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ON EXTREMAL SIZES OF LOCALLY k-TREE GRAPHS

Mieczys law Borowiecki, Zielona Góra, Piotr Borowiecki, Gdańsk,

Elżbieta Sidorowicz, Zielona Góra, Zdzis law Skupień, Kraków

(Received August 24, 2008)

Abstract. A graph G is a locally k-tree graph if for any vertex v the subgraph induced by
the neighbours of v is a k-tree, k > 0, where 0-tree is an edgeless graph, 1-tree is a tree. We
characterize the minimum-size locally k-trees with n vertices. The minimum-size connected
locally k-trees are simply (k + 1)-trees. For k > 1, we construct locally k-trees which are
maximal with respect to the spanning subgraph relation. Consequently, the number of
edges in an n-vertex locally k-tree graph is between Ω(n) and O(n2), where both bounds
are asymptotically tight. In contrast, the number of edges in an n-vertex k-tree is always
linear in n.
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1. Introduction

The graphs G = (V, E) considered in this paper are finite and simple, i.e., undi-

rected, loopless and without multiple edges. Let P be a family of graphs. A graph

G is said to satisfy local property P if for all v ∈ V (G) we have G[N(v)] ∈ P , where

N(v) denotes the neighbourhood of v and G[S] stands for the subgraph induced by

S ⊆ V (G).

The graphs with local property P for |P| = 1 have been studied by many authors.

The study has been inspired by the Trahtenbrot-Zykov problem [23] whether, given

a graph H , there exists a graph G which is locally constant, namely locally H .

Summaries of the results of this type can be found in the survey papers by Hell [10]

and Sedláček [19]. The major question is then the existence of any (or just finite)

local realization G of H , see [4] for the nonexistence and [2], [3] for the existence

of algorithms. The set of forbidden subgraphs of a graph with a local hereditary

property P has been described by Borowiecki and Mihók [1]. Interesting extremal
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problems arise in case P is infinite. Erdős and Simonovits [6] found the maximum

number of edges in a locally acyclic graph. Ryjáček and Zelinka [17] constructed

locally disconnected graphs with a large number of edges while Fronček [7] found an

upper bound for the number of edges of a locally linear graph (i.e., for all v ∈ V (G),

G[N(v)] is a regular graph of degree 1), and a locally path graph [8] (i.e., for all

v ∈ V (G), G[N(v)] is a path). Zelinka [22] studied locally tree graphs, i.e., the

graphs in which the subgraph induced by N(v) is a tree for all v ∈ V (G). He proved

that the minimum number of edges in a connected locally tree graph with n vertices

is 2n − 3 and posed the problem of determining the maximum. The problem was

addressed by Kowalska [12]. She proved that |E(G)| 6 1
2 (n2) − 1

2 (5n) + 7 holds for

any locally tree graph G with n vertices.

Sedláček [18] introduced an N2-local property. The edge-induced subgraph on

the set of all edges of a graph G that are adjacent to a given vertex x is denoted

by N2(x, G). A graph G has an N2-local property P if the subgraph N2(x, G) has

property P for every vertex x ∈ V (G). The maximum size among planar N2-locally

disconnected graphs of given order was found in [16]. Also the concept of edge-local

properties was studied, e.g., in [21], [13]. A graph G is said to satisfy an edge-local

property P if for any edge e = xy the subgraph induced by all vertices adjacent to

at least one vertex x, y but different from them has property P . An upper bound

for the number of edges of edge-locally acyclic graphs was proven by Fronček [16].

In this paper we deal with infinitely many local infinite properties, namely, these

are locally k-tree graphs, k = 0, 1, . . .. We need to define k-trees and a specific

ordering of their vertices for k > 0 only (because 0-trees are just edgeless graphs).

To start with, let {v1, . . . , vn} be the vertex set of a graph G and let Gi denote the

subgraph of G induced by vertices {v1, . . . , vi}, i > 1. For each vj ∈ V (Gi), Ni(vj)

and di(vj) denote the neighbourhood and the degree of vj in Gi, respectively. Any

subgraph of G which is isomorphic to Kk (a complete graph with k vertices) is called

a k-clique. Assuming 1 6 k 6 n, the ordering (v1, . . . , vn) of V (G) is the k-perfect

elimination ordering (k-PEO for brevity) if vertices {v1, . . . , vk} induce a k-clique

and for each i > k the set Ni(vi) also induces a k-clique. Finally, the graph G is a

k-tree with k > 1 if it has a k-perfect elimination ordering while, for k > 0, it is a

locally k-tree graph if for any vertex v the subgraph induced by N(v) is a k-tree.

In order to generate a PEO of a graph, Rose at al. [15] developed a method called

Lexicographic Breadth First Search that has been also used in the recognition of

k-trees [11].

Theorem 1 ([15]). The complexity of a k-tree recognition is O(kn), where n =

|V (G)|.
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Theorem 2. The complexity of a locally k-tree graph recognition is O(km),

where m = |E(G)|.

P r o o f. Let G be a locally k-tree graph. It is enough to test whether or not

G[N(v)] is a k-tree for any v ∈ V (G). Hence
∑

v∈V (G)

O(kd(v)) = O(km), and the

theorem follows. �

In Section 2 we give basic properties of k-trees. We next prove that each (k + 1)-

tree is a locally k-tree graph. We conversely prove that each connected locally k-tree

graph contains a (k + 1)-tree as a spanning subgraph. Hence a locally k-tree graph

has at least k + 1 vertices. We characterize minimum-size locally k-tree graphs on

n vertices. Namely, these are (k + 1)-forests with exactly ⌊n/(k + 1)⌋ components.

The smallest size among locally k-tree graphs on n vertices is determined and is linear

in n. In fact, the smallest size is asymptotic to (k +1)n if graphs are connected, and

asymptotic to nk/2 otherwise.

In Section 3 we give some properties and constructions of locally k-tree graphs.

Section 4 is devoted to the construction of maximal locally k-tree graphs.

For brevity, we will omit definitions of standard notions of graph theory we use

here. For these and other related concepts we refer the reader to [5].

2. The minimum size of locally k-tree graphs

To determine the minimum size of locally k-tree graphs we need some well-known

properties of k-trees.

Lemma 1. If G is a k-tree, then |E(G)| =
(

k

2

)

+ (|V (G)| − k)k and, for any

subgraph H of G with order at least k, we have |E(H)| 6
(

k
2

)

+ (|V (H)| − k)k.

Theorem 3. Let G be a k-tree and let {v1, . . . , vk} ⊆ V (G) be a set of vertices

which induces Kk in G. Then the ordering (v1, . . . , vk) can be extended to a k-PEO

of G.

We extend Theorem 3 in the following way.

Theorem 4. Let G be a k-tree and let H be a subgraph of G which also is a

k-tree. Then each k-PEO of H can be extended to a k-PEO of G.

P r o o f. Suppose that this is not the case. Let H be a subgraph of G with the

maximum number of vertices which is a k-tree and such that there is a k-PEO of H

which cannot be extended to a k-PEO of G. Let (v1, . . . , vn) be a k-PEO of G and
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let (vi1 , . . . , vit
) be an ordered subset of {v1, . . . , vn} which contains all vertices of H .

Obviously t < n.

Let us first prove that (vi1 , . . . , vit
) is a k-PEO of H . Since H is a k-tree

with t vertices, we have |E(H)| =
(

k

2

)

+ k(t − k). On the other hand, |E(H)| 6

|E(G[{vi1 , . . . , vik
}])| +

t
∑

j=k+1

dij
(vij

). Since |E(G[{vi1 , . . . , vik
}])| 6

(

k
2

)

and
t

∑

j=k+1

dij
(vij

) = k(t − k), we conclude that the vertices {vi1 , . . . , vik
} induce Kk

and for j = k + 1, . . . , t the vertices N(vij
) also induce Kk. Hence the ordering

(vi1 , . . . , vit
) is a k-PEO of H .

If there exists a vertex vj , j > it, such that Nj(vj) ⊆ V (H) then the ordering

(vi1 , . . . , vit
, vj) is a k-PEO and so G[V (H) ∪ {vj}] is a k-tree with more vertices

than H , a contradiction. If such a vertex does not exist then vi1 6= v1 (note that

G 6= H). Then the vertices vi1 , . . . , vik
have a common neighbour vp, p < i1. Hence

dH(vp) = k and G[V (H) ∪ {vp}] is a k-tree, a contradiction. �

Lemma 2. If a graph G is a (k + 1)-tree, then G is locally k-tree.

P r o o f. Let (v1, . . . , vn) be a (k + 1)-PEO of a graph G and let vj be a ver-

tex of G. Let (vi1 , . . . , vit
) be an ordered subset of {v1, . . . , vn} which contains all

vertices of N(vj). Since (v1, . . . , vn) is a (k + 1)-PEO, it follows that the vertices

{vi1 , . . . , vik+1
} induce a clique and ik+1 < j 6 ik+2. Moreover, Nip

(vip
) ⊆ N(vj) for

p > k +2. This implies that (vi1 , . . . , vit
) is a k-PEO of the graph induced by N(vj).

�

Theorem 5. If a connected graph G is locally k-tree, then for any subgraph T

of G which is a (k+1)-tree there is a spanning subgraphH of G which is a (k+1)-tree

and contains T .

P r o o f. Let H ⊆ G be a (k + 1)-tree which has the maximum order and

contains T . Suppose that V (H) 6= V (G). Since G is connected, there exists a vertex

of H adjacent to a vertex of G − H . Let x be the first such vertex in a (k + 1)-

PEO of H . From Theorem 4 it follows that any k-PEO of the subgraph induced

by N(x) ∩ V (H) can be extended to a k-PEO of the subgraph induced by N(x).

Let (v1, . . . , vt) be a k-PEO of G[N(x) ∩ V (H)] and let y be the first vertex of the

k-PEO of G[N(x)] which is not in H . Then (v1, . . . , vt, y) is also a k-PEO. Moreover,

since xy ∈ E(G), the subgraph induced by N(y) ∩ V (H) is a (k + 1)-clique. Thus

G[V (H)∪{y}] is a (k+1)-tree containing T , which contradicts the maximality of H .

�
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Corollary 1. If a connected graph G is locally k-tree, then G contains a spanning

(k + 1)-tree.

P r o o f. It is easy to see that for any vertex x ∈ V (G) there is a k-clique

in G[N [x]]. Let K be a (k + 1)-clique in G. Then by Theorem 5, K can be extended

to a spanning subgraph of G which is a (k + 1)-tree. �

Corollary 2. If G is a connected locally k-tree graph of order n and smallest size,

then |E(G)| = n(k + 1) −
(

k+2
2

)

.

If G is not connected and is a locally 0-tree graph of order n with the minimum

number of edges, then G is isomorphic to Kn. More generally, a locally k-tree graph

of order n with the minimum number of edges is a (k + 1)-forest, whence n > k + 1.

Theorem 6. Minimum-size locally k-tree graphs on n vertices are precisely the

(k + 1)-forests with ⌊n/(k + 1)⌋ components (each of which is a (k + 1)-tree).

P r o o f. Let Gn be a minimum-size locally k-tree graph on n vertices and let

n = (k+1)p+r where p = ⌊n/(k+1)⌋ > 1 and r = n mod(k+1) (whence 0 6 r 6 k).

If r = 0 then clearlyGn = pKk+1. Similarly, for any r, p is the number of components

of Gn. Hence, for r > 0, given any Gn−1, adding a new vertex, say v, together with

k + 1 edges which join v to a (k + 1)-clique of Gn−1 gives a Gn. Moreover, each Gn

with r > 0 can thus be obtained, which completes the proof. �

Corollary 3. Let n = (k + 1)p + r where r = n mod(k + 1). A minimum-

size locally k-tree graph Gn on n vertices has nk/2 + (k + 2)r/2 edges, which is

asymptotically nk/2 as n → ∞.

P r o o f. From the proof of Theorem 6 it follows that |E(Gn)| = p
(

k+1
2

)

+(k+1)r

where p = (n − r)/(k + 1). Therefore |E(Gn)| = nk/2 + (k + 2)r/2 with r =

n − (k + 1)⌊n/(k + 1)⌋ 6 k, whence the result follows. �

3. Properties and constructions of locally k-tree graphs

The union of two vertex-disjoint graphs G and H is a graph G ∪ H such that

V (G ∪ H) = V (G) ∪ V (H) and E(G ∪ H) = E(G) ∪ E(H). If A ⊆ E(G), then by

G + A we denote a graph with V (G + A) = V (G) and E(G + A) = E(G) ∪ A.

Construction 1: k-join

LetH andH ′ be two vertex-disjoint copies ofKk+1 and let V (H) = {v1, . . . , vk+1},

V (H ′) = {v′1, . . . , v
′
k+1}. Then a k-join of H and H ′, denoted by H ⊕H ′, is defined
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as follows:

H ⊕ H ′ = (H ∪ H ′) + E′,

where E′ = {viv
′
j : i = 1, 2, . . . , k + 1, j = i, i + 1, . . . , k + 1}.

New edges, which form the set E′, are called the joining edges of the k-join.

v1 v
′

1

v
′

2
v2

v
′

1
v1

v2v
′

2

Figure 1. 1-join: H ⊕ H
′ and H

′
⊕ H .

The graphs H ⊕ H ′ and H ′ ⊕ H are isomorphic, but as labeled graphs they are

different. The importance of this fact will be seen in the next construction, where

we use special graphs to obtain non-isomorphic locally k-tree graphs.

Construction 2: k-join substitution

A k-join substitution of a graph G is a graph G′ that we obtain by replacing each

vertex of G by a (k +1)-clique Kv, and by adding edges between the cliques Kv and

Kw for each edge vw of G such that the subgraph of G′ induced on the vertices of

the two cliques Kv, Kw is a k-join of Kv and Kw.

Remark 1. If G′ is a result of a k-join substitution of G, then G′ has exactly

(k + 1)|V (G)| vertices and exactly
(

k+2
2

)

|E(G)| edges.

Remark 2. If graphs H1 and H2 are obtained from G by the k-join substitution,

they need not be isomorphic. The result of the k-join substitution depends on the

labels (the order) of vertices of (k + 1)-cliques and the order in which the k-join is

performed on “adjacent” (k + 1)-cliques.

By Kk+1
⊕
→ G we will denote the set of graphs which can be obtained from G by

a k-join substitution.

Figure 2. Two non-isomorphic graphs in K2
⊕
→ C5.
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Theorem 7. If G is a K3-free graph, then each graph in Kk+1
⊕
→ G is locally

k-tree.

P r o o f. Let H be a graph obtained from G by a k-join substitution and let

v′ ∈ V (H). Let Kv be a (k + 1)-clique which contains the vertex v′ and which

replaces the vertex v of G. Since G is K3-free, the set NG(v) = {u1, . . . , ut}

is independent. Let Kui

be a (k + 1)-clique which replaces the vertex ui. We

will show that the graph F induced by vertices V (Kv) ∪ V (Ku1

) ∪ . . . ∪ V (Kut

)

is a (k + 1)-tree. Let {ui
1, . . . , u

i
k+1} be the vertex set of Kui

, i = 1, . . . , t,

which is ordered so that |N(ui
j) ∩ V (Kv)| = k + 2 − j, j = 1, . . . , k + 1. Then

(v1, . . . , vk+1, u
1
1, . . . , u

1
k+1, u

2
1, . . . , u

2
k+1, . . . , u

t
1, . . . , u

t
k+1) is a (k + 1)-PEO, where

(v1, . . . , vk+1) is an appropriate PEO of Kv. Hence F is a (k + 1)-tree and since

NH(v′) = NF (v′) we obtain that the graph induced by NH(v′) is a k-tree. �

If H ∈ Kk+1
⊕
→ G, then |V (H)| = (k + 1)|V (G)|. To obtain a locally k-tree with

n vertices (for arbitrary n) we can use the next lemma.

Lemma 3. Let G be a locally k-tree graph and H a (k+1)-clique of G. If we join

a new vertex v with all vertices of H , then the resulting graph is also locally k-tree.

A subgraph H ⊆ G is called a Kt-factor of G if H is a spanning subgraph of G,

and H is the union of vertex-disjoint t-cliques. By LF (k) we denote the set of locally

k-tree graphs which contain a Kk+1-factor.

Lemma 4. Let G and F be disjoint k-trees. Let G′ and F ′ be k-cliques in G

and F , respectively. Let H be a graph obtained from the graphs G and F by

bijectively identifying vertices of G′ with those of F ′ and leaving the remaining

vertices unchanged. Then H is a k-tree.

P r o o f. Let V (G′) = {v1, . . . , vk} and V (F ′) = {w1, . . . , wk}, where the no-

tation is chosen such that vi and wi are identified into a vertex, say vi, of H .

Assume that the remaining vertices are denoted so that (v1, v2, . . . , v|V (G)|) and

(w1, w2, . . . , w|V (F )|) are k-PEO’s of G and F , respectively (by Theorem 3 such

k-PEO’s exist). Then the ordering (v1, v2, . . . , v|V (G)|, wk+1, . . . , w|V (F )|) is a k-PEO

of H . Hence H is a k-tree. �

Theorem 8. Let F be a locally k-tree graph and let F ′ be an induced subgraph

of F such that

(1) F ′ is the union of (k + 1)-cliques, and

(2) there exists a locally k-tree graph G such that F ′ is a spanning subgraph of G,

and such that for each edge uv ∈ E(G) \ E(F ′), the distance dF (u, v) of u and

v in F is at least 3.
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Then the graph obtained from F by adding the edges E(G) \E(F ′) is also a locally

k-tree graph.

P r o o f. Let F ′′ be the graph obtained from F by adding the edges E(G)\E(F ′).

Let S ⊆ V (F ′′) be the set of vertices which are incident to edges which were added

to F ′′. Since all edges which we added connect vertices which are in the distance

at least 3, it follows that for any vertex x ∈ V (F ′′) \ S the graphs induced by the

neighbours of x in F ′′ and in F are the same, i.e., it is a k-tree. For any vertex y ∈ S

the graph induced by its neighbours is a gluing of two k-trees (i.e., by identification

of vertices of k-cliques which was described in Lemma 4), so that the resulting graph

is a k-tree. �

4. Construction of maximal locally k-tree graphs

A locally k-tree graph is maximal, if it is not a spanning subgraph of another

locally k-tree graph. In this section, we describe a construction of maximal locally

k-tree graphs for k > 1.

Let G(a, b; k) denote a graph obtained from a complete bipartite graph Ka,b by

the k-join substitution performed on (k + 1)-cliques which replace the vertices of an

independent set of order a and (k+1)-cliques replacing the vertices of an independent

set of order b.

Recall that LF (k) is the set of locally k-tree graphs which contain a Kk+1-factor.

Proposition 1. Let a, b, k be positive integers. Then G(a, b; k) ∈ LF (k).

P r o o f. By Theorem 7 each graph obtained from a K3-free graph by the k-join

substitution is locally k-tree. Then G(a, b; k) is a locally k-tree graph. It is easy to

see that G(a, b; k) contains a Kk+1-factor, and hence, G(a, b; k) ∈ LF (k). �

The graph G(a, b; k) has exactly (a + b)(k + 1) vertices and exactly ab
(

k+2
2

)

edges.

Then the number of edges of G(a, b; k) for a given number of vertices is maximized

if a = b. In that case, G(a, a; k) is a graph on n = 2a(k + 1) vertices and a2
(

k+2
2

)

=
1
8n2(k + 2)/(k + 1) edges. That is, we obtain the following bound.

Corollary 4. If n is divisible by k + 1, then a locally k-tree graph on n vertices

with maximum number of edges has at least 1
8n2(k + 2)/(k + 1) edges.

It turns out that we can do better. We describe a construction of a locally k-tree

graph that works for all sufficiently large values of n, and using this graph we obtain

an improved bound.
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z1

1
z1

2
z2
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z2
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y1
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y1
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x1
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x1
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x1

3

Step 1. The graph G1

z1

1
z1

2
z2

1
z2

2

y1

1
y1

2

x1

1

x1

2

x1

3

Step 2. The graph G2

z1

1
z1

2
z2

1
z2

2

y1

1
y1

2

x1

1

x1

2

x1

3

Step 2. The graph G3 = G(1, 1, 2; 1)

Figure 3. Construction of maximal locally k-tree graphs.

Construction 3

For positive integers k, p, r and t, let G(p, r, t; k) denote the graph obtained from

graphs G0, G1, G2 and G3 defined as follows:

(i) LetG0 denote the union of r+t cliques Y1, . . . , Yr, Z1, . . . , Zt of order (k+1), and

p cliques X1, . . . , Xp of order (k + 2) where the vertices of each Xi are labeled

{xi
1, x

i
2, . . . , x

i
k+2}, the vertices of each Yi are labeled {yi

1, y
i
2, . . . , y

i
k+1}, and

the vertices of each Zi are labeled {zi
1, z

i
2, . . . , z

i
k+1}. Moreover, let XY

i denote

the clique on the vertices {xi
1, . . . , x

i
k+1}, and let XZ

i denote the clique on the

vertices {xi
2, . . . , x

i
k+2}.

(ii) Let G1 denote the graph obtained from G0 by adding edges between each

clique Yi and each clique Zj such that the subgraph of G1 induced on the

cliques Yi, Zj is a k-join of Yi and Zj . (Note that the subgraph of G0 induced

on the cliques Y1, . . . , Yr, Z1, . . . , Zt is a k-join substitution of Kr,t).

(iii) Let G2 denote the graph obtained from G1 by adding edges between each

clique Yi and each clique XY
j such that the subgraph of G2 induced on the

cliques Yi, X
Y
j is a k-join of Yi and XY

j .
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(iv) Let G3 denote the graph obtained from G2 by adding edges between each

clique Zi and each cliqueXZ
j such that the subgraph ofG3 induced on cliques Zi,

XZ
j is a k-join of Zi and XZ

j .

(v) Then G(p, r, t; k) is the graph G3.

Proposition 2. The graph G(p, r, t; k) has p(k + 2) + (r + t)(k + 1) vertices and

(pr + pt + rt)
(

k+2
2

)

+ p
(

k+2
2

)

+ (r + t)
(

k+1
2

)

edges.

For k > 1 and n > 3k + 4 let us denote by G(k, n) the set of locally k-tree graphs

of order n which can be obtained by Construction 3, i.e., G(k, n) = {G(p, r, t; k) :

p, r, t > 1 and p(k + 2) + (r + t)(k + 1) = n}.

Lemma 5. For any integer n > (k + 2)2 the set G(k, n) is nonempty.

P r o o f. By Proposition 2, the graph G(p, r, t; k) has n = p(k + 2) + (r + t)×

(k+1) = (k+1)(r+ t+p)+p vertices. Let a = ⌊n/(k+1)⌋ and let b = n mod(k+1),

and 0 6 b 6 k. We observe that n > (k + 2)2 implies that if b = 0, then a > k + 4,

and if b > 1, then a > k+2. Hence, if b = 0, we let p = k+1, r = 1 and t = a−k−3,

and if b > 1, we let p = b, r = 1 and t = a− b− 1. Clearly, since k > 0, in both cases

we have p, r, t > 1 and n = p(k + 2) + (r + t)(k + 1), which proves the lemma. �

Recall that a locally k-tree graph G is called maximal if G is not a spanning

subgraph of any other locally k-tree graph.

We prove that the graphs in G(k, n) are maximal locally k-tree graphs.

Lemma 6. Let G be a locally k-tree graph and let E′ ⊆ E(G) be a set of edges

such that G + E′ is also a locally k-tree graph. Then for any edge uv ∈ E′ we have

dG(u, v) > 3.

P r o o f. Let u, v ∈ V (G) and dG(u, v) = 2. Then there is a vertex x such that

u, v ∈ N(x). Let d(x) = d. By our assumption H = G[N(x)] is a k-tree, hence

|E(H + uv)| = (d − k)k +
(

k

2

)

+ 1. Thus by Lemma 1, H + uv is not a k-tree and

H + uv is not a subgraph of any k-tree. �

Lemma 7. Let G be a locally k-tree graph. Let E′ ⊆ E(G) be a set of edges such

that G + E′ also is a locally k-tree graph. Then there is a vertex v such that v is

incident to k + 1 edges of E′, say vv1, vv2, . . . , vvk+1, and the vertices v1, . . . , vk+1

induce a (k + 1)-clique in G.

P r o o f. Let G′ = G+E′ and let w be a vertex of G which is incident to at least

one edge of E′. Let (w1, . . . , wp) be a k-PEO of G′[N(w)] such that w, w1, . . . , wk

induce a (k + 1)-clique in G (by Theorem 3 such a k-PEO exists). Let v be the
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first vertex of (w1, . . . , wp) which is joined with w by an edge belonging to E′. Let

{v1, v2, . . . , vk} ⊆ N(v) be the subset of (w1, . . . , wp) which precede v and induce a

k-clique in G′. From Lemma 6 it follows that the edges of this clique are in E(G). To

complete the proof it suffices to show that the edges v1v, . . . , vkv are in E′. Suppose

that this is not true and there is an edge vvi which is not in E′. Then dG(v, w) = 2

in G and the edge vw ∈ E′, a contradiction with Lemma 6. �

Theorem 9. If G ∈ G(k, n), then G is a maximal locally k-tree graph.

P r o o f. First we will show that G is a locally k-tree graph. The graph G0

is a union of locally k-trees, hence it is locally k-tree. The edges which we added

to G0 in (ii) satisfy the assertions of Theorem 8, hence G1 is locally k-tree. Similarly,

the edges which we added to G1 in (iii) and to G2 in (iv) satisfy the assertions of

Theorem 8, hence G3 is locally k-tree. Thus G is locally k-tree. The graph G does

not contain any vertex v for which there are vertices v1, . . . , vk+1 which induce a

(k + 1)-clique and are in distance at least 3 with v. Then by Lemma 7, G is a

maximal locally k-tree graph. �

5. The maximum size of locally k-tree graphs

In this section we characterize the graphs of G(k, n) with the maximum number

of edges (for fixed k and n). As a consequence, we obtain a lower bound on the

maximum number of edges in a locally k-tree graph on n vertices.

Lemma 8. Let k, n, p, r, t be positive integers such that n > (k + 2)2 and

n = p(k + 2) + (r + t)(k + 1). If the graph G(p, r, t; k) has the maximum number of

edges for fixed k, n, p, then |r − t| 6 1.

P r o o f. Suppose that G = G(p, r, t; k) is the graph with the maximum number

of edges for fixed k, n, p and r > t + 2. Then we construct a new graph G′ =

G(p′, r′, t′; k) using Construction 3 with parameters p′ = p, r′ = r − 1, t′ = t + 1.

Then

|E(G′)| = |E(G)| + (r − t − 1)

(

k + 2

2

)

> |E(G)|.

Hence the graph G′ has more edges than G, a contradiction. �
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Lemma 9. Let k, n be positive integers such that n > (k + 2)(3k + 2). If the

graph G(p, r, t; k) has the maximum number of edges for fixed k, n, then p satisfies

one of the following conditions

1

k + 2

( k

3k + 2
n −

k + 1

2(3k + 2)
(3k2 + 8k + c)

)

6 p 6
1

k + 2

( k

3k + 2
n +

k + 1

2(3k + 2)
(3k2 + 8k + 8 + c)

)

where c = 0 if k is even, c = −1 if k is odd and (n − p(k + 2))/(k + 1) is odd, and

c = 1 if k is odd and (n − p(k + 2))/(k + 1) is even.

P r o o f. Let G = G(p, r, t; k) have the maximum number of edges. Lemma 8

implies that |r − t| 6 1. Then the graph G has

|E(G)| = p
n − p(k + 2)

k + 1

(

k + 2

2

)

+ p

(

k + 2

2

)

+
n − p(k + 2)

k + 1

(

k + 1

2

)

+
⌊(n − p(k + 2)

2(k + 1)

)2⌋
(

k + 2

2

)

edges.

Case 1. k is even.

Suppose that p < 1/(k + 2)
(

k/(3k + 2)n − (k + 1)/(2(3k + 2))(3k2 + 8k)
)

. Then

the graph G′ = G(p′, r′, t′; k) with parameters p′ = p + k + 1, r′ = r − 1
2 (k + 2),

t′ = t − 1
2 (k + 2) has n vertices and more edges:

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

−p +
1

k + 2

( k

3k + 2
n −

k + 1

2(3k + 2)
(3k2 + 8k)

)]

.

Suppose that p > 1/(k + 2)
(

k/(3k + 2)n + (k + 1)/(2(3k + 2))(3k2 + 8k + 8)
)

. Then

the graph G′ = G(p′, r′, t′; k) with parameters p′ = p − (k + 1), r′ = r + 1
2 (k + 2),

t′ = t + 1
2 (k + 2) has n vertices and more edges:

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

p −
1

k + 2

( k

3k + 2
n +

k + 1

2(3k + 2)
(3k2 + 8k + 8)

)]

.

Case 2. k is odd.

The proof falls naturally into two subcases.
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Case 2.1. k is odd and (n − p(k + 2))/(k + 1) is odd.

Since (n − p(k + 2))/(k + 1) is odd, we have |r− t| = 1 and assume that r = t+1.

Then

|E(G)| = p
n − p(k + 2)

k + 1

(

k + 2

2

)

+ p

(

k + 2

2

)

+
n − p(k + 2)

k + 1

(

k + 1

2

)

+
((n − p(k + 2)

2(k + 1)

)2

−
1

4

)

(

k + 2

2

)

.

Suppose that p < 1/(k + 2)
(

k/(3k + 2n) − 1
2 (k + 1)/(3k + 2)(3k2 + 8k − 1)

)

. Then

the graph G′ = G(p′, r′, t′; k) with parameters p′ = p + k + 1, r′ = r − 1
2 (k + 3),

t′ = t − 1
2 (k + 1) has more edges:

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

−p +
1

k + 2

( k

3k + 2
n −

k + 1

2(3k + 2)
(3k2 + 8k − 1)

)]

.

If p > 1/(k + 2)
(

k/(3k + 2)n+ 1
2 (k + 1)/(3k+2)(3k2+8k+7)

)

, then again there exists

a graph with n vertices and more edges, i.e., G′ = G(p′, r′, t′; k) with parameters

p′ = p − (k + 1), r′ = r + 1
2 (k + 1), t′ = t + 1

2 (k + 3):

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

p −
1

k + 2

( k

3k + 2
n +

k + 1

2(3k + 2)
(3k2 + 8k + 7)

)]

.

Case 2.2. k is odd and (n − p(k + 2))/(k + 1) is even.

Since (n − p(k + 2))/(k + 1) is even, we have that |r − t| = 0. Then

|E(G)| = p
n − p(k + 2)

k + 1

(

k + 2

2

)

+ p

(

k + 2

2

)

+
n − p(k + 2)

k + 1

(

k + 1

2

)

+
(n − p(k + 2)

2(k + 1)

)2
(

k + 2

2

)

.

If p < 1/(k + 2)
(

k/(3k + 2)n − 1
2 (k + 1)/(3k + 2)(3k2 + 8k + 1)

)

, then the graph

G′ = G(p′, r′, t′; k) with parameters p′ = p+k+1, r′ = r− 1
2 (k + 1), t′ = t− 1

2 (k + 3)

has more edges:

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

−p +
1

k + 2

( k

3k + 2
n −

k + 1

2(3k + 2)
(3k2 + 8k + 1)

)]

.
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If p > 1/(k + 2)
(

k/(3k + 2)n+ 1
2 (k + 1)/(3k+2)(3k2 +8k+9)

)

, then for parameters

p′ = p − (k + 1), r′ = r + 1
2 (k + 1), t′ = t + 1

2 (k + 3) the graph G′ = G(p′, r′, t′; k)

has more edges:

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

p −
1

k + 2

( k

3k + 2
n +

k + 1

2(3k + 2)
(3k2 + 8k + 9)

)]

.

Since by the assumption of the present lemma the number of vertices is large enough,

in all the cases the graph G′ exists. �

The next theorem gives, for any fixed n and k, the best choice for parameters p,

r, t that maximizes the number of edges in G(p, r, t; k).

Theorem 10. Let k, n be positive integers such that n > (k + 2)(3k + 2). The

graph G(p, r, t; k) achieves the maximum number of edges for given fixed n and k,

when |r − t| 6 1 and p is an integer from the interval

I =
〈 1

k + 2

( k

3k + 2
n −

k + 1

2(3k + 2)
(3k2 + 8k + c)

)

,

1

k + 2

( k

3k + 2
n +

k + 1

2(3k + 2)
(3k2 + 8k + 8 + c)

)〉

such that k + 1 divides n − p, and c = 0 if k is even, c = −1 if k is odd and

(n − p(k + 2))/(k + 1) is odd, and c = 1 if k is odd and (n − p(k + 2))/(k + 1) is

even.

P r o o f. Recall that n = p(k+2)+(r+ t)(k+1), which implies that k+1 divides

n− p. From Lemma 8 and Lemma 9 it follows that if G(p, r, t; k) has the maximum

number of edges for fixed n, k; then |r−t| 6 1 and p is an integer from the interval I.

Now we prove that if there is more than one parameter p such that k+1 divides n−p

and p ∈ I, then the number of edges of G(p, r, t; k) for any such choice of p is the

same. We observe that it suffices to consider only two different values of p satisfying

the conditions, since |I| 6 k + 2 and k + 1 must divide n − p. Therefore, let p and

p′ be two successive integers of I such that k + 1 divides n − p and p′ = p + k + 1.

Let r, t and r′, t′ be integers such that n = p(k + 2) + (r + t)(k + 1), |r − t| 6 1

and n = p′(k + 2) + (r′ + t′)(k + 1), |r′ − t′| 6 1. We show that G = G(p, r, t; k) and

G′ = G(p′, r′, t′; k) have the same number of edges. By a calculation similar to that

in the proof of Lemma 9, we have

|E(G′)| = |E(G)|

+
1

4
(k + 2)2(3k + 2)

[

−p +
1

k + 2

( k

3k + 2
n −

k + 1

2(3k + 2)
(3k2 + 8k + c)

)]
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and c = 0 if k is even, c = −1 if k is odd and (n − p(k + 2))/(k + 1) is odd, and c = 1

if k is odd and (n − p(k + 2))/(k + 1) is even. Since p ∈ I, we have |E(G′)| 6 |E(G)|.

On the other hand,

|E(G)| = |E(G′)|

+
1

4
(k + 2)2(3k + 2)

[

p′ −
1

k + 2

( k

3k + 2
n +

k + 1

2(3k + 2)
(3k2 + 8k + 8 + c)

)]

and c = 0 if k is even, c = −1 if k is odd and (n − p′(k + 2))/(k + 1) is odd,

and c = 1 if k is odd and (n − p′(k + 2))/(k + 1) is even. Since p′ ∈ I, we have

|E(G′)| > |E(G)|. Thus |E(G′)| = |E(G)|. �

Using Lemma 8 and Theorem 10 we can calculate the maximum number of edges

in the graph G(p, r, t; k). Thus we obtain the following result.

Theorem 11. Let k > 1 and n > (k + 2)(3k + 2) and let G be a locally k-tree

graph of order n with the maximum number of edges. Then

|E(G)| >
k + 1

2(3k + 2)
n2 +

3k(k + 1)

2(3k + 2)
n + c(k)

for a constant c = c(k).

Every locally tree graph is locally acyclic. Erdős and Simonovits [6] showed that

the maximum-size locally acyclic graphs are precisely the nearly-balanced complete

bipartite graphs (or Mantel-Turán’s graphs) with maximum matching being added

to one partite side chosen so that the matching is as large as possible. Hence, if n is

the order, the size of the graph is ⌊n/2⌋ · ⌈n/2⌉+ ⌊(n +1)/4⌋ 6 1
4n2 + 1

4n. Therefore

Lemma 9 implies the following

Corollary 5. Let n > 15 and let G be a locally tree graph of order n with

maximum size. Then

1

5
n2 +

3

5
n + c 6 |E(G)| <

1

4
n2 +

1

4
n,

where c is a constant.

Remark 3. For small n (i.e., k + 1 6 n < (k + 2)(3k + 2)) we can obtain a

maximal locally k-tree graph of order n with large number of edges using Lemma 3

and the (k + 1)-join substitution applied to the Mantel-Turán graph.
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6. Concluding remarks

In Section 2 the minimum-size locally k-tree graphs of order n for k > 0 have

been characterized. In Section 4 the construction which gives a lower bound for

the maximum size of locally k-tree graphs of order n for large n and for k > 1 has

been described. The problem of finding the maximum size of locally k-tree graphs

of order n for k = 0 is solved by Mantel’ Theorem [14] of 1906 on the largest size of

triangle-free graphs. For k > 1 the problem is still open.

Problem 1. What is the maximum size of locally k-tree graphs of order n for

k > 1?

Acknowledgments. We thank the referees for useful comments and suggestions.
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Gdańsk, Poland, e-mail: pborowie@eti.pg.gda.pl; E . S i d o r o w i c z (corresponding au-
thor), Faculty of Mathematics, Computer Science and Econometrics, University of Zielona
Góra, Szafrana 4a, 65–516 Zielona Góra, Poland, e-mail: e.sidorowicz@wmie.uz.zgora.pl;
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