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Abstract. We provide new sufficient convergence conditions for the convergence of the
secant-type methods to a locally unique solution of a nonlinear equation in a Banach space.
Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead
of just Lipschitz-type conditions on the divided difference of the operator involved. It
turns out that this way our error bounds are more precise than earlier ones and under our
convergence hypotheses we can cover cases where earlier conditions are violated. Numerical
examples are also provided.
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique

solution x⋆ of the equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach
space X with values in a Banach space Y.
A large number of problems in applied mathematics and also in engineering are

solved by finding the solutions of certain equations. For example, dynamic systems

are mathematically modeled by difference or differential equations, and their solu-

tions usually represent the states of the systems. For the sake of simplicity, assume

that a time-invariant system is driven by the equation ẋ = Q(x) for a suitable oper-

ator Q, where x is the state. Then the equilibrium states are determined by solving

equation (1.1). Similar equations are used in the case of discrete systems. The
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unknowns of engineering equations can be functions (difference, differential, and in-

tegral equations), vectors (systems of linear or nonlinear algebraic equations), or real

or complex numbers (single algebraic equations with single unknowns). Except in

special cases, the solution methods most commonly used are iterative-when starting

from one or several initial approximations a sequence is constructed that converges

to a solution of the equation. Iteration methods are also applied for solving opti-

mization problems. In such cases, the iteration sequences converge to an optimal

solution of the problem at hand. Since all of these methods have the same recursive

structure, they can be introduced and discussed in a general framework.

We consider the Secant method in the form

(1.2) xn+1 = xn − δF (xn−1, xn)−1F (xn) (n > 0), (x−1, x0 ∈ D)

where δF (x, y) ∈ L(X ,Y) (x, y ∈ D) is a consistent approximation of the Fréchet-

derivative of F [5], [13]. Bosarge and Falb [7], Dennis [9], Potra [16], Argyros [1]–[5],

Hernández et al. [10] and others [11], [15], [18] have provided sufficient convergence

conditions for the Secant method based on Lipschitz-type conditions on δF (see also

relevant results in [6]–[9], [12], [14], [16], [17], [19]).

The conditions usually associated with the semilocal convergence of the Secant

method (1.2) are:

• F is a nonlinear operator defined on a convex subset D of a Banach space X
with values in a Banach space Y;

• x−1 and x0 are two points belonging to the interior D0 of D and satisfying the
inequality

‖x0 − x−1‖ 6 c;

• F is Fréchet-differentiable on D0, and there exists an operator δF : D0 ×D0 →
L(X ,Y) such that:

the linear operator A = δF (x−1, x0) is invertible, its inverse A−1 is bounded, and

‖A−1F (x0)‖ 6 η;

‖A−1[δF (x, y) − F ′(z)]‖ 6 l(‖x − z‖ + ‖y − z‖)

for all x, y, z ∈ D;

U(x0, r) = {x ∈ X : ‖x − x0‖ 6 r} ⊆ D0

for some r > 0 depending on l, c, and η; and

(1.3) lc + 2
√

lη 6 1.
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The sufficient convergence condition (1.3) is easily violated. Indeed, for solving

equation (1.1), let l = 1, η = .18, and c = .185. Then (1.3) does not hold, since

lc + 2
√

lη = 1.033528137. Hence, there is no guarantee that equation (1.1) under

the information (l, c, η) has a solution that can be found using the Secant method

(1.2). In this study we are motived by optimization considerations, and the above

observation.

Here using Lipschitz-type and center-Lipschitz-type conditions, we provide a

semilocal convergence analysis for (1.2). It turns out that our error bounds are

more precise and our convergence conditions hold in cases where the corresponding

hypotheses in earlier references mentioned above are violated. Newton’s method is

also examined as a special case. Numerical examples are also provided.

2. Semilocal convergence analysis of the Secant method

We need the following result on majorizing sequences for the Secant method (1.2).

Lemma 2.1. Let l0 > 0, l > 0, c > 0 and η ∈ [0, c] be given parameters.

Assume

(2.1) (l + 2l0)η + l0c < 1

for

δ0 =
l(c + η)

1 − l0(c + η)
, s∞ =

1 − l0(c + 2η)

1 − l0c
,

δ the unique positive zero of equation

f(t) = l0t
3 + (l0 + l)t2 − l = 0 in (0, 1);(2.2)

δ0 6 δ 6 s∞.(2.3)

Then the scalar sequence {tn} (n > −1) given by

(2.4) t−1 = 0, t0 = c, t1 = c + η, tn+2 = tn+1 +
l(tn+1 − tn−1)(tn+1 − tn)

1 − l0(tn+1 − t0 + tn)

is non-decreasing, bounded above by

(2.5) t⋆⋆ =
η

1 − δ
+ c,

and converges to its unique least upper bound t⋆ such that

(2.6) 0 6 t⋆ 6 t⋆⋆.
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Moreover, the following estimates hold for all n > 0:

(2.7) 0 6 tn+2 − tn+1 6 δ(tn+1 − tn) 6 δn+1η.

P r o o f. Using (2.2), we obtain f(0) = −l < 0, f(l) = 2l0 > 0, and f ′(t) =

3l0t
2 +2(l0 + l)t > 0 (t > 0). The existence of δ1 follows from the intermediate value

theorem on (0, 1) and the fact that f crosses the positive x-axis only once. Similarly,

we show the existence of s1 using (2.1).

We shall show using induction on k > 0 that

(2.8) 0 6 tk+2 − tk+1 6 δ(tk+1 − tk).

Using (2.4) for k = 0, we must show

0 6
l(t1 − t−1)

1 − l0t1
6 δ

or

0 6
l(c + η)

1 − l0(c + η)
6 δ,

which is true by virtue of (2.1) and the choice of δ > δ0.

Let us assume that (2.8) holds for k 6 n + 1.

It then follows from the induction hypotheses

(2.9)

tk+2 6 tk+1 + δ(tk+1 − tk)

6 tk + δ(tk − tk−1) + δ(tk+1 − tk)

6 t1 + δ(t1 − t0) + . . . + δ(tk+1 − tk)

6 c + η + δη + . . . + δk+1η

= c +
1 − δk+2

1 − δ
η <

η

1 − δ
+ c = t⋆⋆.

Moreover, we have

(2.10) l(tk+2 − tk) + δl0(tk+2 − t0 + tk+1)

6 l((tk+2 − tk+1) + (tk+1 − tk)) + δl0

(1 − δk+2

1 − δ
+

1 − δk+1

1 − δ

)

η + δl0c

6 l(δk + δk+1)η +
δl0

1 − δ
(2 − δk+1 − δk+2)η + δl0c.

To show (2.8), using (2.4) we obtain

(2.11) l(δk + δk+1)η +
δl0

1 − δ
(2 − δk+1 − δk+2)η + δl0c 6 δ
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or

(2.12) l(δk−1 + δk)η + l0((1 + δ + . . . + δk) + (1 + δ + . . . + δk+1))η + l0c − 1 6 0.

In view of (2.12), we are motivated to define (for δ = s) for k > 1 functions

(2.13) fk(s) = l(sk−1 + sk)η + l0(2(1 + s + . . . + sk) + sk+1)η + l0c − 1.

We need the relationship between two consecutive functions fk. Using (2.13), we

obtain

(2.14) fk+1(s) = l(sk + sk+1)η + l0(2(1 + s + . . . + sk+1) + sk+2)η + l0c − 1

= l(sk−1 + sk)η + l(sk + sk+1)η − l(sk−1 + sk)η

+ l0(2(1 + s + . . . + sk) + sk+1)η + l0(2sk+1 + sk+2)η

− l0s
k+1η + l0c − 1

= fk(s) + l(sk+1 − sk−1)η + l0(s
k+1 + sk+2)η

= f(s)sk−1η + fk(s).

We shall show

(2.15) fk(δ) 6 0 (k > 1).

But we have by (2.14)

(2.16) fk(δ) = fk−1(δ) = . . . = f1(δ).

Define the function f∞ on [0, 1) :

(2.17) f∞(s) = lim
k−→∞

fk(s).

Then, we can show instead of (2.15)

f∞(δ) =
2l0η

1 − δ
+ l0c − 1 6 0,

which is true by (2.3) and (2.13). Hence, we showed that the sequence {tn} (n > −1)

is non-decreasing and bounded above by t⋆⋆, so that (2.7) holds. It follows that there

exists t⋆ ∈ [0, t⋆⋆] such that lim
n−→∞

tn = t⋆.

This completes the proof of Lemma 2.1. �
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We shall study the Secant method (1.2) for triplets (F, x−1, x0) belonging to the

class C(l, l0, η, c, δ) defined as follows:

Definition 2.2. Let l, l0, η, c, δ be non-negative parameters satisfying the

hypotheses of Lemma 2.1.

We say that a triplet (F, x−1, x0) belongs to the class C(l, l0, η, c, δ) if

(c1) F is a nonlinear operator defined on a convex subset D of a Banach space X
with values in a Banach space Y;

(c2) x−1 and x0 are two points belonging to the interior D0 of D and satisfying the
inequality

‖x0 − x−1‖ 6 c;

(c3) F is Fréchet-differentiable on D0, and there exists an operator δF : D0 ×D0 →
L(X ,Y) such that

the linear operator A = δF (x−1, x0) is invertible, its inverse A−1 is bounded and

‖A−1F (x0)‖ 6 η;

‖A−1[δF (x, y) − F ′(z)]‖ 6 l(‖x − z‖ + ‖y − z‖);
‖A−1[δF (x, y) − F ′(x0)]‖ 6 l0(‖x − x0‖ + ‖y − x0‖)

for all x, y, z ∈ D;
(c4) the set Dc = {x ∈ D; F is continuous at x} contains the closed ball U(x0, t

⋆) =

{x ∈ X | ‖x − x0‖ 6 t⋆} where t⋆ is given in Lemma 2.1.

We present the following semilocal convergence theorem for the Secant method

(1.2).

Theorem 2.3. If (F, x−1, x0) ∈ C(l, l0, η, c, δ), then the sequence {xn} (n > −1)

generated by the Secant method (1.2) is well defined, remains in U(x0, t
⋆) for all

n > 0 and converges to a unique solution x⋆ ∈ U(x0, t
⋆) of the equation F (x) = 0.

Moreover, the following estimates hold for all n > 0 :

(2.18) ‖xn+2 − xn+1‖ 6 tn+2 − tn+1,

and

(2.19) ‖xn − x⋆‖ 6 t⋆ − tn

where the sequence {tn} (n > 0) is given by (2.4).

Furthermore, if there exists R > t⋆ − t0 such that

(2.20) l0(c + η + R) < 1,

258



(2.21) U(x0, R) ⊆ D,

and

(2.22) δ0 6 δ 6 min{δ1, s∞},

where

δ1 =
1 − l0(c + η + R)

1 − l0(c + R)
,

then the solution x⋆ is unique in U(x0, R).

P r o o f. We first show that the operator L = δF (xk, xk+1) is invertible for

xk, xk+1 ∈ U(x0, t
⋆). It follows from (2.4), (2.5), (c2) and (c3) that

(2.23) ‖I − A−1L‖ = ‖A−1(L − A)‖ 6 ‖A−1(L − F ′(x0))‖ + ‖A−1(F ′(x0) − A)‖
6 l0(‖xk − x0‖ + ‖xk+1 − x0‖ + ‖x0 − x−1‖)
6 l0(tk − t0 + tk+1 − t0 + c)

6 l0(t
⋆ − t0 + t⋆ − t0 + c)

6 l0

(

2
( η

1 − δ
+ c

)

− c
)

6 1

since δ 6 s∞.

According to the Banach Lemma on invertible operators [5], [13], and (2.23), L is

invertible and

(2.24) ‖L−1A‖ 6 (1 − l0(‖xk − x0‖ + ‖xk+1 − x0‖ + c))−1.

The second condition in (c3) implies the Lipschitz condition for F ′ :

(2.25) ‖A−1(F ′(u) − F ′(v))‖ 6 2l‖u − v‖, u, v ∈ D0.

By the identity

(2.26) F (x) − F (y) =

∫ 1

0

F ′(y + t(x − y)) dt(x − y)

we get

(2.27) ‖A−1

0 [F (x) − F (y) − F ′(u)(x − y)]‖ 6 l(‖x − u‖ + ‖y − u‖)‖x− y‖

and

(2.28) ‖A−1
0 [F (x)−F (y)−δF (u, v)(x−y)]‖ 6 l(‖x−v‖+‖y−v‖+‖u−v‖)‖x−y‖
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for all x, y, u, v ∈ D0. By a continuity argument (2.25)–(2.28) remain valid if x

and/or y belong to Dc.

We first show (2.18). If (2.18) holds for all n 6 k and if {xn} (n > 0) is well

defined for n = 0, 1, 2, . . . , k then

(2.29) ‖x0 − xn‖ 6 tn − t0 < t⋆ − t0, n 6 k.

That is, (1.2) is well defined for n = k + 1. For n = −1 and n = 0, (2.18) reduces

to ‖x−1 − x0‖ 6 c and ‖x0 − x1‖ 6 η. Suppose (2.18) holds for n = −1, 0, 1, . . . , k

(k > 0). Using (2.24), (2.28) and

(2.30) F (xk+1) = F (xk+1) − F (xk) − δF (xk−1, xk)(xk+1 − xk)

we obtain in turn

(2.31) ‖xk+2 − xk+1‖ = ‖δF (xk, xk+1)
−1F (xk+1)‖

6 ‖δF (xk, xk+1)
−1A‖‖A−1F (xk+1)‖

6
l(‖xk+1 − xk‖ + ‖xk − xk−1‖)

1 − l0(‖xk+1 − x0‖ + ‖xk − x0‖ + c)
‖xk+1 − xk‖

6
l(tk+1 − tk + tk − tk−1)

1 − l0(tk+1 − t0 + tk − t0 + t0 − t−1)
(tk+1 − tk)

= tk+2 − tk+1.

The induction for (2.18) is completed. It follows from (2.18) and Lemma 2.1

that the sequence {xn} (n > −1) is Cauchy in the Banach space X , and as such it
converges to some x⋆ ∈ U(x0, t

⋆) (since U(x0, t
⋆) is a closed set). By letting k → ∞

in (2.31) we obtain F (x⋆) = 0.

The estimate (2.19) follows from (2.18) by using the standard majoration tech-

niques [1], [5], [13].

We shall first show uniqueness in U(x0, t
⋆). Let y⋆ ∈ U(x0, t

⋆) be a solution of

equation (1.1).

Set

M =

∫ 1

0

F ′(y⋆ + t(y⋆ − x⋆)) dt.

It then follows by (c3) that

(2.32) ‖A−1(A −M)‖ = l0(‖y⋆ − x0‖ + ‖x⋆ − x0‖ + ‖x0 − x−1‖)
6 l0((t

⋆ − t0) + (t⋆ − t0) + t0)

< l0

(

2
( η

1 − δ
+ c

)

− c
)

= l0

( 2η

1 − δ
+ c

)

6 1,

since δ 6 s∞.
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It follows from (2.32) and the Banach lemma on invertible operators that M−1

exists on U(x0, t
⋆).

Using the identity

(2.33) F (x⋆) − F (y⋆) = M(x⋆ − y⋆)

we deduce x⋆ = y⋆. Finally, we shall show uniqueness in U(x0, R). As in (2.32), we

arrive at

‖A−1(A −M)‖ < l0

( η

1 − δ
+ c + R

)

< 1

by (2.20), and (2.22).

That completes the proof of Theorem 2.3. �

Remark 2.4.

(a) The root δ1 of the function f has an unatractive closed form found using Math-

ematica and given by

δ1 = d0 +
d1

3l0d2

+ d4,

where

d0 = − l0 + l

3l0
, d1 = 21/3(l0 + l)2,

d2 = ( − 2(l0 + l)3 + 27l20l + 3
√

3d3)
1/3

,

d3 = −4l20(l0 + l)3l + 27l40l
2,

and

d4 =
d2

321/3l0
.

(b) Returning to the example given in the introduction, say l0 = 0.1, we obtain

δ0 = 0.378827193, s∞ = 0.948747087, δ = 0.913742123, whereas (2.1) holds,

since 0.2405 < 1. That is, our results apply, whereas the ones using (1.3)

cannot.

Remark 2.5. Let us define the majoring sequence {wn} used in [4], [5] (under
condition (1.3)):

(2.34) w−1 = 0, w0 = c, w1 = c + η, wn+2 = wn+1 +
l(wn+1 − wn−1)(wn+1 − tn)

1 − l(wn+1 − w0 + wn)
.

Note that in general

(2.35) l0 6 l
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holds, and l/l0 can be arbitrarily large [3], [5]. In the case l0 = l we have tn = wn

(n > −1). Otherwise:

(2.36) tn < wn (n > 2),

(2.37) tn+1 − tn 6 wn+1 − wn (n > 2),

(2.38) 0 6 t⋆ − tn 6 w⋆ − wn (n > 0), w⋆ = lim
n−→∞

wn.

Note also that strict inequality holds in (2.36) for n > 1 if l0 < l.

The proof of (2.36)–(2.38) can be found in [5]. Note that the only difference in

the proofs is that the conditions of Lemma 2.1 are used here instead of the ones in

[4]. However, this makes no difference between the proofs.

3. Special cases and applications

We shall consider Newton’s method

(3.1) xn+1 = xn − F ′(xn)−1F (xn) (n > 0), (x0 ∈ D)

as a special case of the Secant method (1.2).

We need a result similar to Lemma 2.1 for Newton’s method (3.1).

Lemma 3.1. Let l0 > 0, l > 0, η > 0 be given parameters.

Assume

(3.2) 2h0 = bη 6 1,

where

b =
l + 4l0 +

√
l2 + 8l0l

4
.

Then the scalar sequence {tn} (n > 0) given by

(3.3) t0 = 0, t1 = η, tn+2 = tn+1 +
l(tn+1 − tn)2

2(1 − l0tn+1)

is non-decreasing, bounded above by

(3.4) t⋆⋆ =
2η

2 − δ
,
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where

(3.5) δ =
4l

l +
√

l2 + 8l0l
,

and converges to some t⋆ ∈ [0, t⋆⋆].

Moreover, the following estimates hold for all n > 0:

(3.6) 0 < tn+2 − tn+1 6
δ

2
(tn+1 − tn) 6 . . . 6

(δ

2

)n+1

η.

P r o o f. We follow the proof of Lemma 2.1.

The estimate corresponding to (2.10) is given by

(3.7)
(

l
(

1 − δ

2

)(δ

2

)k

+ δl0

(

1 −
( δ

2

)k+1))

η 6 δ
(

1 − δ

2

)

,

which leads to the definition of functions

f(s) = (2l0s
2 + l0s − l),(3.8)

fk(s) = (lsk−1 + 2l0(1 + s + s2 + . . . + sk))η − 2 (k > 1),(3.9)

which implies that

(3.10) fk+1(s) = f(s)sk−1η + fk(s).

Then we can set

δ0 =
lη

1 − l0η
, s∞ = 1 − l0η.

It is then simple algebra to show that conditions (2.1), and (2.3) reduce to (3.2).

That completes the proof of Lemma 3.1. �

In the next result we provide more estimates on the distances tn+1− tn and t⋆− tn
(n > 0):

Proposition 3.2. Under the hypotheses of Lemma 3.1, the following estimates

hold for all n > 0:

(3.11) tn+1 − tn 6

( δ

2

)n

(2h0)
2

n
−1η

and

(3.12) t⋆ − tn 6

(δ

2

)n (2h0)
2

n
−1η

1 − (2h0)2
n (2h0 < 1).
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P r o o f. In order to show (3.11) we need the estimate

(3.13)
1 −

(δ

2

)k+1

1 − δ

2

η 6
1

l

(

1 −
( δ

2

)k−1 l

2b

)

(k > 1).

For k = 1, (3.13) becomes

(

1 +
δ

2

)

η 6
2b − l

2bl0

or
(

1 +
2l

l +
√

l2 + 8l0l

)

η 6
4l0 − l +

√
l2 + 8l0l

l0(4l0 + l +
√

l2 + 8l0l)
.

In view of (3.2), it suffices to show that

l0(4l0 + l +
√

l2 + 8l0l)(3l +
√

l2 + 8l0l)

(l +
√

l2 + 8l0l)(4l0 − l +
√

l2 + 8l0l)
6 b,

which is true as equality.

Let us now assume estimate (3.13) is true for all integers smaller or equal to k.

We must show (3.13) holds for k being replaced by k + 1:

1 −
(δ

2

)k+2

1 − δ

2

η 6
1

l0

(

1 −
(δ

2

)k l

2b

)

(k > 1)

or

(3.14)
(

1 +
δ

2
+

(δ

2

)2

+ . . . +
(δ

2

)k+1)

η 6
1

l0

(

1 −
( δ

2

)k l

2b

)

.

By the induction hypothesis, to show (3.14) it suffices to prove

1

l0

(

1 −
(δ

2

)k−1 l

2b

)

+
(δ

2

)k+1

η 6
1

l0

(

1 −
(δ

2

)k l

2b

)

or
( δ

2

)k+1

η 6
1

l

((δ

2

)k−1

−
(δ

2

)k) l

2b

or

δ2η 6
l(2 − δ)

bl0
.
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In view of (3.2) it suffices to show that

bl0δ
2

l(2 − δ)
6 b,

which holds as equality by the choice of δ given by (3.5). This completes the induction

for estimates (3.13).

We shall show (3.11) using induction on k > 0. The estimate (3.11) is true for

k = 0 by (3.2), (3.3), (3.5). In order to show the estimate (3.11) for k = 1, since

t2 − t1 = 1

2
l(t1 − t0)

2/(1 − l0t1), it suffices to prove

lη2

2(1 − l0η)
6 2δbη2

or
l

1 − l0η
6

8bl

l +
√

l2 + 8l0l
(η 6= 0)

or

η 6
1

l0

(

1 − l +
√

l2 + 8l0l

8b

)

(l0 6= 0, l 6= 0).

But by (3.2)

η 6
4

l + 4l0 +
√

l2 + 8l0l
.

It then suffices to show

4

l + 4l0 +
√

l2 + 8l0l
6

1

l0

(

1 − l +
√

l2 + 8l0l

8b

)

or

l +
√

l2 + 8l0l

8b
6 1 − 4l0

l + 4l0 +
√

l2 + 8l0l

or

l +
√

l2 + 8l0l

8b
6

l +
√

l2 + 8l0l

l + 4l0 +
√

l2 + 8l0l
,

which is true by (3.2), as the equality.

Let us assume (3.14) holds for all integers smaller or equal to k. We shall show

(3.14) holds for k replaced by k + 1.
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Using (3.2) and the induction hypothesis, we have in turn

tk+2 − tk+1 =
l

2(1 − l0tk+1)
(tk+1 − tk)2

6
l

2(1 − l0tk+1)

((δ

2

)k

(2h0)
2

k
−1η

)2

6
l

2(1 − l0tk+1)

((δ

2

)k−1

(2h0)
−1η

)((δ

2

)k+1

(2h0)
2

k+1
−1η

)

6

( δ

2

)k+1

(2h0)
2

k+1
−1η,

since

(3.15)
l

2(1 − l0tk+1)

((δ

2

)k−1

(2h0)
−1η

)

6 1 (k > 1).

Indeed, we can show instead of (3.15) that

tk+1 6
1

l0

(

1 −
(δ

2

)k−1 l

2b

)

,

which is true, since (3.6) and the induction hypothesis imply

tk+1 6 tk +
δ

2
(tk − tk−1)

6 t1 +
δ

2
(t1 − t0) + . . . +

δ

2
(tk − tk−1)

6 η +
( δ

2

)

η + . . . +
(δ

2

)k

η =
1 −

(δ

2

)k+1

1 − δ

2

η 6
1

l0

(

1 −
(δ

2

)k−1 l

2b

)

.

This completes the induction for the estimate (3.12).

Using the estimate (3.14) for j > k, we obtain in turn

(3.16)
tj+1 − tk = (tj+1 − tj) + (tj − tj−1) + . . . + (tk+1 − tk)

6

((δ

2

)j

(2h0)
2

j
−1 +

(δ

2

)j−1

(2h0)
2

j−1
−1 + . . . +

(δ

2

)k

(2h0)
2

k
−1

)

η

6

(

1 + (2h0)
2

k

+
(

(2h0)
2

k
)2

+ . . .
)(δ

2

)k

(2h0)
2

k
−1η

=
(δ

2

)k (2h0)
2

k
−1η

1 − (2h0)2
k
.

The estimate (3.12) follows from (3.16) by letting j −→ ∞.
This completes the proof of Proposition 3.2. �
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We shall study Newton’s method (3.1) for couples (F, x0) belonging to a class

C(l, l0, η, δ) defined as follows (see also the corresponding Definition 2.2).

Definition 3.3. Let l, l0, η, δ be non-negative parameters satisfying the hy-

potheses of Lemma 3.1.

We say that a triplet (F, x−1, x0) belongs to the class C(l, l0, η, δ) if

(h1) F is a nonlinear operator defined on a convex subset D of a Banach space X
with values in a Banach space Y;

(h2) F is Fréchet-differentiable on the interior D0 of D, and there exists x0 ∈ D such
that

the linear operator A = F ′(x0) is invertible, its inverse A−1 is bounded,

‖A−1F (x0)‖ 6 η;

‖A−1[F ′(x) − F ′(x0)]‖ 6 l0‖x − x0‖;

and

‖A−1[F ′(x) − F ′(y)]‖ 6 l‖x − y‖

for all x, y ∈ D;
(h3) the set Dc = {x ∈ D; F is continuous at x} contains the closed ball U(x0, t

⋆),

where t⋆ is given in Lemma 3.1.

We present the semilocal convergence theorem for Newton’s method (3.1):

Theorem 3.4. If (F, x0) ∈ C(l, l0, η, δ), then the sequence {xn} (n > 0) generated

by Newton’s method (3.1) is well defined, remains in U(x0, t
⋆) for all n > 0 and

converges to a unique solution x⋆ ∈ U(x0, t
⋆) of the equation F (x) = 0.

Moreover, the following estimates hold for all n > 0 :

‖xn+1 − xn‖ 6 tn+1 − tn,

and

‖xn − x⋆‖ 6 t⋆ − tn

where the sequence {tn} (n > 0) is given by (3.3).

Furthermore, if there exists R > t⋆ such that

U(x0, R) ⊆ D

and

l0(t
⋆ + R) 6 2,

then the solution x⋆ is unique in U(x0, R).
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P r o o f. The proof as being identical to that of Theorem 1 in [6] is omitted.

Note that in [6], we simply used sufficient convergence conditions different from the

ones in Lemma 3.1. This is the only difference between the proofs. �

Remark 3.5. The famous for its simplicity and clarity Newton-Kantorovich hy-

pothesis corresponding to (3.2) is given in [3], [5], [13]:

(3.17) 2h = 2lη 6 1.

It then follows from (3.2) and (3.17) that

h 6
1

2
=⇒ h0 6

1

2

but not necessarily vice versa, unless l = l0. Comments similar to the ones in Remark

2.5 can be made for Newton’s method.

We complete this study with three numerical examples.

Example 3.6. Define the scalar function F by F (x) = c0x + c1 + c2 sin ec3x,

x0 = 0, where ci, i = 1, 2, 3 are given parameters. Then it can easily be seen that

for c3 large and c2 sufficiently small, l/l0 can be arbitrarily large. That is, (3.2) may

be satisfied but not (3.17).

Example 3.7. Let X = Y = R, x0 = 1, U0 = {x : |x − x0| 6 1 − γ}, γ ∈ [0, 1

2
),

and define the function F on U0 by

(3.18) F (x) = x3 − γ.

Using condition (h2) of Definition 3.3, we get

η =
1

3
(1 − γ), l0 = 3 − γ, and l = 2 (2 − γ).

The Kantorovich condition (3.17) is violated, since

4

3
(1 − γ)(2 − γ) > 1 for all γ ∈

[

0,
1

2

)

.

Hence, there is no guarantee that Newton’s method (1.2) converges to x∗ = 3
√

γ,

starting at x0 = 1.

However, our condition (3.2) is true for all γ ∈ I = [.450339002, 1

2
). Hence, the

conclusions of our Theorem 3.4 can be applied to solve equation (3.18) for all γ ∈ I.
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Example 3.8. Let X = Y = C[0, 1] be the space of real-valued continuous func-

tions defined on the interval [0, 1] with the norm

‖x‖ = max
06s61

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the “cubic” integral equation

(3.19) u(s) = u3(s) + λu(s)

∫ 1

0

q(s, t)u(t) dt + y(s) − θ.

Here the kernel q(s, t) is a continuous function of two variables defined on [0, 1]×
[0, 1]; the parameter λ is a real number called the “albedo” for scattering; y(s) is a

given continuous function defined on [0, 1] and x(s) is the unknown function sought

in C[0, 1]. Equations of the form (3.19) arise for gasses [5], [8]. For simplicity, we

choose u0(s) = y(s) = 1, and q(s, t) = s/(s + t) for all s ∈ [0, 1] and t ∈ [0, 1], with

s + t 6= 0. If we let D = U(u0, 1 − θ) and define the operator F on D by

(3.20) F (x)(s) = x3(s) − x(s) + λx(s)

∫ 1

0

q(s, t)x(t) dt + y(s) − θ

for all s ∈ [0, 1], then every zero of F satisfies equation (3.19). We have the estimate

max
06s61

∣

∣

∣

∫

s

s + t
dt

∣

∣

∣
= ln 2.

Therefore, if we set ξ = ‖F ′(u0)
−1‖, then it follows from condition (h2) of Defini-

tion 3.3 that

η = ξ(|λ| ln 2 + 1 − θ),

l = 2ξ(|λ| ln 2 + 3(2 − θ)) and l0 = ξ(2|λ| ln 2 + 3(3 − θ)).

It follows from Theorem 3.4 that if condition (3.2) holds, then problem (3.19) has

a unique solution near u0. This assumption is weaker than the one given before using

the Newton-Kantorovich hypothesis (3.17).

Note also that l0 < l for all θ ∈ [0, 1].

Example 3.9. Consider the nonlinear boundary value problem [5]

{

u′′ = −u3 − γu2,

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.21) u(s) = s +

∫ 1

0

Q(s, t)(u3(t) + γu2(t)) dt,
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where Q is the Green function

Q(s, t) =

{

t(1 − s), t 6 s,

s(1 − t), s < t.

We observe that

max
06s61

∫ 1

0

|Q(s, t)| =
1

8
.

Let X = Y = C[0, 1] with the norm

‖x‖ = max
06s61

|x(s)|.

Then problem (3.21) is in the form (1.1), where, F : D −→ Y is defined as

[F (x)](s) = x(s) − s −
∫ 1

0

Q(s, t)(x3(t) + γx2(t)) dt.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v](s) = v(s) −
∫ 1

0

Q(s, t)(3x2(t) + 2γx(t))v(t) dt.

If we set u0(s) = s and D = U(u0, R), then since ‖u0‖ = 1, it is easy to verify

that U(u0, R) ⊂ U(0, R + 1). It follows that 2γ < 5, hence

‖I − F ′(u0)‖ 6
3‖u0‖2 + 2γ‖u0‖

8
=

3 + 2γ

8
,

‖F ′(u0)
−1‖ 6

1

1 − 3 + 2γ

8

=
8

5 − 2γ
,

‖F (u0)‖ 6
‖u0‖3 + γ‖u0‖2

8
=

1 + γ

8
,

‖F (u0)
−1F (u0)‖ 6

1 + γ

5 − 2γ
.

On the other hand, for x, y ∈ D we have

[(F ′(x) − F ′(y))v](s) = −
∫ 1

0

Q(s, t)(3x2(t) − 3y2(t) + 2γ(x(t) − y(t)))v(t) dt.
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Consequently,

‖F ′(x) − F ′(y)‖ 6
‖x − y‖(2γ + 3(‖x‖ + ‖y‖))

8

6
‖x − y‖(2γ + 6R + 6‖u0‖)

8

=
γ + 6R + 3

4
‖x − y‖,

‖F ′(x) − F ′(u0)‖ 6
‖x − u0‖(2γ + 3(‖x‖ + ‖u0‖))

8

6
‖x − u0‖(2γ + 3R + 6‖u0‖)

8

=
2γ + 3R + 6

8
‖x − u0‖.

Therefore, the conditions of Theorem 3.4 hold with

η =
1 + γ

5 − 2γ
, l =

γ + 6R + 3

4
, l0 =

2γ + 3R + 6

8
.

Note also that l0 < l.

Conclusion

We provided a semilocal convergence analysis for the Secant and Newton’s methods

in order to approximate a locally unique solution of an equation in a Banach space.

Using a combination of Lipschitz and center-Lipschitz conditions, instead of only

Lipschitz conditions [13], we provided an analysis with the following advantages

over the work in [13]: larger convergence domain, and weaker sufficient convergence

conditions. Note that these advantages are obtained under the same computational

cost as in [13], since in practice the computation of the Lipschitz constant l requires

the computation of l0. Hence, the applicability of these methods has been extended.

Numerical examples further validating the results are also provided.
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