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1. Introduction

In this paper we consider the abstract differential system

(1.1)











.
x(t) = Ax(t), t > 0,

x(0) = x0,

y(t) = Cx(t),

where the operator A generates a C0-semigroup T := (T(t))t>0 on a Banach (state)

space X . We denote by ω(A) the growth bound of T. The operator C is a bounded

Y -valued operator from the domain D(A) of A, with respect to the graph norm to

the second (output) Banach space Y . That is, there exists a constant M0 > 0 such

that

‖Cx‖Y 6 M0

(

‖x‖X + ‖Ax‖X

)

, x ∈ D(A).

For x ∈ D(A) and t > 0, T(t)x ∈ D(A), the resulting function t 7→ CT(t)x is

continuous from (0,∞) into Y . An important question is whether the system (1.1) is

well-posed. Of course, since A generates a C0-semigroup onX , the state equation has
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a unique mild solution x(t) = T(t)x0. However, since C is not a bounded operator

on X , it is not clear whether the output equation is well-posed. The output equation

makes sense if C is bounded on X . However, one could relax this to the question

whether the output trajectory is locally square integrable. Therefore the following

definition of an admissible observation operator has been introduced. According to

[21], we say that C is finite-time p-admissible if for some (or hence for all) τ ∈ (0,∞)

there exists κp(τ) > 0 such that

(1.2)

∫ τ

0

‖CT(t)x‖p
Y dt 6 κp

p(τ)‖x‖p
X .

A variant of admissibility called the infinite-time admissibility when the integral on

(0, τ) in (1.2) is replaced by the whole time axis (0,∞) has also been extensively

studied (see e.g., [7], [8], [23], [15], [6], [16], [24]). The notion of finite time p-

admissibility is invariant under scalings e−α·
T(·). Hence, if we want to investigate

finite-time admissibility of observation operators, then we may assume that the semi-

group is exponentially stable. We refer to ([8], [22], [20]) and the references therein

for historical background and applications of admissibility. Since the resolvent is the

Laplace transform of the semigroup, the finite-time p-admissibility always implies

(1.3) sup
z∈Cα

(Re(z))1−1/p‖CR(z, A)‖ < ∞

for some α > ω(A), where Cα = {z ∈ C s.t. Re(z) > α}.

For p = 2, it has been proved in [21] that the converse does not hold in the general

Banach space context. However, in [21] it was conjectured that if X and Y are

Hilbert spaces, then C is finite-time L2-admissible observation operator if and only

if (1.3) holds. Since then, this problem, which is known as the Weiss conjecture, has

received much attention. Zwart in [24] presents some sufficient conditions for finite

(or infinite) time L2-admissibility. It was first shown in [17] that the isometric right

shift semigroup in H2(C+, X) satisfies the Weiss conjecture for scalar observation

operators (in the case X = C). By using the Sz.Nagy Foias functional model for

contraction semigroups on a Hilbert space and applying the same proof as in [17] for

X a general separable Hilbert space, it was shown in [11] that the Weiss conjecture

holds for general contraction semigroups on separable Hilbert spaces with a scalar

observation operator. The proof in [11] was later simplified in [19], Section 10.7

by using an isometric extension of the semigroup. For Y = C and T(t) being a

contraction semigroup, it was shown in [11] that the Weiss conjecture holds. But in

[12] the authors showed that if dim(Y ) = ∞ then the Weiss conjecture can fail even

for a semigroup of isometries. The papers [23] and [13] constructed bounded, analytic

semigroups for which the Weiss conjecture fails with Y of finite or infinite dimension
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respectively. The paper [15] gives other examples of bounded analytic semigroups

which are not similar to contraction semigroups for which the Weiss conjecture holds

for all Banach spaces Y . Papers [10] and [20] contain the special case when the

semigroup is normal and analytic. In the Banach space context and concerning the

infinite-time admissibility, LeMerdy in his paper [15] showed that the infinite-time

Weiss conjecture holds for a bounded analytic semigroup if and only if the fractional

power (−A)1/2 is admissible for A. For a contractive analytic semigroup on a Hilbert

space X , it is shown in [15] that the Weiss conjecture holds. In particular, the author

extends the result by Hansen and Weiss [10] and by Weiss [20] concerning the case

when the semigroup is bounded analytic and normal (and hence contractive). In

[15], essential use is made of the bounded H∞-functional calculus.

For p ∈ [1,∞], there are a few results on the p-admissibility and its associated

Weiss conjecture. The author in [4] characterized the finite time p-admissibility of

control and observation operators. In [5] this result was extended to the infinite-

time p-admissibility. Recently, the authors in [9] have extended the result in [15] on

the Weiss conjecture for 2-admissibility to the case of p-admissibility for bounded

analytic semigroups.

The aim of this paper is to present new and much shorter proofs of the results

of the Weiss-conjecture for analytic semigroups proved in [15] for p = 2 and in

[9] for p ∈ (1,∞], eventually even generalizing them. We will also prove that the

analyticity assumption on the semigroup cannot be omitted. Our approach does

not make any recourse to the H∞-functional calculus and is based on elementary

analysis. Similar results can be obtained for the weighted admissibility of observation

operators studied in [9] and this will be the subject of a forthcoming paper.

2. Definition and results

The following definition explains what does it mean exactly that A satisfies the

finite time p-Weiss property.

Definition 2.1. Let A generate a bounded C0-semigroup L(D(A), Y ) on a Ba-

nach space X . We say that A satisfies the finite-time p-Weiss property if for any

Banach space Y and C ∈ L(D(A), Y ), the following statements are equivalent:

(i) C is finite-time p-admissible for A.

(ii) C satisfies the estimate (1.3).

Definition 2.1 has an analogue version for the infinite p-Weiss property, henceforth

called the p-Weiss property for short.

Our main result is based on the following ergodic result.
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Proposition 2.2. Let p ∈ [1,∞) and T > 0. Let X be a Banach space and let

us define operators L0 and L as

( L0f)(t) :=
1

t

∫ t

0

f(s) ds and (Lf)(t) :=

∫ T

t

f(s)

s
ds for f ∈ Lp([0, T ], X)

and 0 < t < T. Then:

(i) L0 is bounded on Lp([0, T ], X) and ‖L0‖p 6 p/(p − 1) for p > 1.

(ii) L is bounded on Lp([0, T ], X) and ‖L‖p 6 p for p > 1.

P r o o f. By virtue of the denseness of C([0, T ], X) (the set of continuous functions

on [0, T ]) in Lp([0, T ], X) it suffices only to prove the result for f ∈ C([0, T ], X).

(i) Let p > 1 and 0 < t 6 T . It is easy to see that

‖L0f‖
p
p =

∫ T

0

1

tp

∥

∥

∥

∥

∫ t

0

f(s) ds

∥

∥

∥

∥

p

dt 6

∫ T

0

1

tp

(
∫ t

0

‖f(s)‖ ds

)p

dt = ‖L0(‖f‖)‖
p
p.

Then it suffices to prove the statement for X = C and f > 0. Let p′ be the conjugate

of p (1/p + 1/p′ = 1). Note that (p − 1)p′ = p and p − p/p′ = 1.

We perform integration by parts to obtain

‖L0(f)‖p =
1

1 − p
‖f‖p

1 +
p

p − 1

∫ T

0

f(t)

(

1

t

∫ t

0

f(s) ds

)p−1

dt

=
1

1 − p
‖f‖p

1 +
p

p − 1

∫ T

0

f(t)(L0(f)(t))
p−1

dt

6
1

1 − p
‖f‖p

1 +
p

p − 1
‖f‖p

(
∫ T

0

(L0(f)(t))(p−1)p′

dt

)1/p′

(by Hölder inequality)

=
1

1 − p
‖f‖p

1 +
p

p − 1
‖f‖p‖L0(f)‖p/p′

p .

This implies that ‖L0f‖p 6
p

p−1‖f‖p for all f ∈ C([0, T ],R+).

Now, we prove (ii). As above,

‖Lf‖p
p =

∫ T

0

∥

∥

∥

∥

∫ T

t

f(s)

s
ds

∥

∥

∥

∥

p

dt 6

∫ T

0

(
∫ T

t

‖f(s)‖

s
ds

)p

dt =
∥

∥L(‖f‖)
∥

∥

p

p
,

and it suffices again to prove the statement for X = C and f > 0. We have by

integration by parts

‖Lf‖p
p =

[

t

(
∫ T

t

f(s)

s
ds

)p]T

0

+ p

∫ T

0

f(t)

(
∫ T

t

f(s)‖

s
ds

)p−1

dt

6 p‖f‖p

∥

∥Lf
∥

∥

p/p′

p
(by Hölder inequality)

whence ‖Lf‖p 6 p‖f‖p for all f ∈ C
(

[0, T ],R+
)

. �
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Before giving the main result on the p-Weiss property for p ∈ [1,∞], we need the

following lemmas.

Lemma 2.3. Let A generate a bounded analytic C0-semigroup on a Banach space

X and let C ∈ L(D(A), Y ) where Y is an another Banach space. Let p ∈ [1,∞].

Consider the following statements:

(i) sup
z∈C0

(Re(z))1/p′

‖CR(z, A)‖ < ∞.

(ii) sup
t>0

t1/p‖CT(t)x‖ 6 Mp‖x‖ for x ∈ X and some Mp > 0.

Then (ii) ⇒ (i) for p ∈ (1,∞] and (i) ⇒ (ii) for p ∈ [1,∞].

P r o o f. (ii) ⇒ (i). Let p ∈ (1,∞]. By continuity of C on D(A), for all x ∈ X ,

z ∈ C0, we have

CR(z, A)x =

∫

∞

0

e−ztCT(t)xdt.

It follows that

‖CR(z, A)x‖ 6

∫

∞

0

e−Re(z)t‖CT(t)x‖ dt

6 Mp‖x‖

∫

∞

0

e−Re(z)t

t1/p
dt

=
Mp‖x‖

Re(z)1−1/p

∫

∞

0

e−s

s1/p
ds (s := Re(z)t)

=
Γ(1/p′)Mp‖x‖

Re(z)1/p′

where Γ is the usual Gamma function. This shows the assertion.

(i) ⇒ (ii). Let p ∈ [1,∞]. For θ ∈ (0, π], we denote by Sθ the open sector of all

z ∈ C\{0} such that Arg(z) ∈ (−θ, θ), Sθ its closure and by Γθ its boundary oriented

counterclockwise. As T(t) is a bounded and analytic semigroup, it is well known that

the spectrum of its generator A is contained in some C \ Sω with ω ∈ (π/2, π). By

the Cauchy integral formula, we have

T(t) =
1

2πi

∫

Γ

etzR(z, A) dz,

where Γ = Γγ with γ ∈ (π/2, ω).

Then for all x ∈ D(A)

‖CT(t)x‖ =

∥

∥

∥

∥

1

2πi

∫

Γ

etzCR(z, A)xdz

∥

∥

∥

∥

6
1

2π

∫

Γ

et Re(z)‖CR(z, A)x‖ |dz|.
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Note that |Re(z)|/|z| = sin(γ) for all z ∈ Γ. By virtue of the resolvent equation and

using the analyticity of the semigroup T(t), the statement (i) implies that

|z|1/p′

‖CR(z, A)‖ 6 MΓ sup
s∈C0

(Re(s)1/p′

)‖CR(s, A)‖ for all z ∈ Γ,

for some constant MΓ > 0.

On the other hand, it is straightforward to see that

‖CT(t)x‖ 6
1

t1/p

∫

Γ

|λ|1/peRe(λ) | dλ|

|λ|
MΓ sup

z∈C0

(Re(z)1/p′

)‖CR(z, A)‖‖x‖ (λ := tz)

=
Mp

t1/p
‖x‖,

where

(2.1) Mp = MΓ sup
z∈C0

(Re(z)1/p′

)‖CR(z, A)‖

∫

Γ

|λ|−1/p′

eRe(λ)|dλ|.

This completes the proof. �

Before stating the next lemma, we recall some basic facts on fractional powers.

The study of fractional powers of sectorial operators which are classical objects in

semigroup theory has a long history. Many results can be found in the book of

Amann [1], and in the original papers of Balakrishnan [3], Komatsu [14] and others.

Let A be a generator of a bounded semigroup. Then −A is sectorial. In

particular, the resolvent set ̺(−A) contains (−∞, 0) and the resolvent satisfies

sup
λ>0

‖λ(λ − A)−1‖ < ∞, and then for all 0 < θ 6 1 the fractional power (−A)θ is

well-defined. We refer to [14] for more details and references on fractional powers.

In the case θ = 1/2, we know from Arendt [[2], page 168], that (−A)1/2 is the unique

closed operator satisfying for x ∈ D(A), ((−A)1/2)2x = −Ax and

(−A)1/2x = lim
ε→0

(ε − A)1/2x = −
1

π

∫

∞

0

1

s1/2
R(s, A)Axds.

Moreover, D(A) is a core for (−A)1/2, and D((−A)1/2) = D((ε−A)1/2) (ε > 0). If,

in addition, T(t) is a bounded analytic C0-semigroup and θ ∈ (0, 1] then tθ(−A)θ
T(t)

is uniformly bounded on R
+ (see Theorem 12.1 [14]). In the rest of this paper we

set

(2.2) aθ = sup
t∈R+

‖tθ(−A)θ
T(t)‖ (0 < θ 6 1).
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In this case the fractional power (−A)θ is always finite-time p-admissible for all

θ < 1/p.

For θ = 1/p we have the following first characterization of the finite-time p-

admissibility of (−A)1/p for p ∈ [1,∞].

Lemma 2.4. Let A generate a bounded analytic C0-semigroup on a Banach space

X and p ∈ [1,∞]. Then the following statements are equivalent:

(i) (−A)1/p is finite-time p-admissible for A.

(ii) For all T > 0 there exists Cp(T ) > 0 such that ‖t1−1/p
T(t)Ax‖Lp([0,T ],X) 6

Cp(T )‖x‖ for all x ∈ D(A). (i.e. A is finite-time p-admissible of type 1− 1/p =

1/p′ see [9])

P r o o f. For p = 1, the assertions (i) and (ii) with C1(T ) = κ1(T ) are the same.

For p = ∞, both the assertions (i) and (ii) are always true with C∞(T ) = a1T .

(i) ⇒ (ii) Let p ∈ [1,∞). For x ∈ D(A) we have t1−1/p
T(t)Ax = −t1−1/p ×

(−A)1−1/p
T(t/2)(−A)1/p

T(t/2)x.

Since (−A)1/p is finite-time p-admissible for A, for all T > 0 and x ∈ D(A) we

have
∫ T

0

‖(−A)1/p
T(t)x‖p dt 6 κp

p(T )‖x‖p

for some constant κp(T ) depending only on T .

Thus, the assertion follows according to (2.2) with Cp(T ) = 21+1/p′

a1/p′κp(T ) for

1 6 p < ∞.

(ii) ⇒ (i). Let p ∈ (1,∞). For x ∈ D(A) and t > 0 we can write

t(−A)1/p
T(t)Ax = t1/p(−A)1/p

T(t/2)t1−1/p
T(t/2)Ax.

Again by uniform boundedness of the operator t1/p(−A)1/p
T(t/2) on [0, T ] and the

fact that the function t 7→ t1−1/p
T(t/2)Ax lies in Lp([0, T ], X), we deduce that the

function t 7→ t(−A)1/p
T(t)Ax is so. By applying the semigroup identity we get

(−A)1/p
T(t)x = T(t)(−A)1/px = (−A)1/p

T(T )x −

∫ T

t

(−A)1/p
T(s)Axds

= (−A)1/p
T(T )x −

∫ T

t

s(−A)1/p
T(s)Ax

s
ds

for all 0 6 t 6 T .

Since T 1/p(−A)1/p
T(T ) is bounded and the function t 7→ t(−A)1/p

T(t)Ax lies in

Lp([0, T ], X), Proposition 2.2 yields the finite-time p-admissibility of (−A)1/p and

we have precisely

‖(−A)1/p
T(t)x‖Lp([0,T ],X) 6 κp(T )‖x‖
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for all x ∈ D(A) with

κp(T ) = a1/p

(

1 + 22p+1pCp(T )
)

.

�

Corollary 2.5. Let A generate a bounded analytic C0-semigroup and let

C ∈ L(D(A), Y ). For p ∈ [1,∞], if (−A)1/p is finite-time p-admissible for A

and sup
z∈C0

(Re(z)1/p′

)‖CR(z, A)‖ < ∞, then for all T > 0 there exists C′

p(T ) > 0 such

that ‖tCT(t)Ax‖Lp([0,T ],X) 6 C′

p(T )‖x‖ for all x ∈ D(A).

P r o o f. For p = ∞, p′ = 1, (−A)1/p = I is always finite time ∞-admissible. Let

x ∈ D(A) and t ∈ (0, T ]. Since sup
z∈C0

(Re(z)1/p′

)‖CR(z, A)‖ < ∞, Lemma 2.3 implies

that sup
t∈[0,T ]

‖CT(t)x‖ 6 M∞‖x‖ and we have tCT(t)Ax = 2CT(t/2)t/2AT(t/2)x.

The result follows with C′

∞
(T ) = 2a1M∞.

Now, we prove the corollary for p ∈ [1,∞). Let t > 0 and x ∈ D(A). We have

again tCT(t)Ax = t1/pCT(t/2)t1−1/p
T(t/2)Ax. According to Lemmas 2.3 and 2.4

we get the claim. More precisely, if (−A)1/p is finite-time p-admissible for A, then

there exists κp
p(T ) > 0 such that for all x ∈ D(A)

∫ T

0

‖(−A)1/p
T(t)x‖p dt 6 κp

p(T )‖x‖p.

Thus we obtain

‖tCT(t)Ax‖Lp([0,T ],X) 6 C′

p(T )‖x‖

with

C′

p(T ) = 23+1/pa1/p′κp(T )Mp (Mp is given by (2.1)).

�

The following theorem is the main result of the paper. It yields a characterization

of the finite-time Weiss-property in terms of the admissibility of (−A)1/p.

Theorem 2.1. Let A generate a bounded analytic C0-semigroup on a Banach

space X and p ∈ [1,∞]. Then the following assertions are equivalent:

(i) (−A)1/p is finite-time p-admissible for A.

(ii) A possesses the finite-time p-Weiss property on C0.

As mentioned above this result was first obtained by Le Merdy [15] for p = 2 and

by Haak-Kunstmann [9] for p ∈ (1,∞]. The proof below includes the case p = 1.
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P r o o f. (ii)⇒ (i) For p ∈ [1,∞] it follows directly from (2.2) since the resolvent

of A is given by the Laplace transform of the semigroup.

(i) ⇒ (ii) For p = +∞ the required result is given by Lemma 2.3.

For p = 1, assume that A is finite-time 1-admissible for itself. Now, let ε > 0 and

let C : D(A) → Y be a continuous operator. Since CT(t)x = C(ε−A)−1(ε−A)T(t)x

for all x ∈ D(A) and the fact that M := sup
0<s<1

‖C(s − A)−1‖ is finite, by letting

ε ↓ 0, we obtain for all x ∈ D(A)

‖CT(t)x‖ 6 M‖(−A)T(t)x‖,

which implies that C is finite-time 1-admissible for A.

For p ∈ (1,∞), assume that (−A)1/p is a finite-time p-admissible observation for A.

Consider a continuous operatorC : D(A) → Y such that sup
z∈C0

Re(z)1/p′

‖CR(z, A)‖ <

∞. Thanks to Corollary 2.5, for all x ∈ D(A) and T > 0 the function f(t) :=

tCT(t)Ax lies in Lp([0, T ], X). Moreover, for any x ∈ D(A) and t ∈ (0, T ] we have

CT(t)x = CT(T )x −

∫ T

t

CT(s)Axds = CT(T )x − (Lf)(t).

By Lemma 2.3 sup
T>0

T 1/p‖CT(T )‖ < ∞ and by applying Proposition 2.2 to the func-

tion f we obtain

∫ T

0

‖CT(s)x‖p ds 6 2p
(

Mp
p + 22p+1ppMp

p κp
p(T )ap

1/p′

)

‖x‖p,

where the constant Mp is given by (2.1). This gives the claim. �

Corollary 2.6. Let A generate a bounded analytic C0-semigroup on a Banach

space X and let p ∈ [1,∞]. Then the following assertions are equivalent:

(i) (−A)1/p is p-admissible for A.

(ii) A possesses the p-Weiss property on C0.

P r o o f. (i) ⇒ (ii) for p = ∞ and (ii) ⇒ (i) for p ∈ [1,∞] are obtained as in

Proposition 2.1.

So, we prove (i) ⇒ (ii) for p ∈ [1,∞). Assume that (−A)1/p is p-admissible for A

with
∫

∞

0

‖(−A)1/p
T(t)x‖p dt 6 κp

p‖x‖
p

for all x ∈ D(A) and for some κp > 0.
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The fact that the semigroup T is bounded and analytic, implies that the function

t 7→ t1−1/p(−A)1−1/p
T(t) is uniformly bounded on R

+ with the bound a1/p′ given

by (2.2). Again, Lemma 2.4 implies that t 7→ t1−1/p
T(t)Ax is in Lp(R+, X) with

∫

∞

0

‖t1−1/p
T(t)Ax‖p dt 6 22p−1ap

1/p′κ
p
p‖x‖

p.

Now, consider a continuous operator C : D(A) → Y satisfying the estimate

sup
z∈C0

Re(z)1/p′

‖CR(z, A)‖ is finite. Thanks to Corollary 2.5, it is easy to see that

f(t) = tCT(t)Ax is also in Lp(R+, X) and

(2.3)

∫

∞

0

‖f(t)‖p dt 6 2p+1ap
1/p′

κp
pa

p
pM

p
p ‖x‖

p.

As above, for x ∈ D(A) and t ∈ (0, T ] we have

CT(t)x = CT(T )x −

∫ T

t

CT(s)Axds = CT(T )x − (Lf)(t).

Hence,

‖CT(t)x‖p 6 2p
(

‖CT(T )x‖p + ‖(Lf)(t)‖p
)

.

According to Lemma 2.3 and Proposition 2.2 we obtain

∫ T

0

‖CT(t)x‖p dt 6 2p
(

T ‖CT(T )x‖p + ‖(Lf)‖p
p

)

6 2p(Mp
p ‖x‖

p + pp‖f‖p
p)

6 2pMp
p

(

1 + 2p+1ap
1/p′

κp
pa

p
p

)

‖x‖p,

which implies that the operator C is finite-time p-admissible for A and

sup
T>0

∫ T

0

‖CT(t)x‖p dt < ∞.

Since
∫

∞

0 ‖CT(t)x‖p dt = sup
T>0

∫ T

0 ‖CT(t)x‖p dt, the proof is complete. �

Now we will show that the assumption that A generates an analytic semigroup in

Theorem 2.1 cannot be omitted.
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Proposition 2.7. Let A be a generator of a bounded C0-semigroup on a Ba-

nach space X . If (−A)1/p is finite-time p-admissible for A with p ∈ [1,∞), then A

generates an analytic semigroup on X .

P r o o f. Assume that (−A)1/p is a finite-time p-admissible observation operator

for A. It suffices to show that there exists K > 0 such that ‖AT(t)‖ 6 K/t, 0 < t 6 1

(see, e.g. [2]). Indeed, for x ∈ D(A), Hahn-Banach’s Theorem implies that there

exists ϕt,x ∈ X∗ with ‖ϕt,x‖ = 1 such that

t‖(−A)1/p
T(t)x‖ = t|〈(−A)1/p

T(t)x, ϕt,x〉|

= t|〈(−A)1/p
T(t − s)T(s)x, ϕt,x〉| (0 6 s 6 t)

= t|〈(−A)1/p
T(t − s)x,T∗(s)ϕt,x〉|.

Hence, using the Cauchy-Schwartz inequality we find

(2.4)

t‖(−A)1/p
T(t)x‖ 6

∫ t

0

‖(−A)1/p
T(t − s)x‖‖T∗(s)ϕt,x‖ ds

6

(
∫ t

0

‖(−A)1/p
T(s)x‖p ds

)1/p( ∫ t

0

‖T∗(s)ϕt,x‖
p′

ds

)1/p′

.

Since (−A)1/p is finite-time p-admissible for A we have

(2.5)

∫ t

0

‖(−A)1/p
T(s)x‖p ds 6 κp

p‖x‖
p

for all t ∈ (0, 1] and for some constant Mp > 0 not depending on x ∈ D(A). Since

T(t) is bounded on X , T∗(t) is also bounded on X∗. Combining (2.5) and (2.4) we

deduce that

(2.6) ‖t1/p(−A)1/p
T(t)x‖ 6 αp‖x‖, x ∈ D(A)

for some constant αp > 0. By density we deduce that (2.6) is true for any x ∈ X .

For n integer greater than p we obtain

(2.7) ‖tn/p(−A)n/p
T(t)x‖ 6 αn

p nn/p‖x‖, x ∈ X,

and by the fact that 1 ∈ [ 1p , n
p [, the real interpolation completes the proof. �
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