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Abstract. We give new characterizations of Banach spaces not containing ℓ1 in terms
of integral and p-dominated polynomials, extending to the polynomial setting a result of
Cardassi and more recent results of Rosenthal.
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1. Introduction

Cardassi [8] and Rosenthal [29] have given characterizations of Banach spaces not

containing ℓ1 in terms of integral and p-summing (linear) operators. Using these

results and the extendibility of integral polynomials due to Carando and Lassalle [7],

we obtain polynomial characterizations of Banach spaces not containing ℓ1.

Throughout, E, F , and G denote Banach spaces, E∗ is the dual of E, and BE

stands for its closed unit ball. By N we represent the set of all natural numbers, and

by K the scalar field (real or complex). We use the symbol L(E, F ) for the space

of all (linear bounded) operators from E into F endowed with the operator norm.

Given a space F , we shall denote by kF the natural isometric embedding of F into

its bidual F ∗∗.

For m ∈ N, we denote by P(mE, F ) the space of all m-homogeneous (continuous)

polynomials from E into F endowed with the supremum norm. Recall that with each
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P ∈ P(mE, F ) we can associate a unique symmetric m-linear (continuous) mapping

P̂ : E × (m). . . × E → F so that

P (x) = P̂ (x, (m). . . , x) (x ∈ E).

For the general theory of multilinear mappings and polynomials on Banach spaces,

we refer the reader to [16] and [26]. The notion of the ideal of multilinear mappings

or polynomials may be seen, for instance, in [20], [21], or [12].

We use the notation
⊗m

E := E⊗(m). . .⊗E for the m-fold tensor product of E. The

symbol E⊗π F (or E⊗ε F ) denotes the completed projective (respectively, injective)

tensor product of E and F (see [15] or [13] for the theory of tensor products). By
⊗m

s E := E ⊗s
(m). . . ⊗s E we denote the m-fold symmetric tensor product of E, that

is, the set of all elements u ∈
⊗m E of the form

u =

n
∑

j=1

λjxj ⊗
(m). . . ⊗ xj (n ∈ N, λj ∈ K, xj ∈ E, 1 6 j 6 n).

By
⊗m

π,s E (or
⊗m

ε,s E) we represent the space
⊗m

s E endowed with the topology

induced by that of
⊗m

π E (respectively,
⊗m

ε E).

By

δm : E −→
m

⊗

π,s

E

we denote the canonical polynomial given by δm(x) := x ⊗ (m). . . ⊗ x for all x ∈ E.

For symmetric tensor products, the reader is referred to [19].

For a polynomial P ∈ P(mE, F ), its linearization

P :

m
⊗

π,s

E −→ F

is the operator given by

P

( n
∑

j=1

λjxj ⊗
(m). . . ⊗ xj

)

=

n
∑

j=1

λjP (xj)

for all xj ∈ E and λj ∈ K (1 6 j 6 n).

Given 1 6 r < ∞, a polynomial P ∈ P(mE, F ) is r-dominated (see, e.g., [24], [25])

if there exists a constant k > 0 such that, for all n ∈ N and (xi)
n
i=1 ⊂ E, we have

( n
∑

i=1

‖P (xi)‖
r/m

)m/r

6 k sup
x∗∈BE∗

( n
∑

i=1

|x∗(xi)|
r

)m/r

.
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The space of all r-dominated polynomials in P(mE, F ) is denoted by Pr-d(
mE, F ).

Note that, for m = 1, we obtain the (absolutely) r-summing operators.

A polynomial P ∈ P(mE, F ) is Pietsch integral (or (Grothendieck) integral) [1] if

there exists a regular countably additive, F -valued (or F ∗∗-valued) Borel measure G

of bounded variation on BE∗ such that

P (x) =

∫

BE∗

[x∗(x)]m dG (x∗) (x ∈ E).

The symbol PPI(
mE, F ) ( PI(

mE, F )) denotes the space of all Pietsch integral (resp.,

integral) m-homogeneous polynomials from E into F , endowed with the Pietsch

integral norm (integral norm)

‖P‖PI := inf |G |(BE∗) (respectively, ‖P‖I := inf |G |(BE∗)),

where |G | denotes the variation of G and the infimum is taken over all vector measures

G satisfying the definition.

A polynomial P ∈ P(mE, F ) is compact if P (BE) is relatively compact in F . We

use PK(mE, F ) for the space of all compact polynomials in P(mE, F ). A polynomial

P ∈ P(mE, F ) is weakly continuous on bounded subsets if, for each bounded net

(xα) ⊂ E weakly converging to x, (P (xα)) converges to P (x) in norm. We denote by

Pwb(mE, F ) the space of all polynomials in P(mE, F ) which are weakly continuous

on bounded sets. Every polynomial in Pwb(mE, F ) is compact ([5, Lemma 2.2] and

[4, Theorem 2.9]). An operator is weakly continuous on bounded sets if and only if

it is compact [5, Proposition 2.5].

When the range space is omitted, it is understood to be the scalar field, for in-

stance:

P(mE) := P(mE,K), Pwb(mE) := Pwb(mE,K), PI(
mE) := PI(

mE,K).

Every polynomial P ∈ P(mE, F ) admits an Aron-Berner extension

P̃ ∈ P(mE∗∗, F ∗∗)

[3] (see also [23]).
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2. The results

The following result is given in [29].

Theorem 2.1. Let E be a Banach space. The following assertions are equivalent:

(a) E contains no copy of ℓ1;

(b) for every F , every integral operator from F into E∗ is compact;

(c) every integral operator from ℓ1 into E∗ is compact;

(d) every integral operator from E∗ into E∗ is compact;

(e) for every F , every integral operator from E into F is compact;

(f) every integral operator from E into E∗ is compact;

(g) for all F and 1 6 r < ∞, every absolutely r-summing operator from E into F

is compact;

(h) every absolutely 2-summing operator from E into ℓ2 is compact;

(i) every absolutely 2-summing operator from E into E∗ is compact.

The equivalence (a) ⇔ (e) was proved in [8]. The implication (a) ⇒ (g) is given

in [28, Corollary 1.7].

Here we extend Theorem 2.1 to the polynomial setting.

Recall that a Banach space F is said to have the compact range property (CRP,

for short) if every F -valued countably additive measure of bounded variation has

compact range [27]. Every Banach space with the weak Radon-Nikodým property

has the CRP. A dual Banach space has the CRP if and only if its predual contains

no copy of ℓ1 [18, Corollary 5]. We refer the reader to [17], [18], [27], [31] for more

about the CRP.

Theorem 2.2. Let E be a Banach space. The following assertions are equivalent:

(a) E contains no copy of ℓ1;

(b) for all F and m ∈ N (m > 2), we have PI(
mF, E∗) ⊆ PK(mF, E∗);

(c) for every m ∈ N (m > 2), we have PI(
mℓ1, E

∗) ⊆ PK(mℓ1, E
∗);

(d) there exists m ∈ N (m > 2) such that, for every polynomial P ∈ P(mℓ1, E
∗) of

the form P = Q ◦ T where T is an integral operator and Q is a polynomial, P

is compact;

(e) for every m ∈ N (m > 2), we have PI(
mE∗, E∗) ⊆ PK(mE∗, E∗);

(f) there exist m ∈ N (m > 2) and a Banach space F containing ℓ1 such that

PI(
mF, E∗) ⊆ PK(mF, E∗);

(g) there exist m ∈ N (m > 2) and a Banach space F containing ℓ1 such that, for

every polynomial P ∈ P(mF, E∗) of the form P = Q ◦ T where T is an integral

operator and Q is a polynomial, P is compact.

224



P r o o f. (a) ⇒ (b). Let P ∈ PI(
mF, E∗). Since its range is a dual space, by the

same easy argument as in the linear case (see the proof of [15, Corollary VIII.2.10]),

P is Pietsch integral. Since E contains no copy of ℓ1, E∗ has the CRP, and P is

compact by [11, Theorem 4.10].

(b) ⇒ (c) is obvious.

(c) ⇒ (d) is clear by virtue of [9, Corollary 2.7].

(d) ⇒ (a). If E contains a copy of ℓ1, then E∗ does not have the CRP. By [11,

Proposition 4.8], there exists a polynomial P ∈ P(mℓ1, E
∗) of the form P = Q ◦ T

where T is an integral operator and Q is a polynomial, but P is not compact.

(b) ⇒ (e) is obvious.

(e) ⇒ (a). Suppose that E contains a copy of ℓ1. Then, by Theorem 2.1, there

exists an integral operator T ∈ L(E∗, E∗) which is not compact. Consider the

polynomial P ∈ P(mE∗, E∗) given by

P := T ◦ π1 ◦ . . . ◦ πm−1 ◦ δm

where πp :
⊗p+1

π,s E∗ →
⊗p

π,s E∗ (1 6 p 6 m − 1) are the projections introduced

in [6, page 168]. These operators are also continuous with respect to the injective

tensor norm [2, 3.5]. So the linearization of P ,

T ◦ π1 ◦ . . . ◦ πm−1 ∈ L

( m
⊗

ε,s

E∗, E∗

)

,

is well defined. Moreover, it is integral since T is integral. By [32, page 62], P is an

integral polynomial. Hence it is compact by (e). It follows that

T ◦ π1 ◦ . . . ◦ πm−1 ∈ L

( m
⊗

π,s

E∗, E∗

)

is compact [30, Lemma 4.1]. Let jp :
⊗p

π,s E∗ →
⊗p+1

π,s E∗ (1 6 p 6 m − 1) be the

operator [6, page 168] such that πp ◦ jp is the identity map on
⊗p

π,s E∗. Then

T = T ◦ π1 ◦ . . . ◦ πm−1 ◦ jm−1 ◦ . . . ◦ j1

is a compact operator and we get a contradiction.

(b) ⇒ (f) and (f) ⇒ (g) are obvious.

(g) ⇒ (d). Let m ∈ N (m > 2) and F be, respectively, the index and the Banach

space provided by (g). Suppose that the polynomial P ∈ P(mℓ1, E
∗) is of the form

P = Q ◦ T where T ∈ L(ℓ1, G) is an integral operator and Q ∈ P(mG, E∗). Since

F contains a copy of ℓ1, we can extend T to an integral operator T̃ ∈ L(F, G∗∗)
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[14, Proposition 6.12]. Let Q̃ be the Aron-Berner extension of Q and let H be the

canonical projection of E∗∗∗ onto E∗ (see the diagram below).

ℓ1

i

��

P //

T !!C
CC

CC
CC

C E∗
kE∗ // E∗∗∗

H // E∗

F

T̃ !!CC
CC

CC
CC

G

Q

OO

kG

��
G∗∗

Q̃

EE






































By (g), the polynomial H ◦ Q̃ ◦ T̃ ∈ P(mF, E∗) is compact. Since its restriction to ℓ1

coincides with P , P is also compact. �

Theorem 2.3. Let E be a Banach space. The following assertions are equivalent:

(a) E contains no copy of ℓ1;

(b) for all F and m ∈ N (m > 2), we have PI(
mE, F ) ⊆ Pwb(mE, F );

(c) for every m ∈ N (m > 2), we have PI(
mE, E∗) ⊆ Pwb(mE, E∗);

(d) there exists m ∈ N (m > 2) such that for every polynomial P ∈ P(mE, E∗) of

the form P = Q ◦ T where T is an integral operator and Q is a polynomial, we

have P ∈ Pwb(mE, E∗);

(e) for each m ∈ N (m > 2), there is a Banach space F such that

PI(
mE, F ) ⊆ Pwb(mE, F ) ;

(f) for every m ∈ N (m > 2), we have PI(
mE) ⊆ Pwb(mE);

(g) there exists m ∈ N (m > 2) such that PI(
mE) ⊆ Pwb(mE);

(h) there are m ∈ N (m > 2) and a Banach space F such that

PI(
mE, F ) ⊆ Pwb(mE, F ).

P r o o f. (a) ⇒ (b). Let P ∈ PI(
mE, F ). Then kF ◦ P ∈ PPI(

mE, F ∗∗). By [11,

Theorem 4.9], kF ◦P is weakly continuous on bounded sets. Hence P is also weakly

continuous on bounded sets.

(b) ⇒ (c) is obvious.

(c) ⇒ (d) is clear by virtue of [9, Corollary 2.7].

(d)⇒ (a). Suppose that E contains a copy of ℓ1. Then, by Theorem 2.2,(d), there

exists a noncompact polynomial P ∈ P(mℓ1, E
∗) of the form P = Q ◦ T where T

is an integral operator from ℓ1 into some Banach space G. We can extend T to an

integral operator T̃ ∈ L(E, G∗∗) [14, Proposition 6.12]. Let Q̃ be the Aron-Berner
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extension of Q and let H be the canonical projection from E∗∗∗ onto E∗. Then the

polynomial P̃ := H ◦ Q̃ ◦ T̃ ∈ P(mE, E∗) cannot be weakly continuous on bounded

sets since its restriction to ℓ1 coincides with P . This contradicts (d) and completes

the proof.

(b) ⇒ (e) ⇒ (h) and (f) ⇒ (g) are obvious.

(e) ⇒ (f). Assume (f) fails. Then, for some m ∈ N (m > 2), there is a polynomial

P ∈ PI(
mE) \ Pwb(mE).

Let F be the Banach space provided by (e). Choose y0 ∈ F , y0 6= 0. Let j : K → F

be given by j(λ) = λy0. By the ideal property, the polynomial j ◦ P ∈ P(mE, F ) is

integral. However, j ◦ P is not weakly continuous on bounded sets.

(g) ⇒ (a). Suppose that E contains a copy of ℓ1. Consider the polynomial

P ∈ P(mℓ1) given by

P (x) :=

∞
∑

n=1

xm
n for x = (xn)∞n=1 ∈ ℓ1.

By [16, Example 2.25], P is integral. By [7, Theorem 5], we can extend P to a

polynomial P̃ ∈ PI(
mE).

Denoting by Ls(
m−1ℓ1) the space of all (m−1)-linear symmetric continuous forms

on ℓ1, let

TP : ℓ1 −→ Ls(
m−1ℓ1)

be the operator given by

TP (x)(y1, . . . , ym−1) := P̂ (x, y1, . . . , ym−1) for x, y1, . . . , ym−1 ∈ ℓ1.

Then, for n 6= k, we have

‖TP (en) − TP (ek)‖ > |TP (en)(en, (m−1). . . , en) − TP (ek)(en, (m−1). . . , en)|

= |P (en) − P̂ (ek, en, (m−1). . . , en)| = 1,

so TP is not compact, which implies that P /∈ Pwb(mℓ1) [4, Theorem 2.9]. Hence,

P̃ /∈ Pwb(mE).

(h) ⇒ (g) is proved as in (e) ⇒ (f). �

Using [12, Theorem 2.3], it is easy to see that every integral polynomial takes

weakly convergent sequences into norm convergent sequences. Then, the implication

(g) ⇒ (a) of Theorem 2.3 improves [22, Theorem 4, (e) ⇒ (a)].

We may ask if the following assertion could be included in Theorem 2.3:
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(d′) for some (or for all) m ∈ N (m > 2) and for every polynomial P ∈ P(mE)

of the form P = Q ◦ T where T ∈ L(E, G) is integral and Q ∈ P(mG), we have

P ∈ Pwb(mE).

The answer is negative, as a consequence of the following result.

Proposition 2.4. Let E and F be Banach spaces such that F ∗ contains no

copy of ℓ1. Let P ∈ P(mE, F ) be a polynomial of the form P = Q ◦ T where

T ∈ L(E, G) is an integral operator and Q ∈ P(mG, F ) for some Banach space G.

Then P ∈ Pwb(mE, F ).

P r o o f. Let Q̃ ∈ P(mG∗∗, F ∗∗) be the Aron-Berner extension of Q.

E
P //

T ��@
@@

@@
@@

F
kF // F ∗∗

G

Q

OO

kG // G∗∗

Q̃

OO

The operator kG ◦ T is Pietsch integral. Since F ∗∗ has the CRP, we have

kF ◦ P = Q̃ ◦ kG ◦ T ∈ PI(
mE, F ∗∗) = PPI(

mE, F ∗∗) ⊆ Pwb(mE, F ∗∗)

(see [9, Corollary 2.7] and [11, Theorem 4.10]). Therefore, P ∈ Pwb(mE, F ). �

With the same argument as that used in the proof of [9, Proposition 3.1], we can

prove the following lemma where

πp :

p+1
⊗

π,s

E −→

p
⊗

π,s

E (1 6 p 6 m − 1)

are the projections introduced in [6, page 168].

Lemma 2.5. Let T ∈ L(E, F ) be an r-summing operator for 1 6 r < ∞. Then

the polynomial

P := T ◦ π1 ◦ . . . ◦ πm−1 ◦ δm ∈ P(mE, F )

is r-dominated.
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Theorem 2.6. Let E be a Banach space. The following assertions are equivalent:

(a) E contains no copy of ℓ1;

(b) for all m ∈ N (m > 2) and 1 6 r < ∞ and for every Banach space F , we have

Pr-d(
mE, F ) ⊆ Pwb(mE, F );

(c) for all m ∈ N (m > 2), we have P2-d(mE, ℓ2) ⊆ Pwb(mE, ℓ2);

(d) for all m ∈ N (m > 2), we have P2-d(mE, E∗) ⊆ Pwb(mE, E∗);

(e) for all m ∈ N (m > 2), there is a Banach space F such that, for all 1 6 r < ∞,

we have Pr-d(mE, F ) ⊆ Pwb(mE, F );

(f) for all m ∈ N (m > 2) and 1 6 r < ∞, we have Pr-d(
mE) ⊆ Pwb(mE);

(g) there are m ∈ N (m > 2) and 1 < r < ∞ such that Pr-d(
mE) ⊆ Pwb(mE).

P r o o f. (a) ⇒ (b). Let P ∈ Pr-d(mE, F ). Then there are a Banach space G,

an r-summing operator T ∈ L(E, G), and a polynomial Q ∈ P(mG, F ) such that

P = Q ◦ T [10, Theorem 5]. By Theorem 2.1, T is compact. Hence, P is weakly

continuous on bounded sets.

(b) ⇒ (c) is obvious.

(c) ⇒ (a). Suppose that E contains a copy of ℓ1. By Theorem 2.1, there exists a

2-summing operator T ∈ L(E, ℓ2) which is not compact. We shall use the operators

πp and jp as in the proof of Theorem 2.2. Consider the polynomial P ∈ P(mE, ℓ2)

given by

P := T ◦ π1 ◦ . . . ◦ πm−1 ◦ δm.

By Lemma 2.5, P is 2-dominated and, by (c), P is weakly continuous on bounded

sets. It follows that its linearization T ◦ π1 ◦ . . . ◦ πm−1 is compact [30, Lemma 4.1]

and then

T = T ◦ π1 ◦ . . . ◦ πm−1 ◦ jm−1 ◦ . . . ◦ j1

is compact, which is false.

(b) ⇒ (d), (b) ⇒ (e), and (f) ⇒ (g) are obvious.

(d) ⇒ (a) by the same argument as in the proof of (c) ⇒ (a).

(e) ⇒ (f). Assume (f) fails. Then for some m ∈ N (m > 2) and some 1 6 r < ∞,

there is a polynomial

P ∈ Pr-d(
mE) \ Pwb(mE).

Let F be the Banach space provided by (e). Choose y0 ∈ F , y0 6= 0. Let j : K → F

be given by j(λ) = λy0. Then the polynomial j ◦ P ∈ P(mE, F ) is r-dominated [25,

Theorem 9], but it is not weakly continuous on bounded sets.

(g) ⇒ (a). Suppose that E contains a copy of ℓ1. Let m ∈ N (m > 2) and

1 < r < ∞ be given by (g). Let P := Q ◦ i ∈ P(mℓ1), where i ∈ L(ℓ1, ℓ2) is the

natural inclusion and Q ∈ P(mℓ2) is defined by

Q(y) =

∞
∑

n=1

ym
n for y = (yn)∞n=1 ∈ ℓ2.
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The operator i is r-integral [14, Proposition 5.12], so it can be extended to an r-

integral operator V ∈ L(E, ℓ2) [14, Proposition 6.12]. Then V is r-summing [14,

Proposition 5.5] and Q ◦ V ∈ Pr-d(mE) [10, Theorem 5]. By (g), Q ◦ V ∈ Pwb(mE)

and so P ∈ Pwb(mℓ1), which contradicts the proof of (g) ⇒ (a) in Theorem 2.3. �

In assertion (g) of Theorem 2.6 we cannot replace r > 1 by r > 1, as a conse-

quence of the following result. The definition of the L∞-space may be found in [14,

Chapter 3].

Proposition 2.7. Let E be an L∞-space and let F be a Banach space such that

F ∗ contains no copy of ℓ1. Choose m ∈ N (m > 2). Then

P1-d(mE, F ) ⊆ Pwb(mE, F ).

P r o o f. Let P ∈ P1-d(mE, F ). By [11, Theorem 4.5], we may factor P in the

form P = Q ◦ T , where T is an integral operator and Q is a polynomial. It only

remains to apply Proposition 2.4. �
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