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Abstract. As introduced by F.Harary in 1994, a graph G is said to be an integral sum

graph if its vertices can be given a labeling f with distinct integers so that for any two
distinct vertices u and v of G, uv is an edge of G if and only if f(u)+ f(v) = f(w) for some
vertex w in G.
We prove that every integral sum graph with a saturated vertex, except the complete

graph K3, has edge-chromatic number equal to its maximum degree. (A vertex of a graph
G is said to be saturated if it is adjacent to every other vertex of G.) Some direct corollaries
are also presented.
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1. Introduction

In this note we consider only finite graphs with no loops or multiple edges. In

general we follow the standard graph-theoretric notation and terminology (see, for

example, [1] or [2]).

In 1994, Harary [8] introduced the notion of an integral sum graph. The integral

sum graph G+(S) of a finite subset S of integers is the graph (V, E) where V = S

and uv ∈ E if and only if u + v ∈ S. A graph G is said to be an integral sum graph

if it is isomorphic to the integral sum graph G+(S) of a finite subset S of integers.

In other words, G is an integral sum graph if its vertices can be given a labeling f

with distinct integers, so that for any two distinct vertices u and v of G, uv is an

edge of G if and only if f(u) + f(v) = f(w) for some vertex w in G. (And such

a labeling f is then called an integral sum labeling of G.) If there is an integral

sum labeling f of G with f(x) > 0 for all vertices x in G, then G is said to be a

sum graph. In fact, the concept of a sum graph was introduced by Harary [7] earlier

in 1990. It is easily seen that none of nontrivial connected graphs is a sum graph.
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Many infinite families of connected graphs, however, are known to be integral sum

graphs. For example, Harary [8] found that all paths and stars are integral sum

graphs. Sharary[14] showed that the cycles Cn and the wheels Wn are also integral

sum graphs for all n 6= 4. Ellingham [5] proved a conjecture of Harary that the

disjoint union of a single vertex K1 with any tree is a sum graph. For an arbitrarily

given graph G, how can we determine whether or not G is an integral sum graph?

This is a basic but difficult problem. It has not been solved even for trees. In 1998

we [3] first posted the conjecture that all trees are integral sum graphs. The same

conjecture was also raised independently in 2000 by Liao, Guo and Chang [11]. It

is still open up to this date, although several classes of trees (see [3], [11], [9], [13])

have been shown to be integral sum graphs. For a survey of known results on sum

graphs and integral sum graphs, the reader is referred to the dynamic survey on

graph labeling by J.Gallian [6].

To show a graph G is an integral sum graph, we may try to find an integral

sum labeling directly, or we may use some undirect methods such as the methods

of identification (see [3], [4], [9] and [13]). On the other hand, however, there is no

direct way to prove a graph is not an integral sum graph, and few methods have

been discovered. This motivated us to study some graphical properties of integral

sum graphs in [4]. In the present note we further study the integral sum graphs with

a saturated vertex. (As in [4], a vertex of graph G is said to be saturated if it is

adjacent to every other vertex of G.) We show that every integral sum graph with a

saturated vertex, except the complete graph K3, is of class 1 (i.e., its edge-chromatic

number is equal to its maximum degree.) Some corollaries are also presented.

2. Preliminaries

From now on, we use the notation G+{a1, a2, . . . , ap} to denote an (integral) sum

graph with an (integral) sum graph labeling such that the vertices of G are labeled

by the integers a1, a2, . . . , ap. It is clear that G+{a1, a2, . . . , ap} generated by the

integers {a1, a2, . . . , ap} is unique up to isomorphism.

Lemma 2.1 [15]. Let G be a graph with maximum degree ∆ and with edge-

chromatic number ∆+1. Then G contains two distinct vertices x, y and a collection

of ∆ pairwise edge-disjoint paths each joining x, y.

Note. A graph G satisfying the assumptions of Lemma 2.1 must have at least

two vertices of degree ∆.
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Lemma 2.2 [4]. Let G be an integral sum graph. Then

(i) G has at most two saturated vertices unless G = K3;

(ii) G ∼= G+{1, 0,−1,−2, . . . ,−p + 2} if G has exactly two saturated vertices and

|V (G)| = p.

Lemma 2.3. Let f be an integral sum labeling of a graph G with more than one

vertex. Then f(u) = 0 for some vertex u of G if and only if G has a saturated vertex.

P r o o f. The necessity is an obvious fact. So we only need to prove the suffi-

ciency. Let v be a saturated vertex of G. If f(v) = 0, then there is nothing to prove.

So we may distinguish two cases depending on wheather f(v) > 0 or f(v) < 0.

Case 1. f(v) > 0. We prove this case by contradiction. Assume that f(x) 6= 0

for any vertex x of G. Let f(w) be the largest label among all vertices other than v.

If f(w) < 0, then f(v) > f(v) + f(w) > f(w) and so f(v) + f(w) 6= f(x) for any

vertex x of G. If f(w) > 0, then f(v) + f(w) > f(x) for any vertex x of G. Thus,

no matter if f(w) is negative or positive, we always see that v is not adjacent to w.

This contracts the condition that v is a saturated vertex. Hence, there must be a

vertex u of G such that f(u) = 0.

Case 2. f(v) < 0. Consider the new labeling g of G defined by g(x) = (−1)f(x)

for any x ∈ V (G). It is an obvious fact that g gives an integral sum labeling of G

and g(v) > 0. Then from case 1, there must be a vertex u of G such that g(u) = 0.

It follows that f(u) = −g(u) = 0, and so the proof is complete. �

Lemma 2.4 [4]. For any sum graph G, the join K1 ∨G is an integral sum graph.

Now we are ready to prove our theorem and its corollaries in the next section.

3. Main results

Theorem 3.1. Every integral sum graph G with a saturated vertex, except the

complete graph K3, has the edge-chromatic number χ′(G) equal to the maximum

degree ∆(G).

P r o o f. Let G 6= K3 be an integral sum graph with a saturated vertex. Clearly,

G is a connected simple graph. If G has less than 4 vertices, then G is a path of

length 0, 1 or 2. It is then obvious that the edge-chromatic number χ′(G) is equal

to the maximum degree ∆(G). So, from now on, we may assume that G has at least

4 vertices.

If G has exactly one saturated vertex, then from the note following Lemma 2.1,

one can easily see that χ′(G) 6= ∆(G) + 1. It follows that χ′(G)=∆(G), since the
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well-known Vizing’s Theorem (see, for example, [1]) asserts that the edge-chromatic

number of a simple graph equals either the maximal degree or the maximal degree

plus one. Then by Lemma 2.2(i), we only need to consider the remaining case that

G has exactly two saturated vertices. By Lemma 2.2(ii), we may further assume

that G = G+{1, 0,−1,−2, . . . ,−p+3,−p+2}. Clearly, G has p vertices. (Note that

p > 4 by assumption.) By Vizing’s Theorem, we only need to show that there is a

proper edge-coloring of G in ∆(G) colors. We distinguish two cases according to the

parity of p.

Case 1. p is even. Clearly, G is a subgraph of the complete graph Kp with

∆(G) = p − 1. It is known (see, for example, p.96 of [1]) that χ′(Kp) = p − 1.

Then we can easily get a proper edge-coloring of G in ∆(G) = p − 1 colors, and so

χ′(G) = ∆(G).

Case 2. p is odd. The proof goes as follows. Let H be the graph obtained

from G by deleting the vertex −p + 2 and its incident edges e0 = (−p + 2, 0) and

e1 = (−p + 2, 1). It is clear that the vertex number of H is p − 1 which is an even

number greater than or equal to 4. Note that H has saturated vertices. Then, by

the same argument as in case 1, we can get χ′(H) = ∆(H) = p − 2. Clearly, G can

be obtained from H by adding the vertex −p + 2 and the two edges e0 = (−p + 2, 0)

and e1 = (−p+2, 1) to connect the vertex −p+2 with exactly the two vertices 0 and

1 in H . Now a p− 1 edge-coloring of G can be given as follows: First give the edges

of H a proper coloring in p−2 colors and color the edges e0 and e1 with a new color.

Then, by switching the colors of the two edges e0 and (0,−p + 3), we immediately

obtain a proper edge-coloring of G in ∆(G) colors. Therefore, χ′(G) = ∆(G). �

Recall that a simple graph is said to be of class 1 or of class 2 if its edge-chromatic

number is respectively equal to or greater than its maximum degree. Then Theo-

rem 3.1 can be restated as follows:

Any integral sum graph G 6= K3 is of class 1 if G has a saturated vertex.

In other words, except for K3, any integral sum graph of class 2 has no saturated

vertices.

By Lemma 2.3, we can easily see that the following Theorem 3.1′ is equivalent to

Theorem 3.1.

Theorem 3.1′. Let S be a set of integers. The integral sum graph G+(S) is of

class 1 if S contains 0 and S 6= {0,−n, n} for any integer n.

Now we apply Theorem 3.1 to two familiar families of graphs. The wheels Wn

with vertex number n 6= 4 were shown to be integral sum graphs in [14], and the

fans K1 ∨ Pn (obtained by joining K1 with every vertex of Pn) were also shown to
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be integral sum graphs in [4]. Note that W4 = K4 is of class 1. Then, the following

is a straightforward consequence of Theorem 3.1.

Corollary 3.2. The wheels Wn and the fans except K3 are of class 1.

Corollary 3.3. For any sum graph G, the join K1 ∨ G is of class 1.

P r o o f. It is trivial if |V (G)| = 1. When |V (G)| > 1, G is not connected, and

so K1 ∨G has exactly one saturated vertex and G 6= K3. Since K1 ∨G is an integral

sum graph from Lemma 2.4, it is of class 1 by Theorem 3.1. �

Finally, we give a corollary concerning graphs which may have no saturated ver-

tices. From a theorem of Mahmoodian [12] (also, see p. 294 of [10]), we know that

the Cartesian product of a finite set of graphs is of class 1 if at least one of the factor

graphs is not totally disconnected and of class 1. Then we easily obtain the following

result.

Corollary 3.4. The Cartesian product of a finite set of graphs is of class 1 if at

least one of the factor graphs is not K3 but is an integral sum graph with a saturated

vertex.
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