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Abstract. Let P be an arbitrary parabolic subalgebra of a simple associative F -algebra.
The ideals of P are determined completely; Each ideal of P is shown to be generated by
one element; Every non-linear invertible map on P that preserves ideals is described in an
explicit formula.
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1. Introduction

If F is a field, then an F -algebra (associative) is a set A with a ring structure

and an F -vector space structure that share the same addition operation, and with

the additional property that (ax)y = a(xy) = x(ay) for a ∈ F and x, y ∈ A. An

F -algebra is called finite-dimensional if it has finite dimension as an F -vector space.

A subspace I of an F -algebra A is called an ideal (two-sided) if xI and Ix are

contained in I for any x ∈ A. We say that the F -algebra A is semisimple if all

non-zero A-modules are semisimple. A is said to be simple if its only two-sided

ideals are itself and the zero ideal. An algebra D is said to be a division algebra

if the non-zero elements of D form a group under multiplication. One of the most

fundamental results on the structure of F -algebra is due to Wedderburn, which says

that a finite-dimensional algebra A is semisimple iff it is isomorphic to a direct sum

of matrix algebras over finite-dimensional division algebras, and A is simple iff it is

isomorphic to a matrix algebra over a finite-dimensional division algebra. In view

of Wedderburn’s theorem, the study on finite-dimensional simple algebras can be

reduced to that on the matrix algebra Mn×n(D) consisting of n × n matrices over

a finite-dimensional division algebra D. Note that the F -dimension of Mn×n(D)
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is n2 · dimF D. Let Tn(D) (resp., Sn(D)) be the subalgebra of Mn×n(D) of all

upper triangular matrices (resp., strictly upper triangular matrices). Subalgebras of

Mn×n(D) that contain Tn(D) are called parabolic subalgebras of Mn×n(D).

More recently some authors devoted to determine ad-nilpotent ideals of certain

special subalgebras of simple Lie algebras. In [1]–[8], the authors determined ad-

nilpotent ideals of the Borel subalgebras of a complex simple Lie algebra, and in [9]

Righi extent the results to the parabolic subalgebras of a simple Lie algebra. In [10],

Panyushev determined the normalizers of ad-nilpotent ideals of a Borel subalgebra

in a complex simple Lie algebra. Some other authors are interested in describ-

ing invertible transformations on linear Lie algebras that preserves certain special

subalgebras. For instance, Radjavi and Šemrl [11] determined non-linear invertible

transformations on the general linear algebra gl(n,C) that preserves solvable subal-

gebras. Motivated by these papers, we in this note dedicate to determine all ideals

of P and to characterize non-linear invertible maps on P that preserves ideals, where

P is an arbitrary parabolic subalgebra of a simple F -algebra.

2. Ideals of a parabolic subalgebra of a simple algebra

Now we consider that a parabolic subalgebra of Mn×n(D) consists of matrices of

what form. Let Φ = {(i, j) | 1 6 j 6 i 6 n}. For α = (i, j), β = (k, l) ∈ Φ, we define

α � β if k 6 i and j 6 l. Thus (Φ,�) becomes a partially ordered set. A nonempty

subset Ψ of Φ is said to be an upper set, if for α ∈ Ψ, β ∈ Φ, α � β implies β ∈ Ψ.

Let Ψ be an upper subset of Φ, ∆ the subset of Ψ consisting of all minimal elements

in Ψ (relative to �). Then we have that

Ψ = {β ∈ Φ | α � β for cetain α ∈ ∆}.

Now let P be a parabolic subalgebra of Mn×n(D). By E we mean the n×n identity

matrix. For β = (i, j) ∈ Φ, Eβ means the n×n matrix unit Ei,j . Define Ψ(P) to be

the subset of Φ consisting of β ∈ Φ for which Eβ ∈ P , and ∆(P) the subset of Ψ(P)

of minimal elements in Ψ(P).

Proposition.

(i) Ψ(P) is an upper subset of Φ.

(ii) P = Sn(D) +
∑

β∈Ψ(P)

DEβ .

(iii) P = Sn(D) +
∑

α∈∆(P)

(

∑

α�β

DEβ

)

.
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P r o o f. For (i), (1, 1) ∈ Ψ(P), thusΨ(P) is nonempty. Suppose that α = (i, j) ∈

Ψ(P), β = (k, l) ∈ Φ and α � β. Then k 6 i, j 6 l. We have, by Eβ = Ek,i ·Eα ·Ej,l,

that Eβ ∈ P . So β ∈ Ψ(P). Hence Ψ(P) is an upper subset of Φ.

For (ii), denote Sn(D) +
∑

β∈Ψ(P)

DEβ , by Q. If β ∈ Ψ(P), then Eβ ∈ P . We have

by dEβ = (dE) · Eβ , that dEβ ∈ P for all d ∈ D. Thus Q ⊆ P . Conversely, for any

x ∈ P , write it in the form: x = sx +
∑

β∈Φ

aβEβ , where sx ∈ Sn(D), aβ ∈ D. Suppose

aγ 6= 0 for certain γ = (i, j) ∈ Φ. Then by Eγ = (a−1
γ E) · Ei,i · x · Ej,j ∈ P we have

that γ ∈ Ψ(P). This implies that x ∈ Q. Therefore, P = Q.

(iii) is evident. �

Let P be an arbitrary parabolic subalgebra of a simple F -algebraMn×n(D), where

D is a finite-dimensional division F -algebra. Suppose ∆(P) = {(i1, j1), (i2, j2), . . . ,

(is, js)}, where 1 6 i1 < i2 < . . . < is 6 n and 1 6 j1 < j2 < . . . < js 6 n. Let

nk = ik−jk +1 for k = 1, 2, . . . , s, then
s

∑

k=1

nk = n. By (iii) of the above proposition,

one will see that P actually consists of all upper triangular block matrices of the form









A11 A12 . . . A1s

0 A22 . . . A2s

. . . . . . . . . . . .

0 0 . . . Ass









,where Aij ∈ Mni×nj
(D),

s
∑

i=1

ni = n.

If s = 1, then P , as just stated, exactly is Mn×n(D) itself. Conversely, if s = n,

then P exactly is Tn(D). Now we describe the ideals of P . One will see that an

ideal of P is closed under D-scalar multiplication (not only closed under F -scalar

multiplication). Each element x ∈ P will be written in the form x = (Xij)s×s for

brevity, where Xij ∈ Mni×nj
(D) is in the (i, j)-position. Let S be a subset of P . The

minimal ideal of P containing S is denoted by 〈S〉, called the ideal of P generated

by S. Actually, 〈S〉 just is the intersection of all ideals of P which contains S. For

1 6 k 6 l 6 s and 1 6 ik 6 nk, 1 6 jl 6 nl, we denote by Ek,l
ik,jl

the matrix unit

of Mn×n(D) with 1 in the
(

ik +
k−1
∑

p=1
np, jl +

l−1
∑

q=1
nq

)

-position and 0 elsewhere. For

1 6 k 6 l 6 s, we denote by Ekl the subset of P consisting of all block matrices of

the form


















0 . . . 0 A1l . . . A1s

. . . . . . . . . . . . . . . . . .

0 . . . 0 Akl . . . Aks

0 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 0 . . . 0



















, where Aij ∈ Mni×nj
(D)

for 1 6 i 6 k, l 6 j 6 s.
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It’s easy to see that all Ekl for 1 6 k 6 l 6 s are ideals of P .

Lemma 2.1. Let 1 6 k 6 l 6 s, x = (Xij)s×s ∈ P . Then 〈x〉 = Ekl if and only if

x ∈ Ekl and the (k, l)-entry Xkl of x is not zero. Particularly, 〈E
k,l
ik ,jl

〉 = Ekl for any

ik, jl satisfying 1 6 ik 6 nk, 1 6 jl 6 nl.

P r o o f. ⇐: By assumption on x, the beginning l− 1 columns and the last s− k

rows of x are all zero, and Xkl 6= 0. Suppose the (ik, jl)-entry of Xkl is not zero,

then Ek,l
ik,jl
, being a nonzero multiple of Ek,k

ik,ik
· x · El,l

jl,jl
, belongs to 〈x〉 (note that

any ideal of P is closed under D-scalar multiplication). Then we have

Ek,l
pk,ql

= Ek,k
pk,ik

· Ek,l
ik,jl

· El,l
jl,ql

∈ 〈x〉,

for any pair (pk, ql) satisfying 1 6 pk 6 nk, 1 6 ql 6 nl. Furthermore, we have

Ek,m
pk,jm

= Ek,l
pk,1 · E

l,m
1,jm

∈ 〈x〉

for l 6 m 6 s and 1 6 pk 6 nk, 1 6 jm 6 nm. Now for any pair (t, m) satisfying

1 6 t 6 k, l 6 m 6 s and for any pair (it, jm) satisfying 1 6 it 6 nt, 1 6 jm 6 nm,

we have that

Et,m
it,jm

= Et,k
it,1 · E

k,m
1,jm

∈ 〈x〉.

Note that the set

{Et,m
it,jm

| 1 6 t 6 k, l 6 m 6 s, 1 6 it 6 nt, 1 6 jm 6 nm}

forms a D-basis of Ekl, so Ekl ∈ 〈x〉. Obviously, 〈x〉 ∈ Ekl. Finally, 〈x〉 = Ekl.

⇒: If 〈x〉 = Ekl, then x ∈ Ekl. It’s easy to see that the subset J of Ekl consisting

of the elements whose (k, l)-entry is zero forms an ideal of P . If the (k, l)-entry of x

is zero, then x ∈ J , forcing Ekl = 〈x〉 ⊆ J , absurd. �

Let S be a subset of P . Write every x ∈ S in the form x = (Xij)s×s, where Xij

is in the (i, j)-position, set

ΣS =

{

(k, l) |
Xkl 6= 0 for some x ∈ S, and Ykq = Ypl = 0

for all y ∈ S, and for q = 1, 2, . . . , l − 1, p = k + 1, . . . , s

}

;

and set

GS =
∑

(k,l)∈ΣS

Ek,l
1,1.
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Lemma 2.2. Let S be a subset of P . Then 〈S〉 = 〈GS〉 =
∑

(k,l)∈ΣS

Ekl.

P r o o f. By construction of ΣS and GS , one easily sees that

S ⊆
∑

(k,l)∈ΣS

Ekl, GS ∈
∑

(k,l)∈ΣS

Ekl,

which follow that

〈S〉 ⊆
∑

(k,l)∈ΣS

Ekl, 〈GS〉 ⊆
∑

(k,l)∈ΣS

Ekl.

If (k, l) ∈ ΣS , then there exists some x = (Xij)s×s ∈ S for which Xkl 6= 0. Then the

s×s block matrix, denoted by [Xk,l], with Xkl in the (k, l)-position and 0 elsewhere,

being equal to
( nk

∑

i=1

Ek,k
i,i

)

· x ·
( nl

∑

j=1

El,l
j,j

)

, naturally belongs to 〈S〉. By Lemma 2.1

we have

Ekl = 〈[Xkl]〉 ⊆ 〈S〉, and
∑

(k,l)∈ΣS

Ekl ⊆ 〈S〉.

Then we have
∑

(k,l)∈ΣS

Ekl = 〈S〉. For (k, l) ∈ ΣS , we have Ek,l
1,1 = Ek,k

1,1 · GS · El,l
1,1 ∈

〈GS〉, which follows that Ekl = 〈Ek,l
1,1〉 ⊆ 〈GS〉. Thus

∑

(k,l)∈ΣS

Ekl ⊆ 〈GS〉. This further

forces
∑

(k,l)∈ΣS

Ekl = 〈GS〉. �

Applying Lemma 2.2, we are ready to assert the main results in this subsection.

Theorem 2.3. Every ideal I of P can be generated by just one element. More

concretely, I = 〈GI〉 =
∑

(k,l)∈ΣI

Ekl.

Theorem 2.3 shows that each ideal of P takes the form

Ek1,l1 + Ek2,l2 + . . . + Ekt,lt ,

where ki 6 li for i = 1, . . . , t, 1 6 k1 < k2 < . . . < kt 6 s and 1 6 l1 <

l2 < . . . < lt 6 s. Now we can count the number of ideals of P . Set Ci
m =

m · (m − 1) . . . (m − i + 1)/i · (i − 1) · . . . · 2 · 1 for 1 6 i 6 m. Set

D1
s = C1

s ; D2
s =

s
∑

k=2

D1
k;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Di
s =

s
∑

k=i

Di−1
k , where i > 1;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ds−1
s = Ds−2

s + Ds−2
s−1 ; Ds

s = Ds−1
s .

Then by Theorem 2.3, we have:
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Theorem 2.4. The number of nonzero ideals of P is
s

∑

i=1

Di
s.

Example. In case that s = 4, the number of nonzero ideals of P is 41. We list

these ideals in the following.

E1,4, E1,3, E1,2, E1,1, E2,4, E1,3 + E2,4, E1,2 + E2,4, E1,1 + E2,4,

E2,3, E1,2 + E2,3, E1,1 + E2,3, E2,2, E1,1 + E2,2,

E3,4, E1,3 + E3,4, E1,2 + E3,4, E1,1 + E3,4, E2,3 + E3,4,

E1,2 + E2,3 + E3,4, E1,1 + E2,3 + E3,4, E2,2 + E3,4, E1,1 + E2,2 + E3,4,

E3,3, E1,2 + E3,3, E1,1 + E3,3, E2,2 + E3,3, E1,1 + E2,2 + E3,3,

E4,4, E1,3 + E4,4, E1,2 + E4,4, E1,1 + E4,4, E2,3 + E4,4,

E1,2 + E2,3 + E4,4, E1,1 + E2,3 + E4,4, E2,2 + E4,4, E1,1 + E2,2 + E4,4,

E3,3+E4,4, E1,2+E3,3+E4,4, E1,1+E3,3+E4,4, E2,2+E3,3+E4,4, E1,1+E2,2+E3,3+E4,4.

3. Non-linear maps on P that preserves ideals

P is as in Section 2. Denote by ΦP the set of all nonzero ideals of P . An invertible

map ϕ on P is called preserving ideals if it maps every ideal of P to another such

ideal of the same dimension. To show relationship between ideals of P , we in this

subsection investigate the non-linear maps on P preserving ideals. It is easy to see

that the product of two such maps and the inverse of one such map also are such

maps. This shows that all such maps on P form a group under multiplication of

maps. Let I be an ideal of P , the number of nonzero ideals of P which is contained

in I is called the length of I, and we denote it by l(I). For example, l(E1,s) = 1,

l(E2,s−1) = 4.

Lemma 3.1. Let ϕ be an invertible map on P preserving ideals, then ϕ preserves

the length of ideals, namely, l(ϕ(I)) = l(I) for any I ∈ ΦP .

P r o o f. Suppose l(I) = m and I1, . . . , Im are the distinct nonzero ideals of P

contained in I. Then ϕ(I1), ϕ(I2), . . . , ϕ(Im) also are distinct nonzero ideals of P

contained in ϕ(I). This shows that l(ϕ(I)) > l(I). Considering the action of ϕ−1 on

the ideal ϕ(I) we have that l(I) = l(ϕ−1(ϕ(I))) > l(ϕ(I)). Hence l(ϕ(I)) = l(I). �

Lemma 3.2. Let ϕ be an invertible map on P preserving ideals, I an ideal of P

with decomposition I = I1 + I2 + . . . + It, where all Ii are ideals of P . If ϕ stabilizes

each Ii for i = 1, 2, . . . , t, Then ϕ stabilizes I.

P r o o f. By assumption, Ii = ϕ(Ii) ⊆ ϕ(I) for i = 1, 2, . . . , t. Thus I =
t

∑

i=1

Ii ⊆

ϕ(I). Comparing dimensions of I and ϕ(I) we have ϕ(I) = I. �
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Lemma 3.3. Let ϕ be an invertible map on P preserving ideals, s > 2. If ϕ

stabilizes E1,s−1 and E2,s respectively, then ϕ stabilizes each ideal of P .

P r o o f. Recalling Theorem 2.3 and Lemma 3.2, we only need to show that

ϕ(Ek,l) = Ek,l for all pairs k, l (1 6 k 6 l 6 s). First we show by induction on j

that ϕ stabilizes all E1,j , j = 1, 2, . . . , s. Obviously, E1,s is the only ideal of P which

has length 1, so it is stable under ϕ. By assumption we have ϕ(E1,s−1) = E1,s−1.

Assume that ϕ(E1,k+1) = E1,k+1, where 1 6 k 6 s − 2. ϕ(E1,k) is an ideal of P of

length s + 1− k which contains E1,k+1. But, only E1,k and E1,k+1 + E2,s satisfy such

conditions. Thus ϕ maps E1,k onto E1,k or onto E1,k+1 + E2,s. However, ϕ stabilizes

E1,k+1 and E2,s, respectively, thus ϕ stabilizes E1,k+1 + E2,s (apply Lemma 3.2). If

ϕ(E1,k) = E1,k+1 + E2,s, then ϕ−1(E1,k+1 + E2,s) = E1,k, absurd. So ϕ stabilizes E1,k.

Hence ϕ stabilizes E1,j for j = 1, 2, . . . , s.

Similar discussions show that ϕ(Ek,s) = Ek,s for k = 1, 2, . . . , s.

Now we show by induction on k that ϕ stabilizes Ek,k, Ek,k+1, . . . , Ek,s, respectively,

for k = 1, 2, . . . , s. In case k = 1, the assertion holds already. Assume that ϕ(Ei,j) =

Ei,j for j = i, . . . , s, where 1 6 i 6 s− 1. We desire to prove that ϕ(Ei+1,j) = Ei+1,j ,

j = i + 1, . . . , s. To achieve this goal, we will use induction on j. When j = s,

ϕ(Ei+1,s) = Ei+1,s has been proved. Assume that ϕ(Ei+1,q+1) = Ei+1,q+1, where

i + 1 6 q 6 s − 1. We need to show that ϕ(Ei+1,q) = Ei+1,q. Note that ϕ(Ei+1,q) is

an ideal of P containing Ei+1,q+1 + Ei,q and it has length just one more than that of

Ei+1,q+1 + Ei,q. Theorem 2.3 shows that only three ideals, namely, Ei+1,q, E1,q−1 +

Ei+1,q+1 + Ei,q and Ei+1,q+1 + Ei,q + Ei+2,s satisfy such conditions. By induction

hypothesis and applying Lemma 3.2 we know that ϕ stabilizes E1,q−1+Ei+1,q+1+Ei,q

and Ei+1,q+1 + Ei,q + Ei+2,s, respectively. If ϕ(Ei+1,q) = E1,q−1 + Ei+1,q+1 + Ei,q, then

ϕ−1(E1,q−1 + Ei+1,q+1 + Ei,q) = Ei+1,q, which is absurd. Thus ϕ fails to send Ei+1,q

to E1,q−1 + Ei+1,q+1 + Ei,q. Similarly, ϕ fails to send Ei+1,q to Ei+1,q+1 + Ei,q + Ei+2,s.

Hence ϕ stabilizes Ei+1,q. Then ϕ stabilizes each Ei,j for 1 6 i 6 j 6 s by induction.

Now by Lemma 3.2 we see that ϕ stabilizes all ideals of P . �

Lemma 3.4. ϕ and s is as in Lemma 3.3. If ϕ(E1,s−1) = E2,s, then n1 = ns,

n2 = ns−1, . . ., ni = ns−i+1, . . ., ns = n1.

P r o o f. Since E1,s−1 and E2,s are the only ideals of P which has length 2.

Then it follows from ϕ(E1,s−1) = E2,s that ϕ(E2,s) = E1,s−1. Now assume that ϕ

permutes E1,j and Es−j+1,s, where 2 6 j 6 s. Note that ϕ(E1,j−1) contains Es−j+1,s

(= ϕ(E1,j)) and has one more length than that of Es−j+1,s. However, only the ideal

Es−j+2,s and E1,s−1 + Es−j+1,s satisfy these conditions. So ϕ(E1,j−1) coincides with

either Es−j+2,s or E1,s−1 + Es−j+1,s. But the latter is the image of E2,s + E1,j under

ϕ, so ϕ(E1,j−1) = En−j+2,s. Then we know by induction that ϕ(E1,k) = Es−k+1,s for
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k = 1, 2 . . . , s. By comparing dimensions of E1,k and that of Es−k+1,s, we have that

n1(nk + nk+1 + . . . + ns) = ns(n1 + n2 + . . . , +ns−k+1), k = 1, 2, . . . , s.

This shows that n1 = ns, n2 = ns−1, . . ., nk = ns−k+1, . . ., ns−1 = n2, ns = n1. �

Suppose that n1 = ns, n2 = ns−1, . . ., nk = ns−k+1, . . ., ns−1 = n2, ns = n1, and

set

ω =















0 0 . . . 0 En1

0 0 . . . En2
0

. . . . . . . . . . . . . . .

0 Ens−1
. . . 0 0

Ens
0 . . . 0 0















, where Eni
means the

ni × ni identity matrix.

Using ω we define the map τω : P → P , sending any x ∈ P to ω · x′ · ω.

Lemma 3.5. τω , as just defined, is an invertible map on P preserving ideals.

P r o o f. Obviously, τω is a linear map and the square of τω is the identity, so

τω is invertible. It is easy to see that τω(Ek,l) = Es−l+1,s−k+1 for all k, l satisfying

1 6 k 6 l 6 s. Then by Theorem 2.3, we see that τω is an invertible linear map on

P preserving ideals. �

Define a relation ∼ in P in such a way: x ∼ y iff 〈x〉 = 〈y〉. It is not hard

to see that the relation ∼ is an equivalence relation, thus P is partitioned into the

disjoint union of the equivalence classes relative to ∼. We say a map χ : P → P

preserves lattice (consulting a terminology from [11]) if it induces a permutation on

each equivalence class. It should be pointed out that such a map need not be linear.

Lemma 3.6. If χ : P → P is a map preserving lattice, then it is invertible and

preserves ideals.

P r o o f. We shall show that χ actually stabilizes each ideal of P . Let I be any

given ideal of P and x ∈ I. Then by χ(x) ∼ x we see that 〈χ(x)〉 = 〈x〉 ⊆ I. Thus

χ(x) ∈ I, which follows that χ(I) ⊆ I. Considering χ−1 we have that χ−1(I) ⊆ I,

in other words, I ⊆ χ(I). Hence χ(I) = I. �

Theorem 3.7. Let P be a parabolic subalgebra of Mn×n(D) taking the form as

described as in the beginning part of Section 2, ϕ an invertible map on P preserving

ideals. Then ϕ takes one of the following forms

(i) If n1 = ns, n2 = ns−1, . . ., nk = ns−k+1, . . ., ns−1 = n2, ns = n1, then

ϕ : x 7→ ωδ · χ(x)′ · ωδ, where δ = 1 or 2;

(ii) If nk 6= ns−k+1 for some k (1 6 k 6 s), then ϕ : x 7→ χ(x), where χ is an

invertible map on P preserving lattice.
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P r o o f. If nk = ns−k+1 for k = 1, 2, . . . , s, since E1,s−1 and E2,s are the only

ideals of P whose length is 2. So ϕ either permutes them or stabilizes each of them

respectively. When the first case happens we set δ = 1, otherwise, we set δ = 2.

Then we see that τδ
ω ·ϕ stabilizes E1,s−1 and E2,s, respectively. Then by Lemma 3.3,

τδ
ω · ϕ, denoted by ϕ1, stabilizes each ideal of P . Now for any given x ∈ P , since

ϕ1(x) ∈ ϕ1(〈x〉) = 〈x〉, we have that 〈ϕ1(x)〉 ⊆ 〈x〉. Considering ϕ−1
1 we have

〈x〉 = 〈ϕ−1
1 (ϕ1(x))〉 ⊆ 〈ϕ1(x)〉. Thus ϕ1(x) and x respectively generates the same

ideal, in other words, ϕ1(x) ∼ x. So ϕ1 just is an invertible map on P preserving

lattice. This proves (i).

As to (ii), if there exists some k such that nk 6= ns−k+1, then ϕ stabilizes E1,s−1

and E2,s, respectively (recall Lemma 3.4). Thus ϕ itself just is an invertible map on

P preserving lattice. �

Theorem 3.8. The square of any invertible map on P preserving ideals stabilizes

each ideal of P .

Acknowledgments. The authors would like to thank the referee for his/her

valuable comments and suggestions.

References

[1] L.Orsina and PPapi: Enumeration of ad-nilpotent ideals of a Borel subalgebra in type
A by class of nilpotence. C. R. Acad. Sci, Paris 330 (2000), 651–655.

[2] D.Panyushev: Ad-nilpotent ideals of a Borel subalgebra: generators and duality. J.
Algebra 274 (2004), 822–846.

[3] D.Panyushev: Long Abelian ideals. Advances in Mathematics 186 (2004), 307–316.
[4] D.Panyushev and G.Röhrle: Spherical orbits and Abelian ideals. Advances in Mathe-
matics 159 (2001), 229–246.

[5] P.Cellini and P.Papi: Abelian ideals of Borel subalgebras and affine Weyl groups. Ad-
vances in Mathematics 187 (2004), 320–361.

[6] P.Cellini and P.Papi: Ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225 (2000),
130–141.

[7] P.Cellini and P. Papi: Ad-nilpotent ideals of a Borel subalgebra II. J. Algebra 258
(2002), 112–121.

[8] C.Krattenthaler, L. Orsina and P. Papi: Enumeration of ad-nilpotent b-ideals for simple
Lie algebras. Advances in Applied Mathematics 28 (2002), 478–522.

[9] Céline Righi: Ad-nilpotent ideals of a parabolic subalgebra. J. Algebra 319 (2008),
1555–1584.

[10] D.Panyushev: Normalizers of ad-nilpotent ideals. European Journal of Combinatorics
27 (2006), 153–178.

[11] H.Radjavi and P. Šemrl: Non-linear maps preserving solvability. J. Algebra 280 (2004),
624–634.

Authors’ address: D e n g y i n Wan g, H a i s h a n Pa n, X u a n s h e n g Wan g, De-
partment of Mathematics, China University of Mining and Technology, Xuzhou 221008,
People’s Republic of China, e-mail: wdengyin@126.com.

379


		webmaster@dml.cz
	2020-07-03T18:40:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




