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Abstract. The object of this paper is to establish a unique common fixed point theorem
for six self-mappings satisfying a generalized contractive condition through compatibility
of type (β) and weak compatibility in a fuzzy metric space. It significantly generalizes the
result of Singh and Jain [The Journal of Fuzzy Mathematics (2006)] and Sharma [Fuzzy
Sets and Systems (2002)]. An example has been constructed in support of our main result.
All the results presented in this paper are new.

Keywords: fuzzy metric space, common fixed points, t-norm, compatible maps of type
(β), compatible maps of type (α), weak compatible maps

MSC 2010 : 54H25, 47H10

1. Introduction

Zadeh [14] initiated the concept of fuzzy sets in 1965. Many authors used this

concept in Topology and Analysis and developed the theory of fuzzy sets and its

applications. Kramosil and Michalek [7] introduced the concept of fuzzy metric

spaces. George and Veeramani [3] modified this concept and defined a Hausdorff

topology on fuzzy metric spaces. Grabiec [4] obtained the fuzzy version of the Banach

contraction principle, which has been milestone in developing the fixed point theory

in fuzzy metric spaces.

Sessa [9] initiated the tradition of improving commutativity in fixed point theo-

rems by introducing the notion of weakly commuting maps in metric spaces. Jungck

[5] soon enlarged this concept to compatible maps. The concepts of R-weakly com-

muting maps and compatible maps in fuzzy metric spaces have been introduced by

Vasuki [13] and Mishra et al [8] respectively. Cho [1] introduced the concept of com-

patible maps of type (α) and compatible maps of type (β). In [2] Cho et al proved a
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common fixed point theorem for two pairs of (β)-compatible maps assuming conti-

nuity of the extreme maps of the two pairs. In [10] Sharma generalized this result to

six self-maps by considering the (β)-compatibility of both pairs through continuity

of extreme maps of the two (β)-compatible pairs. In [6] Jungck and Rhoades termed

a pair of self-maps to be coincidentally commuting or equivalently weak compatible

if they commute at their coincidence points. This concept is the most general among

all commutativity concepts in this field as every pair of commuting maps or of com-

patible maps of type (β) is weak compatible but the reverse is not true as shown in

Example 2.11

In this paper we establish the existence of a unique common fixed point of six

self-maps through weak compatibility and compatibility type (β) satisfying a more

general contraction than that adopted in [10] by assuming the continuity of only

one map. Moreover, the (α)-compatibility of two pairs of [10] has been reduced to

that of only one pair in Corollary 3.3. Also Example 3.9 of this paper shows that

unlike [10] the unique common fixed point exists even when both extreme maps AB

and ST of (β)-compatible pairs are not continuous while obeying a more general

(p, q, a)-contraction, which motivated the authors to establish the main result of this

paper.

2. Preliminaries

Definition 2.1. A binary operation ∗ : [0, 1]×[0, 1] → [0, 1] is called a continuous

t-norm if ([0, 1], ∗) is an abelian topological monoid with unit 1 such that a∗ b 6 c∗d

whenever a 6 c and b 6 d for all a, b, c and d ∈ [0, 1].

Examples of the t-norm are a ∗ b = ab and a ∗ b = min{a, b}.

Definition 2.2 (Kramosil and Michalek [7]). A 3-tuple (X, M, ∗) is called a

fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm and M is a

fuzzy set in X2 × [0,∞) satisfying the following conditions:

(FM-1) M(x, y, 0) = 0;

(FM-2) M(x, y, t) = 1 for all t > 0 iff x = y;

(FM-3) M(x, y, t) = M(y, x, t);

(FM-4) M(x, y, t) ∗ M(y, z, t) 6 M(x, z, t + s);

(FM-5) M(x, y, ·) : [0,∞) → [0, 1] is left continuous for all x, y ∈ X and s, t > 0.

Note that M(x, y, t) can be thought of as the degree of nearness between x and y

with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0. The following

example shows that every metric space induces a fuzzy metric space.
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E x am p l e 2.3 (George and Veeramani [3]). Let (X, d) be a metric space. Define

a ∗ b = min{a, b} for all x, y ∈ X , M(x, y, t) = t/(t + d(x, y)) for all t > 0 and

M(x, y, 0) = 0.

Then (X, M, ∗) is a fuzzy metric space. It is called the fuzzy metric space induced

by the metric d.

Lemma 2.4 (Grabiec [4]). For all x, y ∈ X, M(x, y, ·) is a non-decreasing func-

tion.

Definition 2.5 (Grabiec [4]). Let (X, M, ∗) be a fuzzy metric space. A sequence

{xn} in X is said to converge to a point x ∈ X if lim
n→∞

M(xn, x, t) = 1 for all t > 0.

Further, the sequence {xn} is said to be a Cauchy sequence if lim
n→∞

M(xn, xn+p, t) = 1

for all t > 0 and p > 0. The space is said to be complete if every Cauchy sequence

in it converges to a point of it.

R em a r k 2.6. Since ∗ is continuous, it follows from (FM-4) that the limit of a

sequence in a fuzzy metric space is unique, if it exists.

In this paper the fuzzy metric space (X, M, ∗) is assumed to satisfy the condition

(FM-6) lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X .

Definition 2.7. A pair (A, S) of self-mappings of a fuzzy metric space is said to

be compatible type (β) if

lim
n→∞

M(A2xn, S2xn, t) = 1, ∀t > 0,

whenever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Sxn = x ∈ X.

Definition 2.8. A pair (A, S) of self-mappings of a fuzzy metric space is said to

be compatible type (α) if

lim
n→∞

M(ASxn, S2xn, t) = 1 and lim
n→∞

M(SAxn, A2xn, t) = 1, ∀t > 0,

whenever {xn} is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Sxn = x ∈ X.

Definition 2.9. A pair (A, S) of self-mappings of a fuzzy metric space is said

to be weak compatible or coincidentally commuting if A and S commute at their

coincidence points, i.e. for x ∈ X if Ax = Sx then ASx = SAx.

R em a r k 2.10. If self-mappings A and S of a fuzzy metric space (X, M, ∗) are

compatible type (β) or compatible type (α) then they are weak compatible.

The converse is not true as seen in example below.
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E x am p l e 2.11. Let (X, M, ∗) be a fuzzy metric space where X = [0, 2], with the

t-norm defined by a ∗ b = min{a, b}, for a, b ∈ [0, 1] and M(x, y, t) = t/(t + d(x, y)),

for t > 0 andM(x, y, 0) = 0, for x, y ∈ X. Define self maps A and S on X as follows:

Ax = 2 if 0 6 x 6 1 and Sx = 2 if x = 1;

Ax = 1

2
x if 1 < x 6 2 and Sx = 1

5
(x + 3) otherwise.

Taking xn = 2 − 1

2n
we have S(1) = A(1) = 2 and S(2) = A(2) = 1. Also SA(1) =

AS(1) = 1 and SA(2) = AS(2) = 2. Thus (A, S) is weak compatible. Again,

Axn = 1 − 1

4n
and Sxn = 1 − 1

10n
. Thus, Axn → 1 and Sxn → 1. Hence u = 1. Also

lim
n→∞

M(A2xn, S2xn, t) = lim
n→∞

M(2, 2

5
− 1

50n
, t) = t/(t + 8

5
) < 1, ∀t > 0.

Hence (A, S) is not compatible type (β).

Lemma 2.12 (Cho [1]). Let {yn} be a sequence in a fuzzy metric space

(X, M, ∗) with the condition (FM-6). If there exists a number k ∈ (0, 1) such that

M(yn+2, yn+1, kt) > M(yn+1, yn, t) for all t > 0, then {yn} is a Cauchy sequence

in X .

Lemma 2.13 (Mishra et al [8]). If for all x, y ∈ X and 0 < k < 1

M(x, y, kt) > M(x, y, t) for all t > 0,

then x = y.

Proposition (Cho [2, Prop. 3.1]). Let (X, M, ∗) be a fuzzy metric space with

t ∗ t > t, ∀t ∈ [0, 1] and let A and S be compatible maps type (α). If one of A or S

is continuous, then A and S are compatible type (β).

R em a r k 2.14. It is easy to see that the above result also holds in a fuzzy metric

space equipped with the general t-norm ∗.

3. Main results

Theorem 3.1. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t > t for

all t ∈ [0, 1]. Let P , Q, S, T , A and B be self-mappings from X into itself satisfying

(3.11) P (X) ⊆ ST (X) and Q(X) ⊆ AB(X);
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(3.12) there exists a constant k ∈ (0, 1) such that

M(Px, Qy, kt) + a[M(ABx, STy, kt) ∗ M(Px, Qy, kt)]

> p[M(Px, ABx, kt) ∗ M(Qy, STy, kt)]

+ q[M(Px, STy, kt) ∗ M(Qy, ABx, kt)]

+ M(ABx, STy, t) ∗ M(Px, ABx, t) ∗ M(Qy, STy, t)

∗ M(Px, STy, αt) ∗ M(Qy, ABx, (2 − α)t),

∀ x, y ∈ X , ∀t > 0 and ∀α ∈ (0, 2) where q > 0, a 6 p;

(3.13) the pair (P, AB) is compatible type (β) and the pair (Q, ST ) is weak com-

patible;

(3.14) either P or else AB is continuous. Then the four self-maps P, Q, ST and

AB have a unique common fixed point u in X . Further, if

(3.15) AB = BA, ST = TS, PB = BP , QT = TQ at a point u, then u is the

unique common fixed point of the six self-maps P , Q, S, T , A and B in X .

P r o o f. Let x0 ∈ X be an arbitrary point in X . Construct sequences {xn} and

{zn} in X such that

(1) Px2n = STx2n+1 = z2n+1 and Qx2n+1 = ABx2n+2 = z2n+2, ∀n.

S t e p 1. Taking x = x2n, y = x2n+1 in (3.12) we get

M(Px2n, Qx2n+1, kt) + a[M(ABx2n, STx2n+1, kt) ∗ M(Px2n, Qx2n+1, kt)]

> p[M(Px2n, ABx2n, kt) ∗ M(Qx2n+1, STx2n+1, kt)]

+ q[M(Px2n, STx2n+1, kt) ∗ M(Qx2n+1, ABx2n, kt)]

+ {M(ABx2n, STx2n+1, t) ∗ M(Px2n, ABx2n, t) ∗ M(Qx2n+1, STx2n+1, t)

∗ M(Px2n, STx2n+1, αt) ∗ M(Qx2n+1, ABx2n, (2 − α)t)}.

Using (1), for α = 1 − β with β ∈ (0, 1) we have

M(z2n+1, z2n+2, kt) + a[M(z2n, z2n+1, kt) ∗ M(z2n+1, z2n+2, kt)]

> p[M(z2n+1, z2n, kt) ∗ M(z2n+2, z2n+1, kt)]

+ q[M(z2n+1, z2n+1, kt) ∗ M(z2n+2, z2n, kt)]

+ {M(z2n, z2n+1, t) ∗ M(z2n+1, z2n, t) ∗ M(z2n+2, z2n+1, t)

∗ M(z2n+1, z2n+1, (1 − β)t) ∗ M(z2n+2, z2n, (1 + β)t)
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and

M(z2n+1, z2n+2, kt) + a[M(z2n, z2n+1, kt) ∗ M(z2n+1, z2n+2, kt)]

> p[M(z2n+1, z2n, kt) ∗ M(z2n+2, z2n+1, kt)] + qM(z2n, z2n+2, kt)

+ M(z2n, z2n+1, t) ∗ M(z2n+2, z2n+1, t) ∗ 1 ∗ M(z2n+2, z2n+1, βt).

Taking the limit β → 1 we obtain

M(z2n+1, z2n+2, kt) > [p − a][M(z2n+1, z2n, kt) ∗ M(z2n+2, z2n+1, kt)]

+ qM(z2n, z2n+2, t) + M(z2n, z2n+1, t) ∗ M(z2n+2, z2n+1, t).

As p − a > 0 and q > 0 we get

M(z2n+1, z2n+2, kt) > M(z2n, z2n+1, t) ∗ M(z2n+1, z2n+2, t).

Similarly if we take x = x2n+2, y = x2n+1 in (3.12) we have

(2) M(z2n+2, z2n+3, kt) > M(z2n+1, z2n+2, t) ∗ M(z2n+2, z2n+3, t), ∀t > 0.

Thus, for all m we have

M(zm+1, zm+2, kt) > M(zm, zm+1, t),

> M(zm, zm+1, t) ∗ M(zm, zm+1, t/k) ∗ M(zm+1, zm+2, t/k)

> M(zm, zm+1, t) ∗ M(zm, zm+1, t/k)

> M(zm, zm+1, t) ∗ M(zm, zm+1, t/kp), ∀t > 0,

> M(zm, zm+1, t), ∀t > 0.

Hence by Lemma 2.12, {zn} is a Cauchy sequence in X , which is complete. Therefore

{zn} converges to u ∈ X . Also its subsequences satisfy

{Px2n} → u and {ABx2n} → u.(3)

{Qx2n+1} → u and {STx2n+1} → u.(4)

C a s e 1. P is continuous.

As P is continuous we have

(5) PABx2n → Pu and P 2x2n → Pu.

As (P, AB) is compatible type (β) we get

(6) (AB)2x2n → Pu.
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S t e p 2. Taking x = ABx2n, y = x2n+1 and α = 1 in (3.12) we get

M(PABx2n, Qx2n+1, kt) + a[M((AB)2x2n, STx2n+1, kt) ∗ M(PABx2n, Qx2n+1, kt)]

> p[M(PABx2n, (AB)2x2n, kt) ∗ M(Qx2n+1, STx2n+1, kt)]

+ q[M(PABx2n, STx2n+1, kt) ∗ M(Qx2n+1, (AB)2x2n, kt)]

+ M((AB)2x2n, STx2n+1, t) ∗ M(PABx2n, (AB)2x2n, t) ∗ M(Qx2n+1, STx2n+1, t)

∗ M(PABx2n, STx2n+1, t) ∗ M(Qx2n+1, (AB)2x2n, t).

Letting n → ∞ and using (4), (5) and (6) we get that

M(Pu, u, kt) + a[M(Pu, u, kt) ∗ M(Pu, u, kt)]

> p[M(Pu, Pu, kt) ∗ M(u, u, kt)] + q[M(Pu, u, kt) ∗ M(u, Pu, kt)]

+ M(Pu, u, t) ∗ M(Pu, Pu, t) ∗ M(u, u, t) ∗ M(Pu, u, t) ∗ M(u, Pu, t),

and consequently

M(Pu, u, kt) > (p + q − a)[M(Pu, u, kt) ∗ M(u, Pu, kt)] + M(u, Pu, t)

As p + q − a > 0, we get that

M(Pu, u, kt) > M(Pu, u, t) ∀t > 0.

Hence by Lemma 2.13 we have

(7) Pu = u.

S t e p 3. As P (X) ⊆ ST (X), there exists v ∈ X such that

(8) u = Pu = STv.

Taking x = x2n, y = v and α = 1 in (3.12) we get

M(Px2n, Qv, kt) + a[M(ABx2n, ST v, kt) ∗ M(Px2n, Qv, kt)]

> p[M(Px2n, ABx2n, kt) ∗ M(Qv, STv, kt)]

+ q[M(Px2n, ST v, kt) ∗ M(Qv, ABx2n, kt)]

+ M(ABx2n, ST v, t) ∗ M(Px2n, ABx2n, t) ∗ M(Qv, STv, t)

∗ M(Px2n, ST v, t) ∗ M(Qv, ABx2n, t).
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Letting n → ∞ and using (3) and (8) we get that

M(u, Qv, kt) + a[M(u, u, kt) ∗ M(u, Qv, kt)]

> p[M(u, u, kt) ∗ M(Qv, u, kt)] + q[M(u, u, kt) ∗ M(Qv, u, kt)]

∗ M(u, u, t) ∗ M(u, u, t) ∗ M(Qv, u, t) ∗ M(u, u, t) ∗ M(Qv, u, t)

and M(u, Qv, kt) > (p + q − a)M(Qv, u, kt) + M(Qv, u, t). As p + q − a > 0 we get

M(u, Qv, kt) > M(Qv, u, t), ∀t > 0. Therefore Lemma 2.13 implies that Qv = u.

Hence STv = Qv = u. As (Q, ST ) is weak compatible we have

(9) Qu = STu.

S t e p 4. Taking x = x2n, y = u and α = 1 in (3.12) we get

M(Px2n, Qu, kt) + a[M(ABx2n, STu, kt) ∗ M(Px2n, Qu, kt)]

> p[M(Px2n, ABx2n, kt) ∗ M(Qu, STu, kt)]

+ q[M(Px2n, STu, kt) ∗ M(Qu, ABx2n, kt)]

+ M(ABx2n, STu, t) ∗ M(Px2n, ABx2n, t) ∗ M(Qu, STu, t) ∗ M(Px2n, STu, t)

∗ M(Qu, ABx2n, t).

Letting n → ∞ and using (3) and (9) we get

M(u, Qu, kt) + a[M(u, Qu, kt) ∗ M(u, Qu, kt)]

> p[M(u, u, kt) ∗ M(Qu, Qu, kt)] + q[M(u, Qu, kt) ∗ M(Qu, u, kt)]

+ M(u, Qu, t) ∗ M(u, u, t) ∗ M(Qu, Qu, t) ∗ M(u, Qu, t) ∗ M(Qu, u, t),

and so as in Step 2 we get that Qu = u. Thus Pu = Qu = STu = u.

As Q(X) ⊆ AB(X), there exists w ∈ X such that

(10) u = Qu = ABw.

S t e p 5. Taking x = w, y = u in (3.12) and α = 1 we get

M(Pw, Qu, kt) + a[M(ABw, STu, kt) ∗ M(Pw, Qu, kt)]

> p[M(Pw, ABw, kt) ∗ M(Qu, STu, kt)]

+ q[M(Pw, STu, kt) ∗ M(Qu, ABw, kt)]

+ M(ABw, STu, t) ∗ M(Pw, ABw, t)

∗ M(Qu, STu, t) ∗ M(Pw, STu, t) ∗ M(Qu, ABw, t),
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so

M(Pw, u, kt) + a[M(u, u, kt) ∗ M(Pw, u, kt)]

> p[M(Pw, u, kt) ∗ M(u, u, kt)] + q[M(Pw, u, kt) ∗ M(u, u, kt)]

+ M(u, u, t) ∗ M(Pw, u, t) ∗ M(u, u, t) ∗ M(Pw, u, t) ∗ M(u, u, t)

and

M(Pw, u, kt) > (p + q − a)M(Pw, u, kt) + (Pw, u, t).

As p + q − a > 0 we get that

M(Pw, u, kt) > M(Pw, u, t), ∀t > 0.

Therefore by Lemma 2.13, we have Pw = u. Thus Pw = ABw = u. As (P, AB) is

compatible type (β) and so it is weak compatible. We get Pu = ABu. Therefore

Pu = ABu = Qu = STu = u.

C a s e 2. AB is continuous.

Since AB is continuous and (P, AB) is compatible type (β) we get

{ABPx2n} → ABu and {(AB)2x2n} → ABu(11)

{P 2x2n} → ABu.(12)

S t e p 6. Taking x = Px2n, y = x2n+1 and α = 1 in (3.12) we get

M(P 2x2n, Qx2n+1, kt) + a[M(ABPx2n, STx2n+1, kt) ∗ M(P 2x2n, Qx2n+1, kt)]

> p[M(P 2x2n, ABPx2n, kt) ∗ M(Qx2n+1, STx2n+1, kt)]

+ q[M(P 2x2n, STx2n+1, kt) ∗ M(Qx2n+1, ABPx2n, kt)]

+ M(ABPx2n, STx2n+1, t) ∗ M(P 2x2n, ABPx2n, t)

∗ M(Qx2n+1, STx2n+1, t) ∗ M(P 2x2n, STx2n+1, t) ∗ M(Qx2n+1, ABPx2n+1, t).

Letting n → ∞ and using (4), (11) and (12) we get that

M(ABu, u, kt) + a[M(ABu, u, kt) ∗ M(ABu, u, kt)]

> p[M(ABu, ABu, kt) ∗ M(u, u, kt)]

+ q[M(ABu, u, kt) ∗ M(u, ABu, kt)]

+ M(ABu, u, t) ∗ M(ABu, ABu, t) ∗ M(u, u, t) ∗ M(ABu, u, t) ∗ M(u, ABu, t),

and so, as in Step 2, it follows that

(13) ABu = u.
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S t e p 7. Taking x = u, y = x2n+1 and α = 1 in (3.12) we get

M(Pu, Qx2n+1, kt) + aM(ABu, STx2n+1, kt) ∗ M(Pu, Qx2n+1, kt)

> p[M(Pu, ABu, kt) ∗ M(Qu, STx2n+1, kt)]

+ q[M(Pu, STx2n+1, kt) ∗ M(Qx2n+1, ABu, kt)]

+ M(ABu, STx2n+1, t) ∗ M(Pu, ABu, t) ∗ M(Qx2n+1, STx2n+1, t)

∗ M(Pu, STx2n+1, t) ∗ M(Qx2n+1, ABu, t).

Letting n → ∞ and using (4) and (13) we get

M(Pu, u, kt) + a[M(u, u, kt) ∗ M(Pu, u, kt)]

> p[M(Pu, u, kt) ∗ M(u, u, kt)] + q[M(Pu, u, kt) ∗ M(u, u, kt)]

+ M(u, u, t) ∗ M(Pu, u, t) ∗ M(u, u, t) ∗ M(Pu, u, t) ∗ M(u, u, t).

As in Step 5, we get Pu = u. Hence

(14) Pu = ABu = u.

Hence by Step 3 and Step 4 of case 1, it follows that Pu = STu = Qu = u. Thus in

both the cases we have Pu = Qu = ABu = STu = u.

S t e p 8. Taking x = u, y = Tu and α = 1 in (3.12) we get

M(Pu, QTu, kt) + a[M(ABu, ST (Tu), kt) ∗ M(Pu, QTu, kt)]

> p[M(Pu, ABu, kt) ∗ M(QTu, ST (Tu), kt)]

+ q[M(Pu, ST (Tu), kt) ∗ M(QTu, ABu, kt)]

+ M(ABu, ST (Tu), t) ∗ M(Pu, ABu, t) ∗ M(QTu, ST (Tu), t)

∗ M(Pu, ST (Tu), t) ∗ M(QTu, ABu, t).

As QT = TQ and ST = TS we have ST (Tu) = Tu and Q(Tu) = Tu. Thus

M(u, Tu, kt) + a[M(u, Tu, kt) ∗ M(u, Tu, kt)]

> p[M(u, u, kt) ∗ M(Tu, Tu, kt)]

+ q[M(u, Tu, kt) ∗ M(Tu, u, kt)]

+ M(u, Tu, t) ∗ M(u, u, t) ∗ M(Tu, Tu, t) ∗ M(u, Tu, t) ∗ M(Tu, u, t).

Then as in Step 2, it follows that Tu = u. Now STu = u and Tu = u gives Su = u.
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S t e p 9. Taking x = Bu, y = u and α = 1 in (3.12) and using P (Bu) = Bu and

AB(Bu) = Bu we get

M(Bu, u, kt) + a[M(Bu, u, kt) ∗ M(Bu, u, kt)]

> p[M(Bu, Bu, kt) ∗ M(u, u, kt)] + q[M(Bu, u, kt) ∗ M(u, Bu, kt)]

+ M(Bu, u, t) ∗ M(Bu, Bu, t) ∗ M(u, u, t) ∗ M(Bu, u, t) ∗ M(u, Bu, t).

Then as in Step 2, it follows that Bu = u. Now ABu = u and Bu = u gives Au = u.

Combining all the above results we get Pu = Qu = Su = Tu = Au = Bu = u.

S t e p 9. Let z be another common fixed point of P , Q, S, T , A and B, i.e.,

Pz = Qz = Sz = Tz = Az = Bz = z. Taking x = u, y = z and α = 1 in (3.12) we

get

M(Pu, Qz, kt) + a[M(ABu, STz, kt) ∗ M(Pu, Qz, kt)]

> p[M(Pu, ABu, kt) ∗ M(Qz, STz, kt)]

+ q[M(Pu, STz, kt) ∗ M(Qz, ABu, kt)]

+ M(ABu, STz, t) ∗ M(Pu, ABu, t)

∗ M(Qz, STz, t) ∗ M(Pu, STz, t) ∗ M(Qz, ABu, t),

i.e.

M(u, z, kt) + a[M(u, z, kt) ∗ M(u, z, kt)]

> p[M(u, u, kt) ∗ M(z, z, kt)]

+ q[M(u, z, kt) ∗ M(z, u, kt)]

+ M(u, z, t) ∗ M(u, u, t) ∗ M(z, z, t) ∗ M(u, z, t) ∗ M(z, u, t).

As in Step 2, it follows that u = z and thus u is the unique common fixed point of

the self-maps P , Q, S, T , A and B. �

In [12] Singh and Jain have established the following result:

Theorem 3.2 [12]. Let A, B, S, T , P and Q be self-maps on a complete fuzzy

metric space (X, M, ∗) with t ∗ t > t for all t ∈ [0, 1] satisfying

⊲ P (X) ⊆ ST (X) and Q(X) ⊆ AB(X);

⊲ there exists a constant k ∈ (0, 1) such that

M(Px, Qy, kt) > M(ABx, Px, t) ∗ M(STy, Qy, t)

∗ M(STy, Px, βt) ∗ M(ABx, Qy, (2 − β)t) ∗ M(ABx, STy, t)

for all x, y ∈ X , β ∈ (0, 2) and t > 0;
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⊲ the pair (P, AB) is compatible type (β) and the pair (Q, ST ) is weak compatible;

⊲ either P or AB is continuous;

⊲ AB = BA, ST = TS, PB = BP , QT = TQ.

Then A, B, S, T , P and Q have a unique common fixed point in X .

R em a r k 3.2. The above result of [12] follows from Theorem 3.1 by taking p =

q = a = 0 in (3.12). Obviously the contractive condition of our theorem is more

general than that adopted in [12].

In view of Proposition 3.1 of [2], we have the following result:

Corollary 3.3. Let (X, M, ∗) be a complete fuzzy metric space with t∗ t > t. Let

P , Q, S, T , A and B be self-maps from X satisfying (3.11), (3.12), (3.14), (3.15)

and

⊲ the pair (P, AB) is compatible type (α) and the pair (Q, ST ) is weak compatible.

Then P , Q, S, T , A and B have a unique common fixed point in X .

The result follows from Proposition 3.1 of [2].

In [10] Sharma has established the following result:

Theorem [10, Th. 3.1]. Let A, B, S, T , P and Q be self-maps on a complete

fuzzy metric space (X, M, ∗) with t ∗ t > t, for all t ∈ [0, 1] satisfying

⊲ P (X) ⊆ ST (X) and Q(X) ⊆ AB(X);

⊲ AB = BA, ST = TS, PB = BP , QT = TQ, QS = SQ;

⊲ A, B, S and T are continuous;

⊲ the pairs (P, AB) and (Q, ST ) are compatible type (α);

⊲ there exists a constant k ∈ (0, 1) such that

M(Px, Qy, kt) > M(ABx, STy, t) ∗ M(Px, ABx, t) ∗ M(Qy, STy, t)

∗ M(Px, STy, αt) ∗ M(Qy, ABx, (2 − α)t)

for x, y ∈ X , t > 0 and a ∈ (0, 2).

Then A, B, S, T , P and Q have a unique common fixed point in X .

R em a r k 3.4. A generalization and improvement of the result of [10] follows

from Corollary 3.3 by taking p = q = a = 0 in (3.12). Precisely, the assumed

(α)-compatibility of both pairs of the main result of [10] has been reduced here to

the (α)-compatibility of only one pair and the weak compatibility of the other pair.

Moreover, the assumed continuity of the four maps A, B, S and T in [10] has been

reduced to continuity of only one map of the (α)-compatible pair. At the same time,

the contractive condition of our corollary is more general than that adopted in [10].

162



Corollary 3.5. Let (X, M, ∗) be a complete fuzzy metric space and let P , Q, S,

T , A and B be self-maps from X satisfying (3.11), (3.12), (3.15) and

⊲ pairs (P, AB) and (Q, ST ) are compatible of type (α);

⊲ one of the maps from P , Q, AB and ST is continuous.

Then P , Q, S, T , A and B have a unique common fixed point in X .

P r o o f. The result follows from Remark 2.10 and Corollary 3.3. �

R em a r k 3.6. Another improvement of the result of [10] follows from Corol-

lary 3.5. Precisely, the assumed continuity of A, B, S and T has been reduced to

the continuity of only one map.

Taking B = T = I in Theorem 3.1, we conclude

Corollary 3.7. Let (X, M, ∗) be a complete fuzzy metric space with t ∗ t > t and

let P , Q, S and A be self-maps from X satisfying

⊲ P (X) ⊆ S(X) and Q(X) ⊆ A(X);

⊲ there exists a constant k ∈ (0, 1) such that

M(Px, Qy, kt) + aM(Ax, Sy, kt) ∗ M(Px, Qy, kt)

> p[M(Px, Ax, kt) ∗ M(Qy, Sy, kt)]

+ q[M(Px, Sy, kt) ∗ M(Qy, Ax, kt)]

+ M(Ax, Sy, t) ∗ M(Px, Ax, t) ∗ M(Qy, Sy, t)

∗ M(Px, Sy, αt) ∗ M(Qy, ABx, (2 − α)t)

for all x, y ∈ X, for all t > 0 and for all α ∈ (0, 2) where q > 0, a 6 p;

⊲ the pair (P, A) is compatible type (β) and the pair (Q, S) is weak compatible;

⊲ either P or A is continuous.

Then P, Q, S and A have a unique common fixed point.

R em a r k 3.8. Taking p = a and q = 0 we have an alternate result of Cho et al

[2] under weaker conditions.

E x am p l e 3.9 (of Theorem 3.1). Let (X, M, ∗) be a fuzzy metric space where

X = [0, 1] and the t-norm is defined by a∗b = min{a, b}, a, b ∈ [0, 1] andM(x, y, t) =

t/(t + d(x, y)) for all x, y ∈ X , t > 0. Then the induced fuzzy metric space is

complete. Define self-maps P, Q, S, T, A and B by Px = Qx = Sx = 1

2
if x ∈ [0, 1],

Bx = Tx = x if x ∈ [0, 1], Ax = x if x ∈ [ 1
8
, 1

4
] and Ax = 1

2
otherwise.

Then P (X) ⊆ ST (X) and Q(X) ⊆ AB(X). Further, (P, AB) is compatible type

(β) and (Q, ST ) is weak compatible and P is continuous. Taking p + q = a, all the

163



conditions of Theorem 3.1 are satisfied and 1

2
is the unique common fixed point of

the six self-maps P , Q, S, T , A and B.

It is to be observed in the above Example that the pair (P, AB) is compatible of

type (α), and though AB is discontinuous, yet the unique common fixed point exists.

Further, the contraction in Corollary 3.3 and in this example is more general than

that of [10].
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