Czechoslovak Mathematical Journal

Yuqun Chen; Yongshan Chen; Chanyan Zhong Composition-diamond lemma for modules

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 1, 59-76

Persistent URL: http://dml.cz/dmlcz/140549

Terms of use:

© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

COMPOSITION-DIAMOND LEMMA FOR MODULES

Yuqun Chen, Yongshan Chen, and Chanyan Zhong, Guangzhou

(Received July 5, 2008)

Abstract

We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and "double-free" left modules (that is, free modules over a free algebra). We first give Chibrikov's Composition-Diamond lemma for modules and then we show that Kang-Lee's Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $s l_{2}$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.

Keywords: Gröbner-Shirshov basis, module, Lie algebra, Kac-Moody algebra, conformal algebra, Sabinin algebra

MSC 2010: 16S15, 13P10, 17A01, 17B67, 16D10

1. Introduction

In literature, the Composition-Diamond lemma for modules was first proved by S.-J. Kang and K.-H. Lee in [16], [17]. According to their approach, a GröbnerShirshov basis of a cyclic module M over an algebra A is a pair (S, T), where S is the defining relations of $A=k\langle X \mid S\rangle$ and T is the defining relations of the A-module ${ }_{A} M=\bmod _{A}\langle e \mid T\rangle$. Then Kang-Lee's lemma says that (S, T) is a Gröbner-Shirshov pair for the A-module ${ }_{A} M=\bmod _{A}\langle e \mid T\rangle$ if S is a Gröbner-Shirshov basis of A and T is closed under the right-justified composition with respect to S and T, and for $f \in S, g \in T$ such that $(f, g)_{w}$ is defined, $(f, g)_{w} \equiv 0 \bmod (S, T ; w)$. They also gave some applications of this lemma for irreducible modules over $s l_{n}(k)$ in [17], the Specht modules over the Hecke algebras and the Ariki-Koike algebras in [18], [19]. Some years later, E. S. Chibrikov [11] proposed a new Composition-Diamond lemma

[^0]for modules that treats any module as a factor module of a "double-free" module $\bmod _{k\langle X\rangle}\langle Y\rangle$ over a free algebra $k\langle X\rangle$. When using this approach, any A-module ${ }_{A} M$ is presented in the form
$$
{ }_{A} M=\bmod _{k\langle X\rangle}\left\langle Y \mid S X^{*} Y, T\right\rangle
$$
where $A=k\langle X \mid S\rangle,{ }_{A} M=\bmod _{A}\langle Y \mid T\rangle, X^{*}$ is the free monoid generated by X.
The aim of this paper is to describe a relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and "double-free" left modules, respectively. We also give some applications of the Composition-Diamond lemma to "double-free" modules. The paper is organized as follows. In Section 2, we deal with the Gröbner-Shirshov bases and the Composition-Diamond lemma for left ideals of a free algebra. Actually, this is a special case of cyclic "double-free" modules. By using this lemma, we can easily get the well-known Cohn's theorem (see [12] p. 333). In Section 3, we give a relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and "double-free" modules, respectively. In particular, we give a proof of Chibrikov's Composition-Diamond lemma and formulate Kang-Lee's Composition-Diamond lemma. Then we show that the latter follows from the former. In Sections 4, 5, 6 and 7, we give Gröbner-Shirshov bases for the highest weight module over the Lie algebra $s l_{2}$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra, respectively. As applications, in particular, we also obtain linear bases for the above modules. For the universal enveloping module for a Sabinin algebra it was done before by Perez-Izquierdo [21] using another method.

Let k be a field and X a set. Let X^{*} be the free monoid generated by X and $k\langle X\rangle$ the free associative algebra over X and k. For a word $w \in X^{*}$, we denote the length of w by $\operatorname{deg}(w)$. Suppose that $<$ is a well ordering on X^{*}. For any polynomial f, let \bar{f} be the leading term of f. If the coefficient of \bar{f} is 1 , then this polynomial is said to be monic. The following lemma will be used in Sections 4, 5 and 6.

Lemma 1.1 ([9], [10], [3]). Let $\operatorname{Lie}(X)$ be a free Lie algebra over a set X and a field k. Let $S \subset \operatorname{Lie}(X)$ be a nonempty set of monic Lie polynomials. Then, with a deg-lex ordering on X^{*}, S is a Gröbner-Shirshov basis in Lie (X) if and only if $S^{(-)}$ is a Gröbner-Shirshov basis in $k\langle X\rangle$ where $S^{(-)}$is just S but all [xy] substituted by $x y-y x$.

2. Composition-Diamond lemma for left ideals of a free algebra

Let X be a set and $<$ a well ordering on X^{*}. Let $S \subset k\langle X\rangle$ in which every $s \in S$ is monic. Then $k\langle X\rangle S$ is the left ideal of $k\langle X\rangle$ generated by S. For the left ideal $k\langle X\rangle S$, we define the compositions in S as follows.

Definition 2.1. For any $f, g \in S$, if $\bar{f}=a \bar{g}$ for some $a \in X^{*}$, then the composition of f and g is defined to be $(f, g)_{\bar{f}}=f-a g$. The transformation $f \rightarrow f-a g$ is called the elimination of the leading word (ELW) of g in f. If $(f, g)_{\bar{f}}=\sum \alpha_{i} a_{i} s_{i}$, where $\alpha_{i} \in k, a_{i} \in X^{*}, s_{i} \in S$ and $a_{i} \bar{s}_{i}<\bar{f}$, then the composition $(f, g)_{\bar{f}}$ is trivial modulo (S, \bar{f}), denoted by $(f, g)_{\bar{f}} \equiv 0 \bmod (S, \bar{f})$.

Definition 2.2. Let $S \subset k\langle X\rangle$ with each $s \in S$ monic. Then S is called a Gröbner-Shirshov basis of the left ideal $k\langle X\rangle S$ if all compositions are trivial modulo S. The set S is now called the minimal Gröbner-Shirshov basis of $k\langle X\rangle S$ if there exists no composition of polynomials in S, i.e., $\bar{f} \neq a \bar{g}$ for any $a \in X^{*}, f, g \in S$, $f \neq g$.

A well ordering $<$ on X^{*} is left compatible if for any $u, v \in X^{*}$,

$$
u>v \Rightarrow w u>w v \text { for all } w \in X^{*} .
$$

That < is right compatible can be similarly defined. Moreover, $<$ is monomial if it is both left and right compatible.

Now we formulate the Composition-Diamond lemma for left ideals of a free associative algebra.

Lemma 2.3 (Composition-Diamond lemma for left ideals of $k\langle X\rangle$). Let $S \subset$ $k\langle X\rangle$ in which every $s \in S$ is monic and let < be a left compatible well ordering on X^{*}. Then the following statements are equivalent:
(1) S is a Gröbner-Shirshov basis of the left ideal $k\langle X\rangle S$.
(2) If $0 \neq f \in k\langle X\rangle S$, then $\bar{f}=a \bar{s}$ for some $a \in X^{*}, s \in S$.
(2') If $0 \neq f \in k\langle X\rangle S$, then $f=\sum \alpha_{i} a_{i} s_{i}$ with $a_{1} \bar{s}_{1}>a_{2} \bar{s}_{2}>\ldots$, where each $\alpha_{i} \in k, a_{i} \in X^{*}, s_{i} \in S$.
(3) $\operatorname{Irr}(S)=\left\{w \in X^{*} \mid w \neq a \bar{s}, a \in X^{*}, s \in S\right\}$ is a k-linear basis for the factor $k\langle X\rangle$-module ${ }_{k\langle X\rangle} k\langle X\rangle / k\langle X\rangle S$.

Lemma 2.3 is a special case of Lemma 3.2 (see the next section).
Assume that S is a Gröbner-Shirshov basis for the left ideal $k\langle X\rangle S$ of $k\langle X\rangle$. We may assume that the leading terms of the elements in S are different. Then

$$
S_{1}=\left\{s \in S \mid \bar{s} \neq a \bar{t}, a \in X^{*}, t \in S \backslash\{s\}\right\}
$$

is clearly a minimal Gröbner-Shirshov basis for the left ideal $k\langle X\rangle S$. Then $k\langle X\rangle S$ is a free $k\langle X\rangle$-module with the basis S_{1} by Lemma 2.3. Thus, we get the following well-known result.

Corollary 2.4 (Cohn [12]). Any left (right) ideal of a free algebra $k\langle X\rangle$ is a free left (right) $k\langle X\rangle$-module.

Now, we quote below Kang-Lee's Composition-Diamond lemma. Let $S, T \subset k\langle X\rangle$, $A=k\langle X \mid S\rangle$, let ${ }_{A} M={ }_{A} A / A(T+\operatorname{Id}(S))$ be a left A-module and $f, g \in k\langle X\rangle$. In Kang-Lee's paper [16], the composition of f and g is defined as follows.

Definition 2.5 ([16], [17]). Let $<$ be a monomial ordering on X^{*}.
(a) If there exist $a, b \in X^{*}$ such that $w=\bar{f} a=b \bar{g}$ with $\operatorname{deg}(\bar{f})>\operatorname{deg}(b)$, then the composition of intersection is defined to be $(f, g)_{w}=f a-b g$.
(b) If there exist $a, b \in X^{*}$ such that $w=a \bar{f} b=\bar{g}$, then the composition of inclusion is defined to be $(f, g)_{w}=a f b-g$.
(c) A composition $(f, g)_{w}$ is said to be right-justified if $w=\bar{f}=a \bar{g}$ for some $a \in X^{*}$.

If $f-g=\sum \alpha_{i} a_{i} s_{i} b_{i}+\sum \beta_{j} c_{j} t_{j}$, where $\alpha_{i}, \beta_{j} \in k, a_{i}, b_{i}, c_{j} \in X^{*}, s_{i} \in S, t_{j} \in T$ with $a_{i} \bar{s}_{i} b_{i}<w$ and $c_{j} \bar{t}_{j}<w$ for each i and j, then $f-g$ is called trivial with respect to S and T and denoted by $f \equiv g \bmod (S, T ; w)$. When $T=\emptyset$, we simply write $f \equiv g \bmod (S, w)$. If for any $f, g \in S,(f, g)_{w}$ is defined and $f \equiv g \bmod (S, w)$, then we say S is closed under composition. Note that if this is the case, S is called a Gröbner-Shirshov basis in $k\langle X\rangle$ which was first introduced by Shirshov [26] (see also [1], [2]).

Remark. A Gröbner-Shirshov basis S in $k\langle X\rangle$ is called minimal if there is no inclusion composition in S. If a subset S of $k\langle X\rangle$ is not a Gröbner-Shirshov basis, then we can add to S all nontrivial compositions of polynomials of S, and by continuing this process (maybe infinitely) many times, we eventually obtain a Gröbner-Shirshov basis S^{c} in $k\langle X\rangle$. Such a process is called the Shirshov algorithm. If we delete from S^{c} all polynomials with the leading term containing the leading term of other polynomials in S^{c} as subwords, then we will get a minimal Gröbner-Shirshov basis equivalent to S^{c}.

Definition 2.6 ([16], [17]). Let S, T be monic subsets of $k\langle X\rangle$. We call (S, T) a Gröbner-Shirshov pair for the A-module ${ }_{A} M={ }_{A} A / A(T+\operatorname{Id}(S))$, where $A=k\langle X \mid S\rangle$, if S is closed under composition, T is closed under the right-justified composition with respect to S and T, and for any $f \in S, g \in T$ and $w \in X^{*}$ such that if $(f, g)_{w}$ is defined (it means that $a \bar{f} b=c \bar{g}$, where $a, b, c \in X^{*}, f \in S, g \in T$ and $\operatorname{deg}(\bar{f})>\operatorname{deg}(c))$, we have $(f, g)_{w} \equiv 0 \bmod (S, T ; w)$.

The following is Kang-Lee's Composition-Diamond lemma for a left module.

Theorem 2.7 ([16], [17]). Let (S, T) be a pair of subsets of monic elements in $k\langle X\rangle$ and $A=k\langle X \mid S\rangle$ the associative algebra defined by S. Let ${ }_{A} M={ }_{A} A / A(T+$ $\operatorname{Id}(S))$ be a left A-module defined by (S, T). If (S, T) is a Gröbner-Shirshov pair for the A-module ${ }_{A} M$ and $p \in k\langle X\rangle T+\operatorname{Id}(S)$, then $\bar{p}=a \bar{s} b$ or $\bar{p}=c \bar{t}$, where $a, b, c \in X^{*}$, $s \in S, t \in T$.

Lemma 2.3 is a special case of Theorem 2.7 when $S=\emptyset$.

3. Composition-Diamond lemma for "Double-free" modules

Let X, Y be sets and $\bmod _{k\langle X\rangle}\langle Y\rangle$ a free left $k\langle X\rangle$-module with the basis Y. Then $\bmod _{k\langle X\rangle}\langle Y\rangle=\bigoplus_{y \in Y} k\langle X\rangle y$ is called a "double-free" module. We now define the Gröbner-Shirshov basis in $\bmod _{k\langle X\rangle}\langle Y\rangle$. Suppose that $<$ is a monomial ordering on $X^{*},<$ a well ordering on Y and $X^{*} Y=\left\{u y \mid u \in X^{*}, y \in Y\right\}$. We define an ordering \prec on $X^{*} Y$ as follows: for any $w_{1}=u_{1} y_{1}, w_{2}=u_{2} y_{2} \in X^{*} Y$,

$$
\begin{equation*}
w_{1} \prec w_{2} \Leftrightarrow u_{1}<u_{2} \quad \text { or } u_{1}=u_{2}, y_{1}<y_{2} . \tag{*}
\end{equation*}
$$

It is clear that the ordering \prec is left compatible in the sense

$$
w \prec w^{\prime} \Rightarrow a w \prec a w^{\prime} \text { for any } a \in X^{*} \text {. }
$$

Let $S \subset \bmod _{k\langle X\rangle}\langle Y\rangle$ with each $s \in S$ monic. Then we define the composition in S only the inclusion composition which means $\bar{f}=a \bar{g}$ for some $a \in X^{*}$, where $f, g \in S$. If $(f, g)_{\bar{f}}=f-a g=\sum \alpha_{i} a_{i} s_{i}$, where $\alpha_{i} \in k, a_{i} \in X^{*}, s_{i} \in S$ and $a_{i} \bar{s}_{i} \prec \bar{f}$, then this composition is called trivial modulo (S, \bar{f}) and is denoted by

$$
(f, g)_{\bar{f}} \equiv 0 \bmod (S, \bar{f})
$$

Definition 3.1 ([11]). Let $S \subset \bmod _{k\langle X\rangle}\langle Y\rangle$ be a non-empty set with each $s \in S$ monic. Let the ordering \prec be defined as before. Then we call S a Gröbner-Shirshov basis in the module $\bmod _{k\langle X\rangle}\langle Y\rangle$ if all compositions in S are trivial modulo S.

The proof of the following lemma is basically taken from [11]. For the sake of convenience, we sketch the proof.

Lemma 3.2 ([11], Composition-Diamond lemma for "double-free" modules). Let $S \subset \bmod _{k\langle X\rangle}\langle Y\rangle$ be a non-empty set with each $s \in S$ monic and \prec the ordering on $X^{*} Y$ as before. Then the following statements are equivalent:
(1) S is a Gröbner-Shirshov basis in $\bmod _{k\langle X\rangle}\langle Y\rangle$.
(2) If $0 \neq f \in k\langle X\rangle S$, then $\bar{f}=a \bar{s}$ for some $a \in X^{*}, s \in S$.
(2') If $0 \neq f \in k\langle X\rangle S$, then $f=\sum \alpha_{i} a_{i} s_{i}$ with $a_{1} \bar{s}_{1} \succ a_{2} \bar{s}_{2} \succ \ldots$, where each $\alpha_{i} \in k, a_{i} \in X^{*}, s_{i} \in S$.
(3) $\operatorname{Irr}(S)=\left\{w \in X^{*} Y \mid w \neq a \bar{s}, a \in X^{*}, s \in S\right\}$ is a k-linear basis for the factor $\bmod _{k\langle X\rangle}\langle Y \mid S\rangle=\bmod _{k\langle X\rangle}\langle Y\rangle / k\langle X\rangle S$.
Proof. (1) \Rightarrow (2). Suppose that $0 \neq f \in k\langle X\rangle S$. Then $f=\sum \alpha_{i} a_{i} s_{i}$ for some $\alpha_{i} \in k, a_{i} \in X^{*}, s_{i} \in S$. Let $w_{i}=a_{i} \bar{s}_{i}$ and $w_{1}=w_{2}=\ldots=w_{l} \succ w_{l+1} \succeq \ldots$ We now prove that $\bar{f}=a \bar{s}$ for some $a \in X^{*}, s \in S$, by using induction on l and w_{1}. If $l=1$, then the result is clear. If $l>1$, then $a_{1} \bar{s}_{1}=a_{2} \bar{s}_{2}$. Thus, we may assume that $a_{1}=a_{2} a, \bar{s}_{2}=a \bar{s}_{1}$ for some $a \in X^{*}$. Now, by (1),

$$
a_{1} s_{1}-a_{2} s_{2}=a_{2} a s_{1}-a_{2} s_{2}=a_{2}\left(a s_{1}-s_{2}\right)=a_{2} \sum \beta_{j} b_{j} u_{j}=\sum \beta_{j} a_{2} b_{j} u_{j}
$$

where $\beta_{j} \in k, b_{j} \in X^{*}, u_{j} \in S$ and $b_{j} \bar{u}_{j} \prec \bar{s}_{2}$. Therefore, $a_{2} b_{j} \bar{u}_{j} \prec w_{1}$. By using induction on l and w_{1}, we obtain the result.

It is clear that (2) is equivalent to $\left(2^{\prime}\right)$.
$(2) \Rightarrow(3)$. For any $0 \neq f \in \bmod _{k\langle X\rangle}\langle Y\rangle$, if $\bar{f}=u_{1} \in \operatorname{Irr}(S)$, then $f=\beta_{1} u_{1}+\ldots$. If $\bar{f} \notin \operatorname{Irr}(S)$, then $f=\alpha_{1} a_{1} s_{1}+\ldots$. Consequently, f can be expressed by

$$
f=\sum \alpha_{i} a_{i} s_{i}+\sum \beta_{j} u_{j}
$$

where $\alpha_{i}, \beta_{j} \in k, a_{i} \in X^{*}, s_{i} \in S$ and $u_{j} \in \operatorname{Irr}(S)$. Then $\operatorname{Irr}(S)$ generates the factor module. Moreover, if $0 \neq \sum \alpha_{i} a_{i} s_{i}=\sum \beta_{j} u_{j}$, where $a_{i} \in X^{*}, s_{i} \in S$, $u_{j} \in \operatorname{Irr}(S), a_{1} \bar{s}_{1} \succ a_{2} \bar{s}_{2} \succ \ldots$ and $u_{1} \succ u_{2} \succ \ldots$, then $u_{1}=a_{1} \bar{s}_{1}$, which is clearly a contradiction. Hence, $\operatorname{Irr}(S)$ is a k-linear basis of the factor module.
$(3) \Rightarrow(1)$. For any $f, g \in S$, suppose that $\bar{f}=a \bar{g}$. Since $(f, g)_{\bar{f}} \in k\langle X\rangle S$, by (3) we have $(f, g)_{\bar{f}}=f-a g=\sum \alpha_{i} a_{i} s_{i}$, where $s_{i} \in S, a_{i} \in X^{*}$ and $a_{i} \overline{s_{i}} \preceq \overline{(f, g)_{\bar{f}}} \prec \bar{f}$. Now, it is clear that S is a Gröbner-Shirshov basis in $\bmod _{k\langle X\rangle}\langle Y\rangle$.

Remark. We view $k\langle X\rangle$ as a free left $k\langle X\rangle$-module with one generator e. Then $\bmod _{k\langle X\rangle}\langle e\rangle=k\langle X\rangle e={ }_{k\langle X\rangle} k\langle X\rangle$ is a cyclic $k\langle X\rangle$-module. If $S \subset k\langle X\rangle$, then $k\langle X\rangle S$ is a left ideal of $k\langle X\rangle$ which is also a left $k\langle X\rangle$-submodule of $k\langle X\rangle e$. This implies that Lemma 2.3 is a special case of Lemma 3.2.

Let $S \subset k\langle X\rangle$ and let $A=k\langle X \mid S\rangle$ be an associative algebra. Then, for any left A-module ${ }_{A} M$, we can regard ${ }_{A} M$ as a $k\langle X\rangle$-module in a natural way: for any

$$
f \in k\langle X\rangle, m \in M, \quad \quad f m=(f+\operatorname{Id}(S)) m
$$

We note that ${ }_{A} M$ is an epimorphic image of some free A-module. Now, we assume that ${ }_{A} M=\bmod _{A}\langle Y \mid T\rangle=\bmod _{A}\langle Y\rangle / A T$, where $T \subset \bmod _{A}\langle Y\rangle$ and $\bmod _{A}\langle Y\rangle$ is a free left A-module with the basis Y. Let $T_{1}=\left\{\sum f_{i} y_{i} \in \bmod _{k\langle X\rangle}\langle Y\rangle \mid \sum\left(f_{i}+\right.\right.$ $\left.\operatorname{Id}(S)) y_{i} \in T\right\}$ and $R=S X^{*} Y \cup T_{1}$. Then, by the following Lemma 3.3, we have, as $k\langle X\rangle$-modules, ${ }_{A} M \cong \bmod _{k\langle X\rangle}\langle Y \mid R\rangle$.

Lemma 3.3 ([11]). Let the notation be the same as above. Then, as $k\langle X\rangle$ modules,

$$
\sigma:{ }_{A} M \rightarrow \bmod _{k\langle X\rangle}\left(Y|R\rangle, \quad \sum\left(f_{i}+\operatorname{Id}(S)\right)\left(y_{i}+A T\right) \mapsto \sum f_{i} y_{i}+k\langle X\rangle R\right.
$$

is an isomorphism, where each $f_{i} \in k\langle X\rangle$.
Proof. For any $\sum\left(f_{i}+\operatorname{Id}(S)\right)\left(y_{i}+A T\right), \sum\left(g_{i}+\operatorname{Id}(S)\right)\left(y_{i}+A T\right) \in_{A} M$ we have

$$
\begin{aligned}
\sum\left(f_{i}+\operatorname{Id}(S)\right)\left(y_{i}+A T\right)= & \sum\left(g_{i}+\operatorname{Id}(S)\right)\left(y_{i}+A T\right) \quad \text { in }{ }_{A} M \\
& \Leftrightarrow \sum\left(f_{i}-g_{i}\right) y_{i} \in A T \quad \text { in }{ }_{A} M \\
& \Leftrightarrow \sum\left(f_{i}-g_{i}\right) y_{i} \in k\langle X\rangle R \\
& \Leftrightarrow \sum f_{i} y_{i}+k\langle X\rangle R=\sum g_{i} y_{i}+k\langle X\rangle R .
\end{aligned}
$$

Hence, σ is injective. It is easy to see that σ is also surjective and consequently, it is a $k\langle X\rangle$-module isomorphism.

By Lemma 3.2 and Lemma 3.3, we know that if we want to find a k-linear basis for the module ${ }_{A} M=\bmod _{A}\langle Y \mid T\rangle$, where $A=k\langle X \mid S\rangle$, we only need to find a GröbnerShirshov basis for the module $\bmod _{k\langle X\rangle}\left\langle Y \mid S X^{*} Y \cup T_{1}\right\rangle$, where $T_{1}=\left\{\sum f_{i} y_{i} \in\right.$ $\left.\bmod _{k\langle X\rangle}\langle Y\rangle \mid \sum\left(f_{i}+\operatorname{Id}(S)\right) y_{i} \in T\right\}$.

The next theorem gives a relationship between the Gröbner-Shirshov bases (pairs) in free associative algebras and in "double-free" modules.

Theorem 3.4. Let X, Y be well ordered sets, $<$ a monomial ordering on X^{*} and \prec the ordering on $X^{*} Y$ as in (*). Let $S, T \subset k\langle X\rangle$ be monic sets. Then the following statements hold:
(1) $S \subset k\langle X\rangle$ is a Gröbner-Shirshov basis in $k\langle X\rangle$ with respect to the ordering $<$ if and only if $S X^{*} Y \subset \bmod _{k\langle X\rangle}\langle Y\rangle$ is a Gröbner-Shirshov basis in $\bmod _{k\langle X\rangle}\langle Y\rangle$ with respect to the ordering \prec.
(2) We consider $k\langle X\rangle$ as a free $k\langle X\rangle$-module having one generator e. Then (S, T) is a Gröbner-Shirshov pair for the A-module $M=A / A(T+\operatorname{Id}(S))$, where $A=k\langle X \mid S\rangle$ if and only if S is a Gröbner-Shirshov basis in the algebra $k\langle X\rangle$ with respect to the ordering $<$ and $\left(S X^{*} \cup T\right) e$ is a Gröbner-Shirshov basis in the free module $\bmod _{k\langle X\rangle}\langle e\rangle$ with respect to the ordering \prec.

Proof. (1) Suppose that S is a Gröbner-Shirshov basis in $k\langle X\rangle$. We shall prove that all compositions in $S X^{*} Y$ are trivial modulo $S X^{*} Y$. For any $f, g \in S X^{*} Y$, let $f=s_{1} a_{1} y, g=s_{2} a_{2} y, s_{1}, s_{2} \in S, a_{1}, a_{2} \in X^{*}, y \in Y$ and $w=\bar{f}=a \bar{g}$. Then $\bar{s}_{1} a_{1}=a \bar{s}_{2} a_{2}$. Since S is a Gröbner-Shirshov basis in $k\langle X\rangle$, we have

$$
(f, g)_{w}=f-a g=s_{1} a_{1} y-a s_{2} a_{2} y=\left(s_{1} a_{1}-a s_{2} a_{2}\right) y=\sum\left(\alpha_{i} u_{i} r_{i} v_{i}\right) y
$$

where $u_{i}, v_{i} \in X^{*}, r_{i} \in S$ and $u_{i} \bar{r}_{i} v_{i} y \prec w$. Thus, every composition is trivial modulo $S X^{*} Y$ and hence, $S X^{*} Y$ is a Gröbner-Shirshov basis in $\bmod _{k\langle X\rangle}\langle Y\rangle$. Conversely, assume that $S X^{*} Y$ is a Gröbner-Shirshov basis in the $\operatorname{module} \bmod _{k\langle X\rangle}\langle Y\rangle$. For any $f, g \in S$ and $w=\bar{f} a=b \bar{g}$, we have $w_{1}=\overline{f a y}=b \overline{g y}$ and

$$
(f a y, b g y)_{w_{1}}=(f a-b g) y=\sum \alpha_{i}\left(a_{i} r_{i}\right) y
$$

where $\alpha_{i} \in k, r_{i}=s_{i} b_{i}, a_{i}, b_{i} \in X^{*}, s_{i} \in S$ and $a_{i} \bar{r}_{i} y \prec w_{1}$. Then

$$
(f, g)_{w}=f a-b g=\sum \alpha_{i} a_{i} s_{i} b_{i}
$$

with $a_{i} \bar{s}_{i} b_{i}<w$. This shows that each composition of intersection in S is trivial modulo S. Similarly, every composition of inclusion in S is trivial modulo S. Therefore, S is indeed a Gröbner-Shirshov basis in $k\langle X\rangle$.
(2) The results follow directly from Definitions 2.6 and 3.1.

Remark. By Theorem 3.4 it is clear that Theorem 2.7 follows from Lemma 3.2.

4. Highest weight modules over $s l_{2}$

In this section we give a Gröbner-Shirshov basis for the highest weight module over $s l_{2}$. By using this result and Lemma 3.2, we re-prove that the highest weight module over $s l_{2}$ is irreducible (see [13]) and show that any finite dimensional irreducible $s l_{2}$-module has the presentation $(* *)$ given below.

Let $X=\{x, y, h\}$ and let $s l_{2}=\operatorname{Lie}(X \mid S)$ be a Lie algebra over a field k with chk $=0$, where
$x=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $S=\{[h x]-2 x,[h y]+2 y,[x y]-h\}$.

Then the universal enveloping algebra of $s l_{2}$ is $\mathcal{U}\left(s l_{2}\right)=k\left\langle X \mid S^{(-)}\right\rangle$. Define the deglex ordering on X^{*} with $x>h>y$. Then S is a Gröbner-Shirshov basis in the free Lie algebra Lie (X) since $S^{(-)}$is a Gröbner-Shirshov basis in $k\langle X\rangle$ (see Lemma 1.1). Let

$$
s l_{2} V(\lambda)=\bmod _{s l_{2}}\left\langle v_{0} \mid x v_{0}=0, h v_{0}=\lambda v_{0}, y^{m+1} v_{0}=0\right\rangle
$$

be a highest weight module generated by v_{0} with the highest weight λ. We can rewrite it as

$$
\begin{aligned}
s l_{2} V(\lambda) & =\bmod _{\mathcal{U}\left(s l_{2}\right)}\left\langle v_{0} \mid x v_{0}=0, h v_{0}=\lambda v_{0}, y^{m+1} v_{0}=0\right\rangle \\
& =\bmod _{k\langle X\rangle}\left\langle v_{0} \mid x v_{0}=0, h v_{0}=\lambda v_{0}, y^{m+1} v_{0}=0, S^{(-)} X^{*} v_{0}=0\right\rangle
\end{aligned}
$$

Let $S_{1}=\left\{x v_{0}, h v_{0}-\lambda v_{0}, y^{m+1} v_{0}\right\} \cup S^{(-)} X^{*} v_{0}$. It is easy to see that all compositions in S_{1} are trivial modulo S_{1}. Thus, S_{1} is a Gröbner-Shirshov basis for this module with respect to the ordering (*) as in Section 3, and by Lemma 3.2, $\operatorname{Irr}\left(S_{1}\right)=\left\{y^{i} v_{0} \mid\right.$ $0 \leqslant i \leqslant m\}$ is a k-linear basis for the module $s l_{2} V(\lambda)$, and so $\operatorname{dim}(V(\lambda))=m+1$. Let $y^{(i)}=i!^{-1} y^{i}, v_{i}=i!^{-1} y^{i} v_{0}$ and $v_{-1}=0$. Then $v_{i}(0 \leqslant i \leqslant m)$ is a linear basis of $V(\lambda)$. Now, by using $E L W$ of the relations in S_{1} on the left parts, we have the following equalities (see also [13], p. 32):

Lemma 4.1. $h v_{i}=(\lambda-2 i) v_{i}$,

$$
\begin{aligned}
& y v_{i}=(i+1) v_{i+1}, \\
& x v_{i}=(\lambda-i+1) v_{i-1}(0 \leqslant i) .
\end{aligned}
$$

Since $v_{m+1}=0$ and $c h k=0$, we have $0=x v_{m+1}=(\lambda-m) v_{m}$ and therefore, $\lambda=m$.

Lemma 4.2. $V(\lambda)$ is irreducible.
Proof. Let $0 \neq V_{1} \leqslant V(\lambda)$ be a submodule. Since $V_{1} \neq 0$, there exists $0 \neq a_{i} v_{i}+a_{i+1} v_{i+1}+\ldots+a_{m} v_{m}$, where i is the least number such that $a_{i} \neq 0$. Applying y to it $m-i$ times, we get $a_{i}(i+1)(i+2) \ldots m v_{m} \in V_{1}$ and hence, $v_{m} \in V_{1}$. Applying x to v_{m}, we get $v_{i} \in V_{1}(0 \leqslant i<m)$ and hence $V_{1}=V(\lambda)$.

For any finite dimensional irreducible $s l_{2}$-module V, choose a maximal vector $v_{0} \in V$ and $v_{i}=i!^{-1} y^{i} v_{0}$. Then we have the formulas as in Lemma 4.1. We can suppose that $\operatorname{dim} V=m$. Thus, $v_{m} \neq 0, v_{m+1}=0$ and hence, V can be represented as

$$
\begin{equation*}
s l_{2} V=\bmod _{s l_{2}}\left\langle v_{0} \mid x v_{0}=0, h v_{0}=\lambda v_{0}, y^{m+1} v_{0}=0\right\rangle . \tag{**}
\end{equation*}
$$

This means that any finite dimensional irreducible $s l_{2}$-module has the above form.

5. Verma modules over Kac-Moody algebras

Gröbner-Shirshov bases for Kac-Moody algebras of types $A_{n}^{(1)}, C_{n}^{(1)}, D_{n}^{(1)}$ and $B_{n}^{(1)}$ are found by E.N. Poroshenko in [22], [23], [24].

In this section we give the definitions of Kac-Moody algebra $\mathcal{G}(A)$ and the Verma module over $\mathcal{G}(A)$. We find a Gröbner-Shirshov basis for this Verma module.

Let $A=\left(a_{i j}\right)$ be an (integral) symmetrizable n-by- n Cartan matrix over \mathbb{C}, where \mathbb{C} is the complex field. It means that $a_{i i}=2, a_{i j} \leqslant 0(i \neq j)$, and there exists a diagonal matrix D with nonzero integer diagonal entries d_{i} such that the product $D A$ is symmetric. Let $\mathcal{G}(A)=\operatorname{Lie}(X \mid S)$ be a Lie algebra, where $X=\left\{x_{i}, y_{i}, h \mid 1 \leqslant\right.$ $i \leqslant n, h \in H\}$ and S consists of the following relations (see [14], p. 159):

$$
\begin{align*}
& {\left[x_{i}, y_{j}\right] }=\delta_{i j} \alpha_{i}^{\vee}(i, j=1, \ldots, n), \tag{5.1}\\
& {\left[h, h^{\prime}\right] }=0\left(h, h^{\prime} \in H\right), \tag{5.2}\\
& {\left[h, x_{i}\right] }=\left\langle\alpha_{i}, h\right\rangle x_{i}, \quad\left[h, y_{i}\right]=-\left\langle\alpha_{i}, h\right\rangle y_{i}, \quad(i=1, \ldots, n ; h \in H), \tag{5.3}\\
&\left(a d x_{i}\right)^{1-a_{i j}} x_{j}=0,\left(a d y_{i}\right)^{1-a_{i j}} y_{j}=0(i \neq j), \tag{5.4}
\end{align*}
$$

where $a d$ is the derivation, H a complex vector space, $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset H^{\star}$ (the dual space of H) and $\Pi^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right\} \subset H$ indexed subsets in H^{\star} and H, respectively, satisfying the following conditions (see [14], p. 1):
(a) both the sets Π and Π^{\vee} are linearly independent,
(b) $\left\langle\alpha_{i}^{\vee}, \alpha_{j}\right\rangle=a_{i j}(i, j=1, \ldots, n)$,
(c) $n-l=\operatorname{dim} H-n \operatorname{rank}(A)=l$.

Then we call this Lie algebra $\mathcal{G}(A)$ the Kac-Moody algebra. Let $\mathfrak{N}_{+}\left(\mathfrak{N}_{-}\right)$be the subalgebra of $\mathcal{G}(A)$ generated by $x_{i}\left(y_{i}\right)(0 \leqslant i \leqslant n)$. Then $\mathcal{G}(A)=\mathfrak{N}_{-} \oplus H \oplus \mathfrak{N}_{+}$ and $\mathcal{U}(\mathcal{G}(A))=\mathcal{U}\left(\mathfrak{N}_{+}\right) \otimes k[H] \otimes \mathcal{U}\left(\mathfrak{N}_{-}\right)$is the universal enveloping algebra of $\mathcal{G}(A)$, where $\mathcal{U}\left(\mathfrak{N}_{+}\right)\left(\mathcal{U}\left(\mathfrak{N}_{-}\right)\right)$is the universal enveloping algebra of $\mathfrak{N}_{+}\left(\mathfrak{N}_{-}\right)$. Let $\left\{h_{j} \mid 1 \leqslant\right.$ $j \leqslant 2 n-l\}$ be a basis of H. We order the set $X=\left\{x_{i}, h_{j}, y_{m} \mid 1 \leqslant i, m \leqslant n, 1 \leqslant\right.$ $j \leqslant 2 n-l\}$ by $x_{i}>x_{j}, h_{i}>h_{j}, y_{i}>y_{j}$, if $i>j$, and $x_{i}>h_{j}>y_{m}$ for all i, j, m. Then we define the deg-lex ordering on X^{*}. By [8], we can get a Gröbner-Shirshov basis T for $\mathcal{U}(\mathcal{G}(A))$, where T consists of the following relations:

$$
\begin{align*}
& h_{i} h_{j}-h_{j} h_{i}, x_{j} h_{i}-h_{i} x_{j}+d_{i} a_{i j} x_{i}, h_{i} y_{j}-y_{j} h_{i}+d_{i} a_{i j} y_{j}, \tag{5.5}\\
& x_{i} y_{j}-y_{j} x_{i}-\delta_{i j} h_{i}, \tag{5.6}\\
& \left\{\sum_{\nu=0}^{1-a_{i j}}(-1)^{\nu}\left[\begin{array}{c}
1-a_{i j} \\
\nu
\end{array}\right] x_{i}^{1-a_{i j}-\nu} x_{j} x_{i}^{\nu}\right\}^{c}(i \neq j), \tag{5.7}
\end{align*}
$$

$$
\left\{\sum_{\nu=0}^{1-a_{i j}}(-1)^{\nu}\left[\begin{array}{c}
1-a_{i j} \tag{5.8}\\
\nu
\end{array}\right] y_{i}^{1-a_{i j}-\nu} y_{j} y_{i}^{\nu}\right\}^{c}(i \neq j)
$$

where S^{c} is a Gröbner-Shirshov basis containing S.
Definition $5.1([14])$. A $\mathcal{G}(A)$-module V is called a highest weight module with highest weight $\Lambda \in H^{\star}$ if there exists a non-zero vector $v \in V$ such that

$$
\mathfrak{N}_{+}(v)=0, \quad h(v)=\Lambda(h) v, \quad h \in H
$$

and $\mathcal{U}(\mathcal{G}(A))(v)=V$.
A Verma module $M(\Lambda)$ with highest weight Λ has the following presentation:

$$
\left.\begin{array}{rl}
\mathcal{G}(A)
\end{array}\right)=\bmod _{\mathcal{U}(\mathcal{G}(A))}\left\langle v \mid \mathfrak{N}_{+}(v)=0, h(v)=\Lambda(h) v, h \in H\right\rangle .
$$

The proof of the following theorem is straightforward.
Theorem 5.2. With the ordering \prec on $X^{*} v$ as $(*), R=\left\{T X^{*}(v), \mathfrak{N}_{+}(v), h(v)-\right.$ $\Lambda(h) v\}$ is a Gröbner-Shirshov basis for the Verma module $\mathcal{G}(A)^{M(\Lambda) .}$

Remark. In the book [13], the author considered only the semisimple Lie algebras and called this highest weight module the standard cyclic module.

6. Verma modules over the coefficient algebra of a free Lie conformal algebra

In this section we give a Gröbner-Shirshov basis for the Verma module over a Lie algebra having coefficients of some free conformal algebras. By using this result and Lemma 3.2, we find a linear basis for such a module.

Let \mathcal{B} be a set of symbols. Let the locality function $N: \mathcal{B} \times \mathcal{B} \rightarrow \mathbb{Z}_{+}$be a constant, i.e., $N(a, b) \equiv N$ for any $a, b \in \mathcal{B}$. Let $X=\{b(n) \mid b \in \mathcal{B}, n \in \mathbb{Z}\}$ and let $L=\operatorname{Lie}(X \mid S)$ be a Lie algebra generated by X with the relation S, where

$$
S=\left\{\left.\sum_{s}(-1)^{s}\binom{n}{s}[b(n-s) a(m+s)]=0 \right\rvert\, a, b \in \mathcal{B}, m, n \in \mathbb{Z}\right\} .
$$

For any $b \in \mathcal{B}$, let $\tilde{b}=\sum_{n} b(n) z^{-n-1} \in L\left[\left[z, z^{-1}\right]\right]$. Then it is well-known that they generate a free Lie conformal algebra C with data (\mathcal{B}, N) (see [25]). Moreover, the
coefficient algebra of C is just L. Let \mathcal{B} be a well ordered set. Define an ordering on X in the following way:

$$
a(m)<b(n) \Leftrightarrow m<n \quad \text { or }(m=n \text { and } a<b) .
$$

We use the deg-lex ordering on X^{*}. Then, it is clear that the leading term of each polynomial in S is $b(n) a(m)$ so that

$$
n-m>N \text { or }(n-m=N \text { and }(b>a \text { or }(b=a \text { and } N \text { is odd }))) .
$$

The following lemma is essentially taken from [25].
Lemma 6.1. With the deg-lex ordering on X^{*}, S is a Gröbner-Shirshov basis in Lie (X).

Corollary 6.2. Let $\mathcal{U}=\mathcal{U}(L)$ be a universal enveloping algebra of L. Then a k-basis of \mathcal{U} consists of monomials

$$
a_{1}\left(n_{1}\right) a_{2}\left(n_{2}\right) \ldots a_{k}\left(n_{k}\right), a_{i} \in \mathcal{B}, n_{i} \in \mathbb{Z}
$$

such that for any $1 \leqslant i<k$, $(* * *) \quad n_{i}-n_{i+1} \leqslant \begin{cases}N-1 & \text { if } a_{i}>a_{i+1} \text { or }\left(a_{i}=a_{i+1} \text { and } N \text { is odd }\right), \\ N & \text { otherwise. }\end{cases}$

Proof. We first regard \mathcal{U} as a $k\langle X\rangle$-module. Then we have

$$
\mathfrak{u} \mathcal{U}=\bmod _{k\langle X\rangle}\left\langle e \mid S^{(-)} X^{*} e\right\rangle .
$$

Since S is a Gröbner-Shirshov basis in $\operatorname{Lie}(X), S^{(-)}$is a Gröbner-Shirshov basis in $k\langle X\rangle$ by Lemma 1.1. Therefore, by Theorem 3.4, $S^{(-)} X^{*} e$ is a Gröbner-Shirshov basis in the free $\operatorname{module}_{\bmod _{k\langle X\rangle}\langle e\rangle \text {. Now, the result follows from Lemma 3.2. }}$

Definition 6.3 ([14], [15]).
(a) An L-module M is called restricted if for any $a \in C, v \in M$ there is an integer T such that for any $n \geqslant T$ one has $a(n) v=0$.
(b) An L-module M is called a highest weight module if it is generated over L by a single element $m \in M$ such that $L_{+} m=0$, where L_{+}is the subspace of L generated by $\{a(n) \mid a \in \mathcal{B}, n \geqslant 0\}$. In this case, m is called the highest weight vector.

Now we construct a universal highest weight module V over L which is usually referred to as the Verma module. Let $k e_{v}$ be a 1-dimensional trivial L_{+}-module generated by e_{v}, i.e., $a(n) e_{v}=0$ for all $a \in \mathcal{B}, n \geqslant 0$. Clearly,

$$
V=\operatorname{Ind}_{L_{+}}^{L} k e_{v}=\mathcal{U}(L) \otimes_{\mathcal{U}\left(L_{+}\right)} k e_{v} \cong \mathcal{U}(L) / \mathcal{U}(L) L_{+} .
$$

Then V has a structure highest weight module over L with the action given by the multiplication on $\mathcal{U}(L) / \mathcal{U}(L) L_{+}$and the highest weight vector $e \in \mathcal{U}(L)$. Also, $V=\mathcal{U}(L) / \mathcal{U}(L) L_{+}$is the universal enveloping vertex algebra of C and the embedding $\varphi: C \rightarrow V$ is given by $a \mapsto a(-1) e$ (see also [25]).

Theorem 6.4. Let the notions be defined as above. Then a k-basis of V consists of elements

$$
a_{1}\left(n_{1}\right) a_{2}\left(n_{2}\right) \ldots a_{k}\left(n_{k}\right), a_{i} \in \mathcal{B}, n_{i} \in \mathbb{Z}
$$

such that the condition ($* * *$) holds and $n_{k}<0$.
Proof. Clearly, as the $k\langle X\rangle$-modules,

$$
\mathfrak{u} V=\mathcal{u}\left(\mathcal{U}(L) / \mathcal{U}(L) L_{+}\right)=\bmod _{k\langle X\rangle}\left\langle e \mid S^{(-)} X^{*} e, a(n) e, n \geqslant 0\right\rangle={ }_{k\langle X\rangle}\left\langle e \mid S^{\prime}\right\rangle,
$$

where $S^{\prime}=\left\{S^{(-)} X^{*} e, a(n) e, n \geqslant 0\right\}$. In order to prove that S^{\prime} is a Gröbner-Shirshov basis, we only need to check that $w=b(n) a(m) e$, where $m \geqslant 0$. Let

$$
f=\sum_{s}(-1)^{s}\binom{n}{s}(b(n-s) a(m+s)-a(m+s) b(n-s)) e \quad \text { and } \quad g=a(m) e
$$

Then $(f, g)_{w}=f-b(n) a(m) e \equiv 0 \bmod \left(S^{\prime}, w\right)$ since $n-m \geqslant N, m+s \geqslant 0, n-s \geqslant 0$, $0 \leqslant s \leqslant N$. It follows that S^{\prime} is a Gröbner-Shirshov basis. Now, the result follows from Lemma 3.2.

7. Universal enveloping module for a Sabinin algebra

In this section we give a Gröbner-Shirshov basis for a universal enveloping module for a Sabinin algebra. By using this result and Lemma 3.2, we find a linear basis for such a module.

Definition 7.1 ([21]). A vector space V is called a Sabinin algebra if it is endowed with a multilinear operation $\langle;\rangle$ such that for any $x_{1}, x_{2}, \ldots, x_{m}, y, z \in V$ and any $m \geqslant 0$,

$$
\left\langle x_{1}, x_{2}, \ldots, x_{m} ; y, z\right\rangle
$$

satisfies the identities

$$
\begin{aligned}
& \left\langle x_{1}, x_{2}, \ldots, x_{m} ; y, z\right\rangle=-\left\langle x_{1}, x_{2}, \ldots, x_{m} ; z, y\right\rangle \\
& \left\langle x_{1}, x_{2}, \ldots, x_{r}, a, b, x_{r+1}, \ldots, x_{m} ; y, z\right\rangle-\left\langle x_{1}, x_{2}, \ldots, x_{r}, b, a, x_{r+1}, \ldots, x_{m} ; y, z\right\rangle \\
& \quad+\sum_{k=0}^{r} \sum_{\alpha}\left\langle x_{\alpha_{1}}, \ldots, x_{\alpha_{k}},\left\langle x_{\alpha_{k+1}}, \ldots, x_{\alpha_{r}} ; a, b\right\rangle, \ldots, x_{m} ; y, z\right\rangle=0, \\
& \sigma_{x, y, z}\left(\left\langle x_{1}, x_{2}, \ldots, x_{r}, x ; y, z\right\rangle+\sum_{k=0}^{r} \sum_{\alpha}\left\langle x_{\alpha_{1}}, \ldots, x_{\alpha_{k}} ;\left\langle x_{\alpha_{k+1}}, \ldots, x_{\alpha_{r}} ; y, z\right\rangle, x\right\rangle\right)=0,
\end{aligned}
$$

where α runs over the set of all bijections of type $\alpha:\{1,2, \ldots, r\} \rightarrow\{1,2, \ldots, r\}$, $i \mapsto \alpha_{i}, \alpha_{1}<\alpha_{2}<\ldots<\alpha_{k}, \alpha_{k+1}<\ldots<\alpha_{r}, r \geqslant 0$ and $\sigma_{x, y, z}$ denotes the cyclic sum by x, y, z.

Let $X=\left\{a_{i} \mid i \in \Lambda\right\}$ be a well ordered basis of V. We define the deg-lex ordering on X^{*}. Let $\Delta: V \rightarrow V \otimes V$ be a linear map which satisfies $\Delta\left(a_{i}\right)=1 \otimes a_{i}+a_{i} \otimes 1$, $(\operatorname{Id} \otimes \Delta) \Delta=(\Delta \otimes \operatorname{Id}) \Delta$ (coassociativity) and if $\tau \Delta=\Delta$ then $\tau(x \otimes y)=y \otimes x$ (cocommutativity). It is customary to write $\Delta(x)=\sum x_{(1)} \otimes x_{(2)}$.

Let $T(V)$ be the tensor algebra over V endowed with its natural structure of cocommutative Hopf algebra, that is, $V \subseteq \operatorname{Prim}(T(V)$) (the primitive element of $T(V))$. Let $\langle;\rangle: T(V) \otimes V \otimes V \rightarrow V$ be a map. Then we may shortly write the definition of a Sabinin algebra as

$$
\begin{array}{r}
\langle x ; a, b\rangle=-\langle x ; b, a\rangle,\langle x[a, b] y ; c, e\rangle+\sum\left\langle x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle y ; c, e\right\rangle=0, \\
\sigma_{a, b, c}\left(\langle x c ; a, b\rangle+\sum\left\langle x_{(1)} ;\left\langle x_{(2)} ; a, b\right\rangle, c\right\rangle\right)=0,
\end{array}
$$

where $[a, b]=a b-b a$.
Definition 7.2 ([21]). Let $(V,\langle;\rangle)$ be a Sabinin algebra. Then

$$
\tilde{S}(V)=T(V) / \operatorname{span}\left\langle x a b y-x b a y+\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle y \mid x, y \in T(V), a, b \in V\right\rangle
$$

is called the universal enveloping module for V.
Since $T(V) \simeq k\langle X\rangle$ as k-algebras, we can view $\tilde{S}(V)$ as a right $k\langle X\rangle$-module:

$$
\tilde{S}(V)=\bmod \langle X \mid I\rangle_{k\langle X\rangle},
$$

where $I=\left\{x a b-x b a+\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle \mid x \in X^{*}, a>b, a, b \in X\right\}$.
For the right module, we have a right compatible well ordering \prec on $X X^{*}$ by a similar definition as in $(*)$. Then we have the following theorem.

Theorem 7.3. Let I be as above. Then, with the ordering \prec on $X X^{*}$ as above, I is a Gröbner-Shirshov basis in $\bmod \langle X\rangle_{k\langle X\rangle}$.

Proof. There are two kinds of compositions: $w_{1}=x a b c(a>b>c)$ and $w_{2}=u c d v a b(c>d, a>b)$. Denote

$$
\begin{aligned}
f_{1} & =x a b c-x a c b+\sum(x a)_{(1)}\left\langle(x a)_{(2)} ; b, c\right\rangle, \\
f_{2} & =x a b-x b a+\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle, \\
f_{3} & =u c d v a b-u c d v b a+\sum(u c d v)_{(1)}\left\langle(u c d v)_{(2)} ; a, b\right\rangle, \\
f_{4} & =u c d-u d c+\sum u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle .
\end{aligned}
$$

Then, since $\sigma_{a, b, c}\left(\langle x c ; a, b\rangle+\sum\left\langle x_{(1)} ;\left\langle x_{(2)} ; a, b\right\rangle, c\right\rangle\right)=0$, we have

$$
\begin{aligned}
\left(f_{1}, f_{2}\right)_{w_{1}}= & x a b c-x a c b+\sum x_{(1)} a\left\langle x_{(2)} ; b, c\right\rangle+\sum x_{(1)}\left\langle x_{(2)} a ; b, c\right\rangle \\
& -x a b c+x b a c-\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle c \\
\equiv & -x c a b+\sum x_{(1)}\left\langle x_{(2)} ; a, c\right\rangle b+\sum x_{(1)} a\left\langle x_{(2)} ; b, c\right\rangle+\sum x_{(1)}\left\langle x_{(2)} a ; b, c\right\rangle \\
& +x b c a-\sum x_{(1)} b\left\langle x_{(2)} ; a, c\right\rangle-\sum x_{(1)}\left\langle x_{(2)} b ; a, c\right\rangle-\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle c \\
\equiv & \sum x_{(1)} c\left\langle x_{(2)} ; a, b\right\rangle+\sum x_{(1)}\left\langle x_{(2)} c ; a, b\right\rangle+\sum x_{(1)}\left\langle x_{(2)} ; a, c\right\rangle b \\
& +\sum x_{(1)} a\left\langle x_{(2)} ; b, c\right\rangle+\sum x_{(1)}\left\langle x_{(2)} a ; b, c\right\rangle-\sum x_{(1)}\left\langle x_{(2)} ; b, c\right\rangle a \\
& -\sum x_{(1)} b\left\langle x_{(2)} ; a, c\right\rangle-\sum x_{(1)}\left\langle x_{(2)} b ; a, c\right\rangle-\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle c \\
\equiv & \sum x_{(1)}\left\langle x_{(2)} a ; b, c\right\rangle+\sum x_{(1)}\left\langle x_{(2)} ;\left\langle x_{(3)} ; b, c\right\rangle, a\right\rangle+\sum x_{(1)}\left\langle x_{(2)} b ; c, a\right\rangle \\
& +\sum x_{(1)}\left\langle x_{(2)} c ; a, b\right\rangle+\sum x_{(1)}\left\langle x_{(2)} ;\left\langle x_{(3)} ; c, a\right\rangle, b\right\rangle \\
& +\sum x_{(1)}\left\langle x_{(2)} ;\left\langle x_{(3)} ; a, b\right\rangle, c\right\rangle \\
\equiv & 0
\end{aligned}
$$

and since $\langle x[a, b] y ; c, e\rangle+\sum\left\langle x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle y ; c, e\right\rangle=0$,

$$
\begin{aligned}
& \left(f_{3}, f_{4}\right)_{w_{2}} \\
& ==u c d v a b-u c d v b a+\sum u_{(1)} v_{(1)}\left\langle u_{(2)} c d v_{(2)} ; a, b\right\rangle+\sum u_{(1)} c v_{(1)}\left\langle u_{(2)} d v_{(2)} ; a, b\right\rangle \\
& \quad+\sum u_{(1)} d v_{(1)}\left\langle u_{(2)} c v_{(2)} ; a, b\right\rangle+\sum u_{(1)} c d v_{(1)}\left\langle u_{(2)} v_{(2)} ; a, b\right\rangle \\
& \\
& \quad-u c d v a b+u d c v a b-\sum u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle v a b
\end{aligned}
$$

$$
\begin{aligned}
\equiv & -u d c v b a+\sum u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle v b a+\sum u_{(1)} v_{(1)}\left\langle u_{(2)} c d v_{(2)} ; a, b\right\rangle \\
& +\sum u_{(1)} c v_{(1)}\left\langle u_{(2)} d v_{(2)} ; a, b\right\rangle+\sum u_{(1)} d v_{(1)}\left\langle u_{(2)} c v_{(2)} ; a, b\right\rangle \\
& +\sum u_{(1)} c d v_{(1)}\left\langle u_{(2)} v_{(2)} ; a, b\right\rangle+u d c v b a-\sum u_{(1)} v_{(1)}\left\langle u_{(2)} d c v_{(2)} ; a, b\right\rangle \\
& -\sum u_{(1)} c v_{(1)}\left\langle u_{(2)} d v_{(2)} ; a, b\right\rangle-\sum u_{(1)} d v_{(1)}\left\langle u_{(2)} c v_{(2)} ; a, b\right\rangle \\
& -\sum u_{(1)} d c v_{(1)}\left\langle u_{(2)} v_{(2)} ; a, b\right\rangle+\sum u_{(1)} v_{(1)}\left\langle u_{(2)}\left\langle u_{(3)} ; c, d\right\rangle v_{(2)} ; a, b\right\rangle \\
& +\sum u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle v_{(1)}\left\langle u_{(3)} v_{(2)} ; a, b\right\rangle-\sum u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle v b a \\
\equiv & \sum u_{(1)} v_{(1)}\left\langle u_{(2)}[c, d] v_{(2)} ; a, b\right\rangle+\sum u_{(1)}[c, d] v_{(1)}\left\langle u_{(2)} v_{(2)} ; a, b\right\rangle \\
& +\sum u_{(1)} v_{(1)}\left\langle u_{(2)}\left\langle u_{(3)} ; c, d\right\rangle v_{(2)} ; a, b\right\rangle+\sum u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle v_{(1)}\left\langle u_{(3)} v_{(2)} ; a, b\right\rangle \\
\equiv & \sum\left(u_{(1)}[c, d]+u_{(1)}\left\langle u_{(2)} ; c, d\right\rangle\right) v_{(1)}\left\langle u_{(3)} v_{(2)} ; a, b\right\rangle \\
& +\sum u_{(1)} v_{(1)}\left\langle u_{(2)}[c, d] v_{(2)} ; a, b\right\rangle+\sum u_{(1)} v_{(1)}\left\langle u_{(2)}\left\langle u_{(3)} ; c, d\right\rangle v_{(2)} ; a, b\right\rangle \\
\equiv & 0 .
\end{aligned}
$$

Hence, I is a Gröbner-Shirshov basis in $\bmod \langle X\rangle_{k\langle X\rangle}$.
Remark. From the above proof we can easily see that for $\tilde{S}(V)=\bmod \langle X \mid I\rangle_{k\langle X\rangle}$, the minimal Gröbner-Shirshov basis is

$$
\begin{aligned}
G=\{ & x a b-x b a+\sum x_{(1)}\left\langle x_{(2)} ; a, b\right\rangle \mid x=a_{i_{1}} \ldots a_{i_{n}} \\
& \left.\left(i_{1} \leqslant \ldots \leqslant i_{n}, n \geqslant 0\right), a>b, a, b \in X\right\} .
\end{aligned}
$$

Now, by Lemma 3.2 and Theorem 7.3, we can easily get the following theorem.

Theorem 7.4 ([21], Poincaré-Birkhoff-Witt basis). Let $\left\{a_{i} \mid i \in \Lambda\right\}$ be a well ordered basis of V. Then $\left\{a_{i_{1}} \ldots a_{i_{n}} \mid i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{n}, n \geqslant 0\right\}$ is a basis of $\tilde{S}(V)$.

Acknowledgement. The authors would like to express their deepest gratitude to Professor L. A. Bokut for his guidance, useful discussions and enthusiastic encouragement. We also thank Professor J. M. Perez-Izquierdo for giving us some useful remarks.

References

[1] L. A. Bokut: Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras. Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972), 1173-1219.
[2] L. A. Bokut: Imbeddings into simple associative algebras. Algebra i Logika. 15 (1976), 117-142.
[3] L. A. Bokut and Yuqun Chen: Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov. Southeast Asian Bull. Math. 31 (2007), 1057-1076.
[4] L. A. Bokut, Y. Fong and W.-F. Ke: Gröbner-Shirshov bases and composition lemma for associative conformal algebras: an example. Contemporary Mathematics N264 (2000), 63-91.
[5] L. A. Bokut and A. A. Klein: Serre relations and Gröbner-Shirshov bases for simple Lie algebras. I, II. Internat. J. Algebra Comput. 6 (1996), 389-400, 401-412.
[6] L. A. Bokut and A. A. Klein: Gröbner-Shirshov bases for exceptional Lie algebras. I. Ring Theory. Selected Papers from the Conference Held in Miskolc, July 15-20, 1996, Amsterdam (1998), 51-57.
[7] L. A. Bokut and A. A. Klein: Gröbner-Shirshov bases for exceptional Lie algebras E_{6}, E_{7}, and E_{8}. Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 37-46.
[8] L. A. Bokut and P. Malcolson: Gröbner-Shirshov bases for quantum enveloping algebras. Israel J. Math. 96 (1996), 97-113.
[9] L. A. Bokut and P. Malcolson: Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping algebra. Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 47-54.
[10] L. A. Bokut, S.-J. Kang, K.-H. Lee and P. Malcolmson: Gröbner-Shirshov bases for Lie super-algebras and their universal enveloping algebras. J. Algebra. 217 (1999), 461-495.
[11] E.S. Chibrikov: On free Lie conformal algebras. Vestnik Novosibirsk State University 4 (2004), 65-83.
[12] P. M. Cohn: Free Rings and Their Relations. Academic Press, second edition, 1985.
[13] James E. Humphreys: Introduction to Lie Algebras and Representation Theory. Springer-Verlag, 2000, 1970.
[14] V.-G. Kac: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge, third edition, 1990.
[15] V.-G. Kac: Vertex Algebra for Beginners. University lecture series., 10, AMS, Providence, RI, 1997.
[16] S.-J. Kang, K.-H. Lee: Gröbner-Shirshov bases for representation theory. J. Korean Math. Soc. 37 (2000), 55-72.
[17] S.-J. Kang and K.-H. Lee: Gröbner-Shirshov bases for irreducible $s l_{n+1}$-modules. J. Algebra 232 (2000), 1-20.
[18] S.-J. Kang, I.-S. Lee, K.-H. Lee and H. Oh: Hecke algebras, Specht modules and Gröb-ner-Shirshov bases. J. Algebra 252 (2002), 258-292.
[19] S.-J. Kang, I.-S. Lee, K.-H. Lee and H. Oh: Representations of Ariki-Koike algebras and Gröbner-Shirshov bases. Proc. London Math. Soc. 89 (2004), 54-70.
[20] P. Lalonde and A. Ram: Standard Lyndon bases of Lie algebras and enveloping algebras. Trans. Amer. Math. Soc. 347 (1995), 1821-1830.
[21] J. M. Perez-Izquierdo: Algebras, hyperalgebras, nonassociative bialgebras and loops. Advances in Mathematics 208 (2007), 834-876.
[22] E. N. Poroshenko: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $A_{n}^{(1)}$. Commun. Algebra. 30 (2002), 2617-2637.
[23] E. N. Poroshenko: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $C_{n}^{(1)}$ and $D_{n}^{(1)}$. Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. $2(2002)$, 58-70.
[24] E. N. Poroshenko: Gröbner-Shirshov bases for the Kac-Moody algebras of the type $B_{n}^{(1)}$. Int. J. Math. Game Theory Algebra. 13 (2003), 117-128.
[25] M. Roitman: On the free conformal and vertex algebras. J. Algebra. 217 (1999), 496-527.
[26] A. I. Shirshov: Some algorithmic problem for Lie algebras. Sibirsk. Mat. Z. 3 (1962), 292-296 (In Russian.); English translation in SIGSAM Bull. 33 (1999), 3-6.

Authors' addresses: Yuqun Chen, Yongshan Chen, Chanyan Zhong, School of Mathematical Sciences, South China Normal University, Guangzhou 510631, P.R. China, e-mails: yqchen@scnu.edu.cn, jackalshan@126.com, chanyanzhong@yahoo. com.cn.

[^0]: Supported by the NNSF of China (No. 10771077) and the NSF of Guangdong Province (No. 06025062).

