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Abstract. The concept of a semiprime ideal in a poset is introduced. Characterizations of
semiprime ideals in a poset P as well as characterizations of a semiprime ideal to be prime
in P are obtained in terms of meet-irreducible elements of the lattice of ideals of P and in
terms of maximality of ideals. Also, prime ideals in a poset are characterized.
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1. Introduction

Y.Rav [10] introduced and studied semiprime ideals in lattices. An ideal I of

a lattice L is said to be semiprime if x ∧ y ∈ I and x ∧ z ∈ I together imply

x ∧ (y ∨ z) ∈ I. Also, Beran [1] studied some properties of semiprimeness (see

also Beran [2] and [4]) and the connection between primeness and semiprimeness in

lattices. In fact, he proved that

Theorem A (L. Beran [2]). Let I be a semiprime ideal of a lattice L. Then I is

prime if and only if I is a meet irreducible element of Id(L).

In this paper we introduce the concept of a semiprime ideal in a general poset.

Characterizations of semiprime ideals in posets as well as characterizations of a

semiprime ideal to be prime are obtained. Also, prime ideals in a poset are charac-

terized. It is proved that a prime ideal I of P and its corresponding filter FI make a

separation of the poset P . Further, we prove some properties and characterizations

of prime ideals and semiprime ideals in posets.

We begin with the necessary concepts and terminology. For undefined notation

and terminology the reader is referred to Grätzer [5].
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Let A ⊆ P . The set Au = {x ∈ P ; x > a for every a ∈ A} is called the upper

cone of A. Dually, we have the concept of the lower cone Al of A. We shall write

Aul instead of {Au}l and dually. The upper cone {a}u is simply denoted by au and

{a, b}u is denoted by (a, b)u. Similar notation is used for lower cones. Further, for

A, B ⊆ P , {A ∪ B}u is denoted by {A, B}u and for x ∈ P , the set {A ∪ {x}}u is

denoted by {A, x}u. Similar notation is used for lower cones. We note that A ⊆ Aul

and A ⊆ Alu. If A ⊆ B, then Bl ⊆ Al and Bu ⊆ Au. Moreover, Alul = Al,

Aulu = Au and {au}l = {a}l = al.

Now, we consider a concept of an ideal and a prime ideal introduced by Halaš [6]

and Halaš and Rach̊unek [8].

Definition 1. A subset I of a poset P is called an ideal if a, b ∈ I implies

(a, b)ul ⊆ I. A proper ideal I is called prime if (a, b)l ⊆ I implies that either a ∈ I

or b ∈ I.

Dually, we have the concepts of a filter and a prime filter. Given a ∈ P , the subset

{x ∈ P ; x 6 a} is an ideal of P generated by a, denoted by (a]; we shall call (a] a

principal ideal. Dually, a filter [a) generated by a is called a principal filter.

We generalize the concept of a semiprime ideal to a general poset as follows:

Definition 2. An ideal I of a poset P is called semiprime if (a, b)
l ⊆ I and

(a, c)l ⊆ I together imply {a, (b, c)u}
l
⊆ I.

Dually, we have the concept of a semiprime filter. In what follows, Id(P ) denotes

the set of all ideals of a poset P which forms a complete lattice with respect to set

inclusion (see Halaš and Rach̊unek [8]).

The following result establishes a connection between primeness and semiprime-

ness:

Lemma 3. Let I be an ideal of a poset P . If I is prime, then I is semiprime.

P r o o f. Let I be a prime ideal and for a, b, c ∈ P , let (a, b)l ⊆ I and (a, c)l ⊆ I.

Since I is prime, we have two cases:

(i) If a ∈ I, then {a, (b, c)u}l ⊆ al ⊆ I.

(ii) If a /∈ I, then b, c ∈ I and hence (b, c)
ul ⊆ I. Therefore {a, (b, c)

u}
l
⊆ (b, c)ul ⊆

I. Thus I is semiprime. �

R em a r k 4. The converse of Lemma 3 does not hold in general. In the poset

depicted in Figure 1, the ideal I = {0} is semiprime but not prime, as (a, b)
l ⊆ I

and neither a nor b is in I.
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Figure 1

We consider the following definition of meet-irreducible elements.

Definition 5. An element x of a poset P is called meet-irreducible if x cannot

be obtained as a meet of two elements different from x.

Theorem 6. Every prime ideal of a poset P is a meet-irreducible element of

Id (P ).

P r o o f. Let I be a prime ideal such that I = J ∩K for J, K ∈ Id (P ). We have

to show that either I = J or I = K.

Clearly I ⊆ J and I ⊆ K. Suppose I 6= J and I 6= K; then there exist x, y ∈ P

such that x ∈ J \ I and y ∈ K \ I. But J and K are ideals, so we have (x, y)l ⊆

J ∩K ⊆ I. Since I is prime, either x ∈ I or y ∈ I, a contradiction with the fact that

x, y /∈ I. �

R em a r k 7. The converse of Theorem 6 is not true in general. Consider the poset

P depicted in Figure 2 and its ideal lattice Id(P ), depicted in Figure 3. Observe that

(a] is a meet-irreducible element of Id(P ). However, (a] is not prime as (b, c)l ⊆ (a]

and neither b nor c is in (a].

c

1

b

a

0

Figure 2
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(1]

(b]

(a]
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∅

Figure 3

For ideals I, J ⊆ P denote C1(I, J) =
⋃
{(a, b)ul; a, b ∈ I ∪ J}. Inductively, let

Cn+1(I, J) =
⋃
{(a, b)ul; a, b ∈ Cn(I, J)} for each n ∈ N. It is easy to observe that

the sets Cn (I, J) form a chain, in other words, C1 ⊆ . . . ⊆ Cn−1 ⊆ Cn ⊆ . . .

The following result describes the join of two elements in Id(P ).
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Lemma 8 (Halaš [7]). Let P be a poset and I, J ∈ Id (P ). Then I ∨ J =
⋃
{Cn (I, J) ; n ∈ N}.

The following statement characterizes semiprime ideals which are prime.

Theorem 9. Let I be a semiprime ideal in a poset P . Then I is prime if and

only if I is a meet-irreducible element of Id (P ).

P r o o f. (⇒) Follows by Theorem 6.

(⇐) Let (a, b)
l ⊆ I. We claim that I = (I ∨ (a]) ∩ (I ∨ (b]). Clearly, it is enough

to show that (I ∨ (a]) ∩ (I ∨ (b]) ⊆ I. In view of Lemma 8, we have to show that

Cn (I, (a]) ∩ Cm (I, (b]) ⊆ I for all n, m ∈ N. We proceed by induction on n + m.

(i) Assume n + m = 2 and let z ∈ C1 (I, (a])∩C1 (I, (b]). We have z ∈ (x1, y1)
ul ∩

(x2, y2)
ul
for x1, y1 ∈ I ∪ (a] and x2, y2 ∈ I ∪ (b]. We distinguish two cases:

(1) If x1, y1 ∈ I or x1, y1 ∈ (a] or x2, y2 ∈ I or x2, y2 ∈ (b], by Definition 1 we

obtain z ∈ I.

(2) Assume x1 ∈ I, y1 ∈ (a], x2 ∈ I and y2 ∈ (b]. Then (x1, x2)
l ⊆ I and

(x1, y2)
l ⊆ I. By semiprimeness of I we have {x1, (x2, y2)

u}
l
⊆ I. Since z ∈

(x2, y2)
ul
, we get (x1, z)

l ⊆ I. Similarly, since (y1, x2)
l ⊆ I, (y1, y2)

l ⊆ I and

z ∈ (x2, y2)
ul
, we have (y1, z)

l ⊆ I. Now, (x1, z)
l ⊆ I and (y1, z)

l ⊆ I together yield

{z, (x1, y1)
u}

l
⊆ I. But z ∈ (x1, y1)

ul
, thus z ∈ I. Therefore the statement is true

for n + m = 2.

(ii) Suppose the statement is true for n + m = r; in other words, suppose

Cn (I, (a]) ∩ Cm (I, (b]) ⊆ I holds for n + m = r. We shall show that the state-

ment is true for n + m = r + 1. Let z ∈ Cn (I, (a]) ∩ Cm+1 (I, (b]). Then z ∈

(x1, y1)
ul ∩ (x2, y2)

ul for x1, y1 ∈ Cn−1 (I, (a]) and x2, y2 ∈ Cm (I, (b]). Observe that

(x2, y1)
l ⊆ Cn−1 (I, (a]) ∩ Cm (I, (b]). Since the sets Cn (I, (a]) form a chain ( i.e.,

C1 ⊆ . . . ⊆ Cn−1 ⊆ Cn ⊆ . . .), we have (x2, y1)
l ⊆ Cn (I, (a]) ∩ Cm (I, (b]). By the

induction hypothesis, (x2, y1)
l ⊆ I. Also, (x2, x1)

l ⊆ Cn−1 (I, (a]) ∩ Cm (I, (b]) ⊆

Cn (I, (a])∩Cm (I, (b]) ⊆ I. By semiprimeness of I, we get {x2, (x1, y1)
u}

l
⊆ I. But

z ∈ (x1, y1)
ul
, thus (x2, z)

l ⊆ I. Similarly, we get (y2, z)
l ⊆ I. Again by semiprime-

ness of I and the fact that z ∈ (x2, y2)
ul we have z ∈ {z, (x2, y2)

u}
l
⊆ I. Hence the

statement is true for each n, m ∈ N.

Now, since I is a meet-irreducible element of Id(P ) and I = (I ∨ (a]) ∩ (I ∨ (b]),

we have either I = (I ∨ (a]) or I = (I ∨ (b]). Therefore, a ∈ I or b ∈ I and thus I is

prime. �

Now we present more properties of semiprime ideals in posets by using the follow-

ing sets. For a semiprime ideal I and a nonempty subset A of a poset P , define

I : A = {z ∈ P ; (a, z)l ⊆ I for all a ∈ A}.
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Observe that I ⊆ I : A. If A = {x}, then we write I : x instead of I : {x}.

Lemma 10. Let I be a semiprime ideal of a poset P . Then the following state-

ments hold:

(i) (a, b)
l ⊆ I : x if and only if (x, a, b)

l ⊆ I.

(ii) {x, (a, b)
u}

l
⊆ I if and only if (a, b)

ul ⊆ I : x.

(iii) I : x = P if and only if x ∈ I.

Note: The statement (i) does not require semiprimeness.

P r o o f. (i) Suppose that (x, a, b)
l ⊆ I and z ∈ (a, b)

l
. It is clear that (x, z)

l ⊆

(x, a, b)
l ⊆ I. Thus z ∈ I : x.

Conversely, suppose that (a, b)
l ⊆ I : x and z ∈ (x, a, b)

l
. Since z ∈ (x, a, b)

l ⊆

I : x, we get (x, z)l ⊆ I. But z 6 x, therefore z ∈ I.

(ii) Let {x, (a, b)u}
l
⊆ I and z ∈ (a, b)ul. We have (x, z)l ⊆ {x, (a, b)u}

l
⊆ I, hence

z ∈ I : x.

Conversely, suppose that (a, b)
ul ⊆ I : x. Then clearly a, b ∈ I : x. Hence

(x, a)l ⊆ I and (x, b)l ⊆ I. By semiprimeness we get {x, (a, b)u}
l
⊆ I.

(iii) Observe that x ∈ I iff (x, z)
l ⊆ I for all z ∈ P iff I : x = P . �

A nonempty subset Q of a poset P is called up directed, if Q∩ (x, y)u 6= ∅ for any

x, y ∈ Q. Dually, we have the concept of a down directed subset. If an ideal I (filter

F ) is an up (down) directed set of a poset P , then it is called a u-ideal (l-filter).

Definition 11. Let P be a poset and Q ⊆ P . Denote the set of all maximal or

minimal elements of Q by Max(Q) or Min(Q), respectively.

In the following we use a statement the proof of which is trivial:

Lemma 12. Every l-filter of a finite poset P is principal.

We prove some characterizations of primeness and semiprimeness in the case of

finite posets. To this end we introduce the concept of an I-atom in posets. Beran [3]

defined the concept of an I-atom in lattices and has shown that this concept plays a

crucial role in the study of prime ideals.

Definition 13. Let I be an ideal of a poset P . An element i ∈ P is called an

I-atom if

(i) i /∈ I, and

(ii) for x ∈ P , if x < i, then x ∈ I.

Dually, we define an F -coatom for a given filter F of P .

23



R em a r k 14. Note that for every finite poset P and I a proper ideal of P , an

I-atom exists. However, an I-atom need not exist for P infinite. For example, in the

poset P depicted in Figure 4, the ideal I = {0} does not have any I-atom.

0

x2

x1

Figure 4

Note that two distinct I-atoms of a poset P are either equal or incomparable.

The following theorem is a characterization of semiprimeness in terms of I : x,

x ∈ P .

Theorem 15. Let I be an ideal of a poset P . Then I is semiprime if and only if

I : x is a semiprime ideal for all x ∈ P . Moreover, if P is finite, then I is semiprime

iff I : i is a principal prime ideal for every I-atom i ∈ P .

P r o o f. First we show that I : x is an ideal for all x ∈ P . Assume that I is

semiprime and a, b ∈ I : x. We have to show that (a, b)ul ⊆ I : x. Since a, b ∈ I : x,

we obtain (x, a)
l ⊆ I and (x, b)

l ⊆ I. By semiprimeness we get {x, (a, b)
u}

l
⊆ I.

Due to Lemma 10(ii) we conclude (a, b)ul ⊆ I : x.

To show that I : x is semiprime, suppose that (a, b)
l ⊆ I : x and (a, c)

l ⊆ I : x. We

obtain (x, a, b)
l ⊆ I and (x, a, c)

l ⊆ I, thus by Lemma 10(i) we have (x, a)
l ⊆ I : b

and (x, a)
l ⊆ I : c. We claim that {x, a, (b, c)

u}
l
⊆ I. Indeed, let z ∈ {x, a, (b, c)

u}
l
.

Since z ∈ (x, a)
l ⊆ I : b and z ∈ (b, c)

ul
, we have z ∈ I : b and z ∈ I : c, i.e.,

b, c ∈ I : z. Since I : z is an ideal, (b, c)
ul ⊆ I : z and z ∈ (b, c)

ul
, which yields

z ∈ I : z. Thus z ∈ I.

Now we prove that {a, (b, c)u}
l
⊆ I : x. Let t ∈ {a, (b, c)u}

l
. Clearly we have

(x, t)
l ⊆ {x, a, (b, c)

u}
l
⊆ I. Hence t ∈ I : x, so {a, (b, c)

u}
l
⊆ I : x. Therefore I : x

is semiprime.

Conversely, suppose I : x is an ideal for all x ∈ P . We shall show that I is

semiprime. Let (x, y)
l ⊆ I and (x, z)

l ⊆ I. Since y, z ∈ I : x and I : x is an ideal, we

have (y, z)
ul ⊆ I : x. By using Lemma 10(ii), we get {x, (y, z)

u}
l
⊆ I as required.

Further, let P be finite, let I be a semiprime ideal of P and i an I-atom of P .

First we show that I : i is prime. To this end assume (x, y)l ⊆ I : i and x /∈ I : i. As

x /∈ I : i, we have, (x, i)
l 6⊆ I. Therefore there exists an element k ∈ (x, i)l such that

k 6∈ I. Clearly, k 6 i and we claim k = i. Indeed, k < i yields k ∈ I, a contradiction.
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Consequently, we have (x, i)
l
= il, i.e., i 6 x. Since (x, y)

l ⊆ I : i, by Lemma 10(i)

we obtain (x, y, i)
l ⊆ I. Therefore (y, i)

l ⊆ I, y ∈ I : i and thus I : i is prime.

We show that I : i is principal. In view of the statement dual to Lemma 12,

it suffices to show that I : i is an u-ideal. Suppose on the contrary that I : i is

not a u-ideal. Then there exist b, c ∈ I : i such that there is no x ∈ (b, c)
u
for

which (i, x)l ⊆ I. Denote (b, c)u = {x1, x2, . . . , xn}. Then for all xj , j = 1, 2, . . . , n

we have (i, xj)
l 6⊆ I. Therefore (i, x1)

l
= (i, x2)

l
= . . . = (i, xn)

l
= il and hence

i 6 xj for all xj ∈ (b, c)u. Since I is semiprime, we have {i, (b, c)u}
l
⊆ I. Therefore

il = {i, (b, c)u}
l
⊆ I, which is a contradiction to the fact that i /∈ I. Thus I : i is a

u-ideal. �

Let I be a proper ideal of a poset P . Then I is said to be a maximal ideal of P

if the only ideal properly containing I is P .

The following statement gives another condition for semiprime ideals to be prime.

Theorem 16. Every maximal semiprime ideal of a poset P is a prime ideal.

P r o o f. Let I be a maximal semiprime ideal of P and (x, y)l ⊆ I. We have

x ∈ I : y, where I : y is a semiprime ideal (see Theorem 15) with I ⊆ I : y. So we

have two cases:

(i) If I = I : y, then x ∈ I.

(ii) If I ⊂ I : y, then by maximality of I we have I : y = P . By Lemma 10(iii),

y ∈ I. Thus I is prime. �

As a consequence, we have

Corollary 17. Let I be a maximal ideal of a poset P . Then I is semiprime if

and only if I is prime.

By using Theorem 16 and Theorem 6, we obtain

Corollary 18. Every maximal semiprime ideal of a poset P is a meet-irreducible

element of Id(P ).

Theorem 19. Let I be an ideal of a finite poset P . Then I is prime if and only

if P has exactly one I-atom.

P r o o f. Suppose I is a prime ideal. If I has two different I-atoms i1 and i2,

then (i1, i2)
l ⊆ I but i1, i2 /∈ I, a contradiction.

Conversely, suppose P has exactly one I-atom and I is not a prime ideal. Then

there exist a, b ∈ P such that (a, b)
l ⊆ I and neither a nor b is in I. However,

there exist two I-atoms of P , say i1 and i2, for which i1 6 a, i2 6 b, i1 6= i2, a

contradiction. �
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Theorem 20. Let I be a proper ideal of a poset P . Then I is prime if and only

if I : x = I for all x ∈ P − I.

P r o o f. Suppose that I is prime, z ∈ I : x and x ∈ P − I. Since I is prime,

(z, x)
l ⊆ I and x /∈ I, we have z ∈ I.

Conversely, assume I : x = I for all x ∈ P − I and let (x, y)
l ⊆ I. If x /∈ I, then

y ∈ I : x = I. Thus I is prime. �

Lemma 21. Let I be a semiprime ideal of a finite poset P . Then I =
⋂

i

I : i for

all I-atoms i of P .

P r o o f. We shall show that
⋂

i

I : i ⊆ I, as the converse inclusion always holds.

Suppose on the contrary that z ∈
⋂

i

I : i and z /∈ I. Then there exists an I-atom

j ∈ P such that j 6 z and j /∈ I. Since z ∈
⋂

i

I : i, we have z ∈ I : j, which gives

(j, z)l = jl ⊆ I, thus j ∈ I, a contradiction. �

Lemma 22. The intersection of any nonempty family of prime ideals of a poset

P is a semiprime ideal.

P r o o f. Suppose I =
⋂

n

Jn, n ∈ Γ, where each Jn is a prime ideal, and let

(x, y)
l ⊆ I, (x, z)

l ⊆ I. We have to show that {x, (y, z)
u}

l
⊆ I. Since (x, y)

l ⊆ Jn

and (x, z)
l ⊆ Jn for all n, by primeness of Jn’s we have x ∈ Jn or y, z ∈ Jn for each n.

In either case, we have {x, (y, z)
u}

l
⊆ Jn for each n. Hence {x, (y, z)

u}
l
⊆

⋂

n

Jn = I.

Thus I is semiprime. �

As an immediate consequence of Theorem 15, Lemma 21 and Lemma 22 in the

case of finite posets we obtain

Theorem 23. Let I be a proper ideal of a finite poset. Then I is semiprime if

and only if I is representable as an intersection of prime ideals.

We consider the following definition of a distributive poset which is essentialy due

to Larmerová and Rach̊unek [9].

Definition 24. A poset P is called distributive if {a, (b, c)
u}

l
= {(a, b)

l
,

(a, c)
l}ul for all a, b, c ∈ P .

Note that in a distributive poset not every ideal is semiprime. Indeed, for the

distributive poset P depicted in Figure 5, the ideal I = {0, a, b, c} is not semiprime.

Nonetheless, for principal ideals of P we have the following result.
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Theorem 25. Let P be a poset. Then P is distributive if and only if (x] is a

semiprime ideal for all x ∈ P .

P r o o f. (⇒) Suppose that (a, b)
l ⊆ (x], (a, c)

l ⊆ (x] and z ∈ {a, (b, c)
u}l.

We have zl = {z, (b, c)u}l and applying distributivity, we get zl = {(z, b)l, (z, c)l}ul.

Since z 6 a, we obtain (z, b)
l ⊆ (a, b)

l ⊆ (x] and (z, c)
l ⊆ (a, c)

l ⊆ (x]. Therefore

(z, b)
l ∪ (z, c)

l ⊆ (x], i.e., {(z, b)
l
, (z, c)

l}ul ⊆ (x]. Thus zl ⊆ (x] which gives z ∈ (x].

(⇐) It is enough to prove {a, (b, c)
u}

l
⊆ {(a, b)

l
, (a, c)

l}ul, as the converse inclusion

is always true. Let x ∈ {a, (b, c)
u}l and y ∈ {(a, b)

l
, (a, c)

l}u. We claim that x 6 y.

Indeed, since {(a, b)l, (a, c)l}ul ⊆ yl, we have (a, b)
l ⊆ yl and (a, c)

l ⊆ yl. By

semiprimeness of (y] we conclude x ∈ {a, (b, c)
u}l ⊆ yl. Thus x 6 y as required. �

An immediate consequence of Theorem 23 and Theorem 25 is

Corollary 26. Let P be a finite poset. Then P is distributive if and only if every

proper principal ideal is representable as an intersection of prime ideals.

For an ideal I of a poset P , consider the set

FI = {z ∈ P ; I : z = I}.

In the following, we establish some properties of FI and its connections with I.

Lemma 27. Let I be a proper semiprime ideal of a finite poset P . Then

I : x ∩ FI = ∅ for all x ∈ P − I.

P r o o f. Let x ∈ P − I and z ∈ I : x ∩ FI . We have (z, x)l ⊆ I and I : z = I.

Hence x ∈ I : z = I, a contradiction to the fact that x /∈ I. �
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Theorem 28. Let I be an ideal of a poset P . Then FI is a filter. Moreover, if I

is a semiprime ideal in a finite poset P , then FI is semiprime.

P r o o f. Suppose x, y ∈ FI and z ∈ (x, y)
lu
. To show that z ∈ FI , it is enough

to verify that I : z ⊆ I. Let a ∈ I : z. Then (z, a)
l ⊆ I. Since (x, y)

l ⊆ zl, we obtain

(x, y, a)
l ⊆ (z, a)

l ⊆ I. This yields (y, a)
l ⊆ I : x by Lemma 10(i). Since x ∈ FI , we

get (y, a)l ⊆ I = I : x. Hence a ∈ I : y = I, as y ∈ FI . Thus a ∈ I.

Now, suppose that I is a semiprime ideal of a finite poset P . We have to show that

FI is semiprime. Suppose that (x, y)u ⊆ FI and (x, z)u ⊆ FI . Let a ∈ {x, (y, z)l}u

and a /∈ FI . Then I ⊂ I : a, therefore there exists an element b ∈ P such that

b ∈ I : a and b /∈ I. Consequently, there exists an I-atom i of P such that i 6 b.

Clearly i ∈ I : a and so a ∈ I : i. Further, since a ∈ {x, (y, z)
l}u, we have x ∈ I : i

and (y, z)l ⊆ I : i. By Theorem 15, I : i is a prime ideal, hence either y ∈ I : i or

z ∈ I : i. Suppose y ∈ I : i; then by Theorem 15, I : i is a principal ideal and since

x, y ∈ I : i, we have I : i ∩ (x, y)u 6= ∅. But (x, y)u ⊆ FI . Therefore I : i ∩ FI 6= ∅, a

contradiction with Lemma 27. �

R em a r k 29. Consider the infinite poset P depicted in Figure 6, and I =

{0, a, b, c} which is a semiprime ideal of P . Observe that FI = {yj; j ∈ N}. FI is a

filter which is not semiprime as (a, b)u ⊆ FI and (a, c)u ⊆ FI but au = {a, (b, c)l}u 6⊆

FI . Thus, Theorem 28 is not true if we drop the condition of finiteness.

0

ca b

y2

y1

Figure 6

However, if P is a join-semilattice, then we have

Lemma 30. Let I be a semiprime ideal of a join-semilattice P and let x, y ∈ P .

Then I : (x ∨ y) = I : x ∩ I : y.

P r o o f. We have a ∈ I : (x ∨ y) if and only if (a, x ∨ y)
l ⊆ I if and only if

{(a, x)l ⊆ I and (a, y)l ⊆ I} if and only if a ∈ I : x ∩ I : y. �
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Theorem 31. Let I be a proper semiprime ideal of a join-semilattice P . Then

FI is a semiprime filter.

P r o o f. Let x ∨ y, x ∨ z ∈ FI and a ∈ {x, (y, z)
l}u. If a /∈ FI , then there exists

an element b ∈ P such that b ∈ I : a and b /∈ I, i.e., (a, b)l ⊆ I and b /∈ I. Since

x 6 a and (y, z)
l ⊆ al, we have

(⋆) b ∈ I : x and (y, b)
l ⊆ I : z.

Because b ∈ I : x, we have (y, b)
l ⊆ I : x. By Lemma 30 and (⋆), we obtain

(y, b)
l ⊆ I : x∩ I : z = I : (x∨ z) = I. Thus b ∈ I : y and (⋆) implies b ∈ I : x, which

yields b ∈ I : (x ∨ y) = I, a contradiction. �

Lemma 32. Let I be a proper semiprime ideal of a poset P . Then I ∩ FI = ∅.

P r o o f. Suppose x ∈ I ∩ FI . We have I : x = I. Since x ∈ I, by Lemma 10(iii)

we have I : x = P and consequently I = I : x = P , which is a contradiction to the

fact that I is proper. �

The following theorem characterizes prime ideals in a poset:

Theorem 33. Let I be a proper ideal of a poset P . Then I is prime if and only

if I ∪ FI = P .

P r o o f. Suppose I is prime, x ∈ P and x /∈ FI . Since x /∈ FI , we have that

I ⊂ I : x, i.e., there exists an element y ∈ I : x such that y /∈ I. In other words,

(y, x)l ⊆ I and y /∈ I. By primeness of I, we get x ∈ I as required.

Conversely, suppose I ∪ FI = P , (y, x)
l ⊆ I and x /∈ I. Clearly, x ∈ FI and hence

I : x = I. Since y ∈ I : x, we have y ∈ I. Thus, I is prime. �

Observe that Lemma 32 and Theorem 33 show that a prime ideal I and the

corresponding filter FI separate elements of a poset P .

A c k n ow l e d g em e n t s. The authors are grateful to the anonymous referee for

several helpful suggestions.

29



References

[1] L.Beran: On semiprime ideals in lattices. J. Pure Appl. Algebra 64 (1990), 223–227.
[2] L.Beran: Remarks on special ideals in lattices. Comment. Math. Univ. Carol. 35 (1994),
607–615.

[3] L.Beran: Length of ideals in lattices. Collect. Math. 46 (1995), 21–33.
[4] L.Beran: Some types of implicative ideals. Comment. Math. Univ. Carol. 39 (1998),
219–225.

[5] G.Grätzer: General Lattice Theory. Birkhäuser, second edition, 1998.
[6] R.Halaš: Characterization of distributive sets by generalized annihilators. Arch. Math.
(Brno) 30 (1994), 25–27.

[7] R.Halaš: Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9–17.
[8] R.Halaš, J. Rach̊unek: Polars and prime ideals in ordered sets. Discuss. Math., Algebra
Stoch. Methods 15 (1995), 43–50.

[9] J. Larmerová, J. Rach̊unek: Translations of distributive and modular ordered sets. Acta
Univ. Palack. Olomouc, Fac. Rer. Nat. 91, Math. 27 (1988), 13–23.

[10] Y.Rav: Semiprime ideals in general lattices. J. Pure Appl. Algebra 56 (1989), 105–118.

Authors’ address: Vilas S.Kharat, Department of Mathematics, University of Pune,
Pune 411 007, India, e-mail: vsk@math.unipune.ernet.in, khalidalaghbari@yahoo.com.

30


		webmaster@dml.cz
	2020-07-01T17:09:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




