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Abstract. Suppose k + 1 runners having nonzero distinct constant speeds run laps on
a unit-length circular track. The Lonely Runner Conjecture states that there is a time at
which a given runner is at distance at least 1/(k + 1) from all the others. The conjecture
has been already settled up to seven (k 6 6) runners while it is open for eight or more
runners. In this paper the conjecture has been verified for four or more runners having
some particular speeds using elementary tools.
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1. Introduction

In 1967, Wills [14] stated a conjecture, now known as the Lonely Runner Conjec-

ture. According to Goddyn in [4] it reads as follows:

Suppose k +1 runners having nonzero distinct constant speeds run laps on a unit-

length circular track. The Lonely Runner Conjecture states that there is a time at

which one runner is at distance at least 1/(k + 1) from all the others.

The same conjecture was also stated independently by Cusick [6] in 1974. For

k 6 3 the conjecture was settled by Betke and Wills in [3] who were dealing with

some Diophantine approximation problem and also independently by Cusick in [6]

who was considering n-dimensional geometry view-obstruction problem. The case

k = 4 was first proved by Cusick and Pomerence in [7] with a proof that requires

a computer work. Later, Bienia et al. in [4] gave a simpler proof for k = 4. The

case k = 5 was proved by Bohman, Holzman and Kleitman in [5]. A simpler proof
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for this case was given by Renault in [13]. Recently, Barajas and Serra in ([1], [2])

proved the conjecture for k = 6. Some more work on this conjecture can be found

in [12]. For k > 7 the conjecture is still open. We verify the conjecture for four or

more runners having some particular speeds using elementary techniques.

2. Definitions and useful known results

Definition 2.1. Suppose M = {m1, m2, . . . , mk} where mi’s are positive inte-

gers and let ‖x‖ denote the distance of the real number x from the nearest integer.

Denote

κ(M) = sup
x∈(0,1)

min
i

‖xmi‖.

The Lonely Runner Conjecture in the form of Wills and Cusick reads as follows:

Suppose M is a finite set of positive integers with |M | = k. Then

κ(M) >
1

k + 1
.

Haralambis in [10] gave a remark which gives three equivalent definitions for κ(M).

R em a r k 2.1 (Haralambis, [10]). Let M = {m1, m2, . . . , mk} and

κ1(M) = sup
x∈(0,1)

min
i

‖xmi‖,

κ2(M) = sup
(c,m)=1

1

m
min

i
|cmi|m,

κ3(M) = max
m=mj+ml

16x6m/2

1

m
min |xmi|m,

where |y|m denotes the absolute value of the absolutely least remainder of y (mod m).

Then κ1(M) = κ2(M) = κ3(M), and we denote this common value by κ(M).

It is straightforward from the definition that

(∗) if d is a positive integer such that dM1 = M2, then κ(M1) = κ(M2);

(∗∗) if M1 ⊂ M2, then κ(M1) > κ(M2).

Definition 2.2. A set of the form I ∪ J is called a bi-arithmetic progression of

length k with difference d if both I and J are arithmetic progressions of difference

d, |I| + |J | = k, and I + I, I + J, J + J are pairwise disjoint.

Now we mention (without proof) some already known results which are useful in

our discussion.
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Theorem 2.1 (Freiman, [8]). Suppose |M | = k, k > 4 and |M +M | = 2k−1+b <

3k − 3. Then M is a subset of an arithmetic progression of length at most k + b.

Theorem 2.2 (Jin, [11]). There exists a positive real number ε and a natural

number K such that for any finite set of natural numbers M with |M | = k > K

and |M + M | = 3k − 3 + b for 0 6 b 6 εk, M is either a subset of an arithmetic

progression of length at most 2k − 1 + 2b or a subset of a bi-arithmetic progression

of length at most k + b.

3. Main results

Theorem 3.1. If M = {a, a + d, a + 2d, . . . , a + (k − 1)d} and k > 1, then

κ(M)







>
2a + (k − 1)(d − 1)

2{2a + (k − 1)d}
if d is odd;

= 1
2 if d is even.

P r o o f. If d is even then M contains only odd integers. Choosing x = 1/2 and

applying κ1(M), we get the result in this case. Now suppose that d is odd. Let

m = 2a + (k − 1)d. Since gcd(d, m) = 1, we have dx ≡ 1 (mod m) for some integer

x. Let dx = 1 + mq. Then x and mq, hence x and (k − 1)q are of opposite parity,

and so

ax ≡
m − (k − 1)d

2
x =

m[x − (k − 1)q] − (k − 1)

2
≡

m − (k − 1)

2
(mod m).

Therefore, for 0 6 l 6 k − 1,

(a + ld)x ≡
m

2
+

(

l −
k − 1

2

)

(mod m).

Thus applying κ3(M), we have

κ(M) >
2a + (k − 1)(d − 1)

2{2a + (k − 1)d}
.

�

65



Theorem 3.2. Suppose |M | = k, k > 4 and |M +M | = 2k−1+b < 3k−3. Then

κ(M) > 1/(k + 1), provided also that if M is a subset of an arithmetic progression

with difference 1 then the first term of the arithmetic progression is greater than 1.

P r o o f. It is clear from Freiman’s theorem that M is a subset of an arithmetic

progression of length at most k+b. Now suppose that the first term of the arithmetic

progression is a and the difference is d. Then we have M ⊆ {a, a + d, . . . , a +

(k + b − 1)d}. Without loss of generality, take gcd(a, d) = 1. Then using (∗) and

Theorem 3.1, we have

κ(M) > κ({a, a + d, . . . , a + (k + b − 1)d}) >
2a + (k + b − 1)(d − 1)

2{2a + (k + b − 1)d}
.

We now show that
2a + (k + b − 1)(d − 1)

2{2a + (k + b − 1)d}
>

1

k + 1
.

This is true if and only if (k + 1){2a + (k + b− 1)(d− 1)} > 2{2a + (k + b− 1)d}, if

and only if 2a(k−1) > (k+b−1){2d− (k+1)(d−1)} = (k+b−1){k+1− (k−1)d}.

Notice that this is always true for d > 2. Therefore, now suppose that d = 1. Then

the above inequality is equivalent to 2a(k−1) > 2(k+b−1). Since 2k−1+b < 3k−3,

hence, k + b− 1 < 2k− 3. Thus the inequality is true if and only if a(k− 1) > 2k− 3,

if and only if a > (2k − 3)/(k − 1) (< 2). This completes the proof. �

Theorem 3.3. Suppose there exists a positive real number ε and a natural num-

ber K such that M is a finite set of positive integers with |M | = k > K and

|M + M | = 3k − 3 + b for 0 6 b 6 εk. Then κ(M) > 1/(k + 1) provided M is

not a subset of a bi-arithmetic progression, and if M is a subset of an arithmetic

progression with difference 1, the first term of the arithmetic progression must be

greater than or equal to 2{(ε + 1)k − 1}/(k − 1).

P r o o f. It is clear from Jin’s theorem that M is a subset of an arithmetic

progression of length at most 2k − 1 + 2b. Now suppose that the first term of the

arithmetic progression is a and the difference is d. Then we have M ⊆ {a, a + d, . . . ,

a+2(k + b− 1)d}.Without loss of generality, take gcd(a, d) = 1. Then using (∗) and

Theorem 3.1, we have

κ(M) > κ({a, a + d, . . . , a + 2(k + b − 1)d}) >
2a + 2(k + b − 1)(d − 1)

2{2a + 2(k + b − 1)d}
.

We now show that
2a + 2(k + b − 1)(d − 1)

2{2a + 2(k + b − 1)d}
>

1

k + 1
.
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This is true if and only if (k +1){a+(k + b− 1)(d− 1)} > 2{a+(k + b− 1)d}, if and

only if a(k − 1) > (k + b − 1){2d − (k + 1)(d − 1)} = (k + b − 1){k + 1 − (k − 1)d}.

Notice that this is always true for d > 2 and k > 3. Therefore, now suppose that

d = 1. Then the above inequality is equivalent to a(k − 1) > 2(k + b − 1). Since

b 6 εk, hence, k + b − 1 6 (ε + 1)k − 1. Thus the inequality is true if and only if

a(k− 1) > 2{(ε+1)k− 1}, if and only if a > 2{(ε+1)k− 1}/(k− 1). This completes

the proof. �

Ob s e r v a t i o n. Theorem 3.3 gives more choices for the speeds of the runners

satisfying the Lonely Runner Conjecture than Theorem 3.2 because in Theorem 3.3

the set M has larger doubling property than the set M in Theorem 3.2.

The following example shows that the statements of Theorem 3.2 and Theorem 3.3

are not completely equivalent, that is, this example satisfies Theorem 3.3 but not

Theorem 3.2.

E x am p l e 3.1. For k > 15, let M = [0, k− 3]∪ {k + 10, 2k + 20}. Then |M | = k

and |M +M | = 3k+9. The shortest arithmetic progression containingM has length

2k + 21.

A c k n ow l e d g em e n t. I am very much thankful to the referee for his/her care-

ful reading of the paper and giving useful suggestions how to present the paper in a

better form.
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