6= (34, 22), (36), (34, 23), (36, 2), (4, 36), (37, 1), (38), (n − 1, 35, 1n−6) and

(n − 1, 36, 1n−7).

Theorem 34. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − K3-graphic if and only if the following conditions hold:

(1) d2 > 4 and d5 > 2.

(2) π 6= (42, 24), (42, 25), (43, 23) and (46).

Theorem 35. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − K1,3-graphic if and only if the following conditions hold:

(1) d1 > 4 and d4 > 3.

(2) π 6= (4, 34, 2), (46), (42, 34), (4, 36), (47), (4, 35, 1), (n − 1, 34, 1n−5) and (n − 1,

35, 1n−6).
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Theorem 36. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − 2K2-graphic if and only if the following conditions hold:

(1) d1 > 4 and d5 > 3;

(2)

π 6=

{

(n − i, n − j, 3n−i−j−2k, 22k, 1i+j−2), n − i − j is even;

(n − i, n − j, 3n−i−j−2k−1, 22k+1, 1i+j−2), n − i − j is odd.

where 1 6 j 6 n − 5 and 0 6 k 6 [12 (n − j − i − 4)].

(3) π 6= (42, 34), (4, 34, 2), (5, 4, 35), (5, 35, 2), (47), (43, 34), (42, 34, 2), (4, 36),

(4, 35, 1),(4, 34, 22), (5, 37), (5, 36, 1), (48), (42, 36), (42, 35, 1), (4, 36, 2), (4, 35,

2, 1), (4, 37, 1), (4, 36, 12), (n − 1, 35, 1n−6) and (n − 1, 36, 1n−7).

Hu and Lai [21] characterized the potentially K5 − C4-graphic sequences.

Theorem 37. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially (K5 − C4)-graphic if and only if the following conditions hold:

(1) d1 > 4.

(2) d5 > 2.

(3) π 6= ((n − 2)2, 2n−2) for n > 6, where the symbol xy stands for y consecutive

terms x.

(4) π 6= (n − k, k + i, 2i, 1n−i−2) where i = 3, 4, . . . , n − 2k and k = 1, 2, . . . ,

[12 (n − 1)] − 1.

(5) If n = 6, then π 6= (4, 25).

(6) If n = 7, then π 6= (4, 26).

Hu and Lai [22] characterized the potentially K5 − Z4-graphic sequences.

Theorem 38. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially (K5 − Z4)-graphic if and only if the following conditions hold:

(1) d1 > 4, d2 > 3 and d4 > 2.

Hu, Lai and Wang [25] characterized the potentially K5−P4 and K5−Y4-graphic

sequences where Y4 is a tree on 5 vertices and 3 leaves.

Theorem 39. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − P4-graphic if and only if the following conditions hold:

(1) d2 > 3.

(2) d5 > 2.

(3) π 6= (n − 1, k, 2t, 1n−2−t) where n > 5, k, t = 3, 4, . . . , n − 2, and, k and t have

different parities.
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(4) For n > 5, π 6= (n − k, k + i, 2i, 1n−i−2) where i = 3, 4, . . . , n − 2k and k =

1, 2, . . . , [ 12 (n − 1)] − 1.

(5) If n = 6, 7, then π 6= (32, 2n−2).

Theorem 40. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K5 − Y4-graphic if and only if the following conditions hold:

(1) d3 > 3.

(2) d4 > 2.

(3) π 6= (36).

Hu and Lai [24] characterized the potentially K3,3 and K6−C6-graphic sequences.

Theorem 41. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 6. Then

π is potentially K3,3-graphic if and only if the following conditions hold:

(1) d6 > 3;

(2) for i = 1, 2, d1 = n − i implies d4−i > 4;

(3) d2 = n − 1 implies d3 > 5 or d6 > 4;

(4) d1 + d2 = 2n − i and dn−i+3 = 1(3 6 i 6 n − 4) implies d3 > 5 or d6 > 4;

(5) d1 + d2 = 2n − i and dn−i+4 = 1(4 6 i 6 n − 3) implies d3 > 4;

(6) π = (d1, d2, 3
4, 2t, 1n−6−t) or (d1, d2, 4

2, 32, 2t, 1n−6−t) implies d1+d2 6 n+t+2;

(7) π = (d1, d2, 4, 34, 2t, 1n−7−t) implies d1 + d2 6 n + t + 3;

(8) for t = 5, 6, π 6= (n − i, k + i, 4t, 2k−t, 1n−2−k) where i = 1, . . . , [ 12 (n − k)] and

k = t, . . . , n − 2i;

(9) π 6= (54, 32, 2), (46), (36, 2), (64, 34), (42, 36), (4, 36, 2), (36, 22), (38), (37, 1),

(4, 38), (4, 37, 1), (38, 2), (37, 2, 1), (39, 1), (38, 12), (n − 1, 42, 34, 1n−7), (n − 1,

42, 35, 1n−8), (n− 1, 53, 33, 1n−7), (n− 2, 4, 35, 1n−7), (n− 2, 4, 36, 1n−8), (n− 3,

36, 1n−7), (n − 3, 37, 1n−8).

Theorem 42. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 6. Then

π is potentially K6 − C6-graphic if and only if the following conditions hold:

(1) d6 > 3;

(2) for i = 1, 2, d1 = n − i implies d4−i > 4;

(3) d2 = n − 1 implies d4 > 4;

(4) d1 + d2 = 2n − i and dn−i+3 = 1(3 6 i 6 n − 4) implies d4 > 4;

(5) d1 + d2 = 2n − i and dn−i+4 = 1(4 6 i 6 n − 3) implies d3 > 4;

(6) π = (d1, d2, d3, 3
k, 2t, 1n−3−k−t) implies d1 + d2 + d3 6 n + 2k + t + 1;

(7) π = (d1, d2, 3
4, 2t, 1n−6−t) implies d1 + d2 6 n + t + 2;

(8) π 6= (n − i, k, t, 3t, 2k−i−t−1, 1n−2−k+i) where i = 1, . . . , [ 12 (n − t − 1)] and

k = i + t + 1, . . . , n − i and t = 4, 5, . . . , k − i − 1;
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(9) π 6= (36, 2), (42, 36), (4, 36, 2), (36, 22), (38), (37, 1), (4, 38), (4, 37, 1), (38, 2),

(37, 2, 1), (39, 1), (38, 12), (n − 1, 42, 34, 1n−7), (n − 1, 42, 35, 1n−8), (n − 2,

4, 35, 1n−7), (n − 2, 4, 36, 1n−8), (n − 3, 36, 1n−7), (n − 3, 37, 1n−8).

Xu and Hu [57] characterized the potentially K1,4 + e-graphic sequences. Chen

and Li [8] characterized the potentially K1,t + e-graphic sequences.

Theorem 43. Let π = (d1, d2, . . . , dn) be a graphic sequence with n > 5. Then

π is potentially K1,4 + e-graphic if and only if d1 > 4, d3 > 2.

Theorem 44. Let t > 3, π = (d1, d2, . . . , dn) is a graphic sequence with n > t+1.

Then π is potentially K1,t + e-graphic if and only if d1 > t, d3 > 2.

Open problems

Problem 1. Determine σ(Kr+1−G, n) for G is a graph on k vertices and j edges

which contains a graph K3∪K1,3 but does not contain a cycle on 4 vertices and does

not contain Z4 and P3.

Problem 2. Determine σ(Kr+1 − G, n) for G = K3 ∪ iK2 ∪ jP2 ∪ tK3.

Problem 3. Determine σ(Kr+1−G, n) for graph G which contains C3, C4, . . . , Cl

but does not contain a cycle on l + 1 vertices (4 6 l 6 r).

Problem 4. Determine σ(Kr+1 − G, n) for a graph G which contains C3,

C4, . . . , Cr+1.

Problem 5. Determine σ(Kr+1 − G, n) for small n.

Problem 6. Characterize potentially Kr+1−G-graphic sequences for the remain-

ing G.
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