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Abstract. A subspace Y of a space X is almost Lindelöf (strongly almost Lindelöf) in X if
for every open cover U of X (of Y by open subsets of X), there exists a countable subset V

of U such that Y ⊆
⋃
{V : V ∈ V }. In this paper we investigate the relationships between

relatively almost Lindelöf subset and relatively strongly almost Lindelöf subset by giving
some examples, and also study various properties of relatively almost Lindelöf subsets and
relatively strongly almost Lindelöf subsets.
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1. Introduction

By a space we mean a topological space. Recall from [1], [2], [4] that a subspace Y

of a space X is Lindelöf in X if for every open cover U of X there exists a countable

subfamily covering Y . A space X is almost Lindelöf (see [5], [6]) if for every open

cover U of X there exists a countable subfamily V such that X =
⋃

{V : V ∈ V }.

Motivated by the classes of these spaces, the following classes of spaces are given:

Definition 1.1. A subspace Y of a space X is strongly Lindelöf in X if for every

open cover U of Y by open subsets of X there exists a countable subset V of U

such that Y ⊆
⋃

{V : V ∈ V }.

Definition 1.2. A subspace Y of a space X is almost Lindelöf in X if for every

open cover U of X there exists a countable subset V of U such that Y ⊆
⋃

{V : V ∈

V }.
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Definition 1.3. A subspace Y of a space X is strongly almost Lindelöf in X if

for every open cover U of Y by open subsets of X there exists a countable subset V

of U such that Y ⊆
⋃

{V : V ∈ V }.

Let X be a space and Y a subspace of X . From the above definitions it is clear

that if Y is Lindelöf in X , then Y is almost Lindelöf in X ; if Y is strongly Lindelöf

in X , then Y is Lindelöf in X ; if Y is strongly Lindelöf in X , then Y is strongly

almost Lindelöf in X and if Y is strongly almost Lindelöf in X , then Y is almost

Lindelöf in X , but the converse implications do not hold.

The purpose of this note is to investigate the relationships between the spaces

given above by giving some examples and also to study various properties of relatively

almost Lindelöf subsets and relatively strongly almost Lindelöf subsets.

Throughout this paper, the cardinality of a set A is denoted by |A|. For a space

X and a subspace Y of X , the extent e(Y, X) of Y in X [2] is defined as the smallest

cardinal number κ such that the cardinality of every discrete subspace Y which is

closed in X is not greater than κ. Let ω denote the first infinite cardinal, ω1 the first

uncountable cardinal and ω2 the second uncountable cardinal. As usual, a cardinal

is the initial ordinal and an ordinal is the set of smaller ordinals. When viewed as a

space, every cardinal has the usual order topology. Let 〈a, b〉 denote the ordered pair

having a as the first coordinate and b as the second coordinate. If (X, 6) is a partially

ordered set and a < b in X , then (a, b) denotes the interval {x ∈ X : a < x < b}.

Other terms and symbols that we do not define will be used as in [3].

2. Some examples of relatively almost Lindelöf subsets

In this section we give some examples of relatively almost Lindelöf subsets and

relatively strongly almost Lindelöf subsets. First, we give two positive results which

are proved easily:

Theorem 2.1. Let X be a regular space and Y a subspace of X . If Y is almost

Lindelöf in X , then Y is Lindelöf in X .

Theorem 2.2. Let X be a regular space and Y a subspace of X . If Y is almost

Lindelöf in X , then Y is Lindelöf in X .

Now, we give an example showing that Theorems 2.1 and 2.2 are not true for

Hausdorff spaces.

E x am p l e 2.3. There exist a Hausdorff almost Lindelöf space X and two sub-

spaces Y1 and Y2 of X such that Y1 is almost Lindelöf in X but Y1 is not Lindelöf in

X and Y2 is strongly almost Lindelöf in X but Y is not Lindelöf in X .
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P r o o f. Let D = {dα : α < ω1} be a discrete space of cardinality ω1. Let

X = ([0, 1] × D) ∪ {a} where a /∈ [0, 1] × D. Define a basic open set for a topology

on X as follows: [0, 1] × D has the usual product topology and is an open subspace

of X ; the basic open sets containing a take the form {a} ∪
⋃

{[0, 1)× {dα} : α > β}

where β < ω1. The topology generated by these basic open sets is Hausdorff but it

is not regular, since a cannot be separated from the closed subset {〈1, dα〉 : α < ω1}

by disjoint open subsets of X . Each subset [0, 1]×{dα} is compact for each α < ω1.

Clearly, X is not Lindelöf, since {〈1, dα〉 : α < ω1} is a discrete closed subset of X

of cardinality ω1. Let Y1 = {〈1, dα〉 : α < ω1} and Y2 = {〈1, dα〉 : α < ω1} ∪ {a}.

First, we show that X is almost Lindelöf. To this end, let U be an open cover of

X . Then there is a Ua ∈ U such that a ∈ Ua. Thus there exists an α0 < ω1 such

that

U ′

a = {a} ∪
⋃

{[0, 1) × {dα} : α > α0} ⊆ Ua.

For each α 6 α0, since [0, 1]× {dα} is compact, there exists a finite subfamily Vα of

U such that

[0, 1] × {dα} ⊆
⋃

Vα.

If we put V =
⋃

α6α0

Vα ∪{Ua}, then V is a countable subfamily of U . By the

definition of topology of X it is not difficult to see that X =
⋃

{V : V ∈ V }, which

shows that X is almost Lindelöf. Thus, Y1 is almost Lindelöf in X , since every subset

of an almost Lindelöf space X is almost Lindelöf in X .

Next, we show that Y1 is not Lindelöf in X . Let Uα = [0, 1]×{dα} for each α < ω1

and

Ua = {a} ∪ ([0, 1) × D).

Let us consider the open cover U ={Uα : α < ω1} ∪{Ua} of X . Let V be any

countable subfamily of U . Let

α0 = sup{α : Uα ∈ V }.

Then α0 < ω1, since V is countable. If we pick α′ > α0, then 〈1, d′α〉 /∈
⋃

V , since

Uα′ is the only element of U containing 〈1, d′α〉 and Uα′ /∈ V , which shows that Y1

is not Lindelöf in X .

Similarly to the proof that Y1 is not Lindelöf in X we may show that Y2 is not

Lindelöf in X .

Finally, we show that Y2 is strongly almost Lindelöf in X . Let U be an open cover

of Y2 by open subsets of X . Then there is a Ua ∈ U such that a ∈ Ua. Thus there

exists an α0 < ω1 such that

U ′

a = {a} ∪
⋃

{[0, 1) × {dα} : α > α0} ⊆ Ua.
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For each α 6 α0 we pick Vα ∈ U such that

〈1, dα〉 ∈ Vα.

If we put V
′={Vα : α 6 α0}, then

{〈1, dα〉 : α 6 α0} ⊆
⋃

V
′.

Let V =V ′ ∪{Ua}. Then V is a countable subfamily of U . By the definition of

topology of X it is not difficult to see that

Y2 ⊆
⋃

{V : V ∈ V },

which shows that Y2 is strongly almost Lindelöf in X .

R em a r k 2.4. In Example 2.3, since Y2 is not Lindelöf in X , Y2 is not strongly

Lindelöf in X . Thus, Example 2.3 shows that there exist a Hausdorff space X and a

subspace Y of X such that Y is strongly almost Lindelöf in X but Y is not strongly

Lindelöf in X .

R em a r k 2.5. By Theorem 2.2, for a subset Y of a regular space X , if Y is

strongly almost Lindelöf inX , then Y is strongly Lindelöf inX , hence Y is Lindelöf in

X . But the statement need not be true for the class of Hausdorff spaces. Example 2.3

shows that there exist a Hausdorff space X and a subspace Y of X such that Y is

strongly almost Lindelöf in X but Y is not Lindelöf in X . The converse need not be

true for the class of Tychonoff spaces as the following example shows.

E x am p l e 2.6. There exist a regular space X and a subspace Y of X such that

Y is Lindelöf in X but X is not Lindelöf and Y is not strongly almost Lindelöf in X .

P r o o f. Let X1 = ω1 with the usual topology and X2 = {xα : α < ω1 + 1}

with the following topology: If α < ω1, then {xα} is open. A set containing xω1
is

open if and only if its complement is countable. With this topology, X2 is regular

and Lindelöf. Let X = X1 × X2 and Y = {0} × {xα : α < ω1}. Since X1 × {0} is

homeomorphic to ω1, it is not Lindelöf. Thus X is not Lindelöf, since X1 is a closed

subset of X .

To show that Y is Lindelöf in X , let U be an open cover of X . Since {0}×X2 is

homeomorphic to X2, {0} × X2 is a Lindelöf subset, hence there exists a countable

subfamily V of U such that {0} × X2 ⊆
⋃

V , thus Y ⊆
⋃

V , which shows that Y

is Lindelöf in X .

Next, we show that Y is not strongly almost Lindelöf in X . Put Uα = X1 × {xα}

for each α < ω1. Let us consider the open cover

U = {Uα : α < ω1}
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of Y by open sets of X . Let V be any countable subfamily of U . If we put

α0 = sup{α : Uα ∈ V },

then α0 < ω1, since V is countable. Hence,
⋃

V =
⋃

{V : V ∈ V } ⊆ X1 × {xα : α < α0 + 1}.

If we pick α′ > α0, then 〈0, xα′〉 ∈ Uα′ and Uα′ /∈ V , since Uα′ is the only element of

V containing 〈0, xα′〉, hence 〈0, xα′〉 /∈
⋃

{V : V ∈ V }, which completes the proof.

R em a r k 2.7. In Example 2.6, since Y is Lindelöf in X , Y is almost Lindelöf

in X ; since Y is not strongly almost Lindelöf in X , hence Y is not strongly Lindelöf

in X . Thus, by Example 2.6, we can see that

(1) there exist a Tychonoff space X and a subspace Y of X such that Y is almost

Lindelöf in X but Y is not strongly almost Lindelöf in X ;

(2) there exist a Tychonoff space X and a subspace Y of X such that Y is Lindelöf

in X but Y is not strongly Lindelöf in X .

Arhangel’skii [2] showed that if Y is Lindelöf in X , then the extent e(Y, X) of Y

in X is countable. Clearly, if Y is strongly Lindelöf in X , then the extent e(Y, X)

of Y in X is countable. From Theorems 2.1 and 2.2 it follows that if Y is almost

Lindelöf (strongly almost Lindelöf) in a regular space X , then the extent e(Y, X) of

Y in X is countable. Now, we give an example showing that the statement is not

true for the class of Hausdorff spaces.

E x am p l e 2.8. For every infinite cardinal κ, there exist a Hausdorff space X and

a subspace Y of X such that Y is strongly almost Lindelöf in X and e(Y, X) > κ.

P r o o f. For every infinite cardinal κ, let D be a discrete space of cardinality κ.

Let X = ([0, 1]×D)∪{a} where a /∈ [0, 1]×D. Define a basic open set for a topology

on X as follows: [0, 1] × D has the usual product topology and is an open subspace

of X ; the basic open sets containing a take the form {a} ∪
⋃

{[0, 1)× (D \ F} where

F is a countable subset of D. The topology generated by these basic open sets is

Hausdorff but it is not regular. Each subset [0, 1]×{α} is compact for each α < ω1.

Clearly, X is not Lindelöf if κ > ω, since {〈1, α〉 : α < ω1} is a discrete closed subset

of X of cardinality ω1. Let

Y = {〈1, d〉 : d ∈ D} ∪ {a}.

Then e(Y, X) > κ, since Y is a closed discrete subspace of X with |Y | = κ. As in

the proof of Example 2.3, we can prove that Y is strongly almost Lindelöf in X .
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3. Various topological properties of relatively almost Lindelöf

subsets and strongly relatively almost Lindelöf subsets

From the definition of relatively almost Lindelöf subset it is not difficult to see that

every subset of an almost Lindelöf space X is almost Lindelöf in X . If A ⊆ B ⊆ X

and A is almost Lindelöf in B, then A is almost Lindelöf in X . However, the converse

is not true as the following example shows.

E x am p l e 3.1. There exist a Tychonoff space X and two subsets A and B of X

with A ⊆ B such that A is almost Lindelöf in X but A is not almost Lindelöf in B.

P r o o f. Let X = {xα : α < ω2} ∪ {a} with the following topology: If α < ω2,

then {xα} is open. A set containing a is open if and only if its complement is

countable. With this topology, X is regular and Lindelöf. Let A = {xα : α < ω1}

and B = {xα : α < ω2}. Then A is almost Lindelöf in X , since X is Lindelöf.

Next, we note that A is not almost Lindelöf in B, since B is a discrete space and

A is a subspace of B with |A| = ω1, which completes the proof.

R em a r k 3.2. It is not difficult to see that A is not strongly almost Lindelöf in

X in Example 3.1. Thus Example 3.1 shows that a subset of a Lindelöf space X

need not be strongly almost Lindelöf in X .

From the construction of Example 3.1 it is not difficult to see that B is an open

subset of X . In the following, we give an example showing that this is also not true

for a closed set.

E x am p l e 3.3. There exist a Hausdorff space X and two subsets A and B of X

with A ⊆ B such that A is almost Lindelöf in X and B is closed in X but A is not

almost Lindelöf in B.

P r o o f. Let X be the same space X as in Example 2.3. Let A = Y1 and B = Y2.

Then A is almost Lindelöf in X , since X is almost Lindelöf. But A is not almost

Lindelöf in B, since B is a discrete space and A is a discrete subspace of B with

|A| = ω1.

Now, we give a positive result which can be easily proved.

Proposition 3.4. If A ⊆ B ⊆ X , where B is a clopen subset of X , then A is

almost Lindelöf in B iff A is almost Lindelöf in X .

For relatively strongly almost Lindelöf subsets, it is not difficult to prove the

following proposition.
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Proposition 3.5. If A ⊆ B ⊆ X , then A is strongly almost Lindelöf in B iff A is

strongly almost Lindelöf in X .

Theorem 3.6. Let f : X → Y be a continuous function. If A is almost Lindelöf

in X , then f(A) is almost Lindelöf in Y .

P r o o f. Let {Uα : α ∈ Λ} be an open cover of Y . Then {f−1(Uα) : α ∈ Λ} is

an open cover of X . Since A is almost Lindelöf in X , there exists a countable subset

{αi : i ∈ ω} of Λ such that A ⊆
⋃

i∈ω

f−1(Uαi
) and thus

f(A) ⊂

(

⋃

i∈ω

f−1(Uαi
)

)

⊆
⋃

i∈ω

f(f−1(Uαi
)) ⊆

⋃

i∈ω

f(f−1(Uαi
))) ⊆

⋃

i∈ω

Uαi
.

Hence, f(A) is almost Lindelöf in Y , which completes the proof.

Similarly to the previous result, one can prove the following:

Theorem 3.7. Let f : X → Y be a continuous function. If A is strongly almost

Lindelöf in X , then f(A) is strongly almost Lindelöf in Y .

Proposition 3.8. If A is almost Lindelöf in X and Y is a compact space, then

A × Y is almost Lindelöf in X × Y .

P r o o f. Let U be an open cover of X × Y . Without loss of generality, we can

assume that U consists of basic open sets ofX×Y . Since {x}×Y is a compact subset

of X ×Y for each x ∈ X , there exists a finite subfamily {Ux,i ×Vx,i : i = 1, 2, . . . nx}

of U such that

{x} × Y ⊆
⋃

{Ux,i × Vx,i : 1 6 i 6 nx}.

Let Wx =
⋂

{Uxi
: 1 6 i 6 nx}. Then

{x} × Y ⊆
⋃

{Wx × Vx,i : 1 6 i 6 nx}.

Let W ={Wx : x ∈ X}. Then W is an open cover of X . Hence, there is a countable

subfamily {Wxj
: j ∈ ω} of W such that

A ⊆
⋃

j∈ω

Wxj
,

since A is almost Lindelöf in X . Let V ={Uxj,i × Vxj ,i : 1 6 i 6 nxj
, j ∈ ω}. Then

V is a countable subfamily of U . To show that A × Y ⊆
⋃

{Uxj,i × Vxj ,i : 1 6 i 6

nxj
, j ∈ ω}, let 〈s, t〉 ∈ A × Y be fixed. Let Us × Vt be any open neighborhood of
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〈s, t〉 in X × Y where Us and Vt are open neighborhoods of s and t in X and Y ,

respectively. Since A ⊆
⋃

j∈ω

Wxj
, there exists a j ∈ ω such that s ∈ Wxj

, hence

Us ∩ Wxj
6= ∅. Thus,

(Us × Vt) ∩

(

⋃

{Wxj
× Vxj ,i : 1 6 i 6 nxj

}

)

6= ∅.

Therefore,

(Us × Vt) ∩

(

⋃

{Uxj,i × Vxj ,i : 1 6 i 6 nxj
}

)

6= ∅.

We have

〈s, t〉 ∈
⋃

{Uxj,i × Vxj ,i : 1 6 i 6 nxj
} =

⋃

{Uxj,i × Vxj ,i : 1 6 i 6 nxj
}.

This implies 〈s, t〉 ∈
⋃

{Uxj,i × Vxj ,i : 1 6 i 6 nxj
, j ∈ ω}. Hence, A × Y ⊆

⋃

{Uxj,i × Vxj ,i : 1 6 i 6 nxj
, j ∈ ω}, which shows that A × Y is strongly almost

Lindelöf in X × Y .

Similarly, we can prove the following:

Proposition 3.9. If A is strongly almost Lindelöf in X and Y is a compact space,

then A × Y is strongly almost Lindelöf in X × Y .
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