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Abstract

In this paper, we establish some generalizations to approximate com-
mon fixed points for selfmappings in a normed linear space using the
modified Ishikawa iteration process with errors in the sense of Liu [10]
and Rafiq [14]. We use a more general contractive condition than those of
Rafiq [14] to establish our results. Our results, therefore, not only improve
a multitude of common fixed point results in literature but also generalize
some of the results of Berinde [3], Rhoades [15] and recent results of Rafiq
[14].
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1 Introduction

Let K be a nonempty closed convex subset of a normed linear space E and
T : K → K a selfmap. For arbitrary x0 in K, we define Mann [11] iteration
process {xn}∞n=0 by

xn+1 = (1− bn)xn + bnTxn, n = 0, 1, 2, . . . (1)

Ishikawa [6] iteration process {xn}∞n=0 is defined by

xn+1 = (1 − bn)xn + bnTyn
yn = (1 − b

′
n)xn + b

′
nTxn, n = 0, 1, 2, . . .

(2)

where x0 ∈ K is arbitrary, {bn} and {b′n} being sequences of real numbers in
[0,1].
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The concept of Ishikawa iteration process with errors was introduced by Liu
[10] and is the sequence {xn}∞n=0 defined by

xn+1 = (1− bn)xn + bnTyn + un

yn = (1− b
′
n)xn + b

′
nTxn + vn, n = 0, 1, 2, . . .

(3)

where x0 ∈ K is arbitrary, {bn} and {b′n} being sequences of real numbers in
[0,1] while {un} and {vn} satisfy

∞∑

n=0

‖un‖ < ∞ and
∞∑

n=0

‖vn‖ < ∞

respectively. We observe that (3) contains (1) and (2). We also observe that
(3) contains the Mann iteration process with errors given by

xn+1 = (1− bn)xn + bnTxn + un, n = 0, 1, 2, . . . (4)

Das and Debata [5] generalized the Ishikawa iteration processes from the
case of one self mapping to the case of two self mappings S and T of K given
by

xn+1 = (1 − bn)xn + bnSyn
yn = (1 − b

′
n)xn + b

′
nTxn, n = 0, 1, 2, . . .

(5)

By using Iteration (5), Das and Debata [5] established the common fixed
points of quasi-nonexpansive mappings in a uniformly convex Banach space.
Several other researchers such as Takahashi and Tamura [21] investigated iter-
ation (5) in a strictly convex Banach space, for the case of two nonexpansive
mappings under different assumptions and contractive conditions.
Later, Rafiq [14] studied the two-step iteration process with errors in the

sense of Liu [10] by using the following sequence {xn}∞n=0 defined by

xn+1 = bnSyn + (1− bn)xn + un

yn = b
′
nTxn + (1− b

′
n)xn + vn, n = 0, 1, 2, . . .

(6)

where x0 ∈ K is arbitrary, {un} and {vn} are two summable sequences in K.
We observe that iteration (6) contains all the iteration processes (1)–(5) as

special cases.
In 1972, Zamfirescu [23] proved the following result.

Theorem 1 Let (E, d) be a complete metric space and T : E → E be a mapping
for which there exist real numbers a, b and c satisfying 0 ≤ a < 1, 0 ≤ b, c < 0.5
such that, for each x, y ∈ E, at least one of the following is true:

(Z1) d(Tx, T y) ≤ ad(x, y);

(Z2) d(Tx, T y) ≤ b[d(x, Tx) + d(y, T y)];

(Z3) d(Tx, T y) ≤ c[d(x, T y) + d(y, Tx)].

Then, T is a Picard mapping.
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An operator T satisfying the contractive conditions (Z1), (Z2) and (Z3) in
Theorem 1 above is called a Zamfirescu operator.

Remark 1 The proof of this Theorem is contained in Berinde [2]. Indeed, if

δ = max

{
a,

b

1− b
,

c

1− c

}
, (7)

in Theorem 1, we obtain
0 ≤ δ < 1. (8)

Then, for all x, y ∈ E, and by using Z2, it was proved in Berinde [2] that

d(Tx, T y) ≤ 2δd(x, Tx) + δd(x, y), (9)

and by using Z3, we obtain

d(Tx, T y) ≤ 2δd(x, T y) + δd(x, y), (10)

where 0 ≤ δ < 1 is as defined by (7).

Remark 2 If (E, ‖.‖) is a normed linear space, then (9) becomes

‖Tx− Ty‖ ≤ 2δ ‖x− Tx‖+ δ ‖x− y‖ , (11)

for all x, y ∈ E and where 0 ≤ δ < 1 is as defined by (7).
In 2008, Rafiq [14] proved a convergence theorem and some corollaries to

approximate common fixed points of quasi-contractive operators on a normed
space by using iteration (6) and under the assumption that the two self mappings
S and T satisfy the conditions of a Zamfirescu operator.
Our aim in this paper is to establish some common fixed point theorems by

using a more general contractive condition than those of Rafiq [14]. We shall
use iteration (6) and employ the following contractive definition: Let K be a
nonempty closed convex subset of a normed linear space E and T : K → K a
selfmap of K. There exist a constant L ≥ 0 such that ∀x, y ∈ K, we have

‖Tx− Ty‖ ≤ eL‖x−Tx‖(2δ ‖x− Tx‖+ δ ‖x− y‖), (12)

where 0 ≤ δ < 1 is as defined by (7) and ex denotes the exponential function of
x ∈ K.

Remark 3 The contractive condition (12) is more general than those of Rafiq
[14] and others in the following sense:
If L = 0 in the contractive condition (12), then we obtain

‖Tx− Ty‖ ≤ 2δ ‖x− Tx‖+ δ ‖x− y‖

which is the Zamfirescu contraction condition used by Rafiq [14], where

δ = max

{
a,

b

1− b
,

c

1− c

}
, 0 ≤ δ < 1,

while constants a, b and c are as defined in Theorem 1 above.
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The following lemma contained in Liu [10] will be required in the sequel.

Lemma 1 Let {ρn}, {sn}, {tn} and {kn} be sequences of nonnegative numbers
satisfying

ρn+1 ≤ (1 − sn)ρn + sntn + kn,

for all n ≥ 1. If
∞∑

n=0

sn = ∞, lim
n→∞

tn = 0 and
∞∑

n=0

kn < ∞

hold, then
lim
n→∞

ρn = 0.

2 Main results

Theorem 2 Let K be a nonempty closed convex subset of a normed linear
space E. Suppose that S, T : K → K are two selfmappings of K satisfying the
contractive condition (12). Suppose also that {xn}∞n=0 is a sequence defined
iteratively by (6).
Let FS

⋂
FT 	= φ, where FS and FT are the sets of fixed points of S and T

respectively.
If in iteration (6) we have,

∞∑

n=0

bn = ∞,
∞∑

n=0

‖un‖ < ∞ and lim
n→∞

‖vn‖ = 0,

then {xn}∞n=0 converges strongly to a common fixed point of S and T .

Proof Since S and T satisfy the contractive definition (12), then for x, y ∈ K,
we have

‖Sx− Sy‖ ≤ eL‖x−Sx‖(2δ ‖x− Sx‖ + δ ‖x− y‖) (13)

and
‖Tx− Ty‖ ≤ eL‖x−Tx‖(2δ ‖x− Tx‖+ δ ‖x− y‖) (14)

where L ≥ 0 and 0 ≤ δ < 1 is as defined by (7).
By assumption, FS

⋂
FT 	= φ. Let p ∈ FS

⋂
FT .

Therefore, for arbitrary x0 ∈ K and by using iteration process (6), we get

xn+1 − p = (1− bn)xn + bnSyn + un − p

= (1− bn)xn + bnSyn − bnp− (1 − bn)p+ un

= (1− bn)(xn − p) + bn(Syn − p) + un

and hence,

‖xn+1 − p‖ = ‖(1 − bn)(xn − p) + bn(Syn − p) + un‖
≤ (1− bn) ‖xn − p‖+ bn ‖Syn − p‖+ ‖un‖
= (1− bn) ‖xn − p‖+ bn ‖Syn − Sp‖+ ‖un‖
= (1− bn) ‖xn − p‖+ bn ‖Sp− Syn‖+ ‖un‖
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By using (13), we obtain

‖xn+1 − p‖
≤ (1− bn) ‖xn − p‖+ bn[e

L‖p−Sp‖(2δ ‖p− Sp‖+ δ ‖p− yn‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bn[e

L‖p−p‖(2δ ‖p− p‖+ δ ‖yn − p‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bn[e

L(0)(2δ(0) + δ ‖yn − p‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bn[e

0(0 + δ ‖yn − p‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bnδ ‖yn − p‖+ ‖un‖

Therefore,

‖xn+1 − p‖ ≤ (1− bn) ‖xn − p‖+ bnδ ‖yn − p‖+ ‖un‖ . (15)

Similarly, by using iteration process (6), we obtain

‖yn − p‖ = ‖(1− b′n)(xn − p) + b′n(Txn − p) + vn‖
≤ (1 − b

′
n) ‖xn − p‖+ b′n ‖Txn − p‖+ ‖vn‖

= (1 − b′n) ‖xn − p‖+ b′n ‖Txn − Tp‖+ ‖vn‖
= (1 − b′n) ‖xn − p‖+ b′n ‖Tp− Txn‖+ ‖vn‖

By using (14), we get

‖yn − p‖
≤ (1− b′n) ‖xn − p‖+ b′n[e

L‖p−Tp‖(2δ ‖p− Tp‖+ δ ‖p− xn‖)] + ‖vn‖
= (1− b′n) ‖xn − p‖+ b′n[e

L‖p−p‖(2δ ‖p− p‖+ δ ‖xn − p‖)] + ‖vn‖
= (1− b′n) ‖xn − p‖+ b′n[e

L(0)(2δ(0) + δ ‖xn − p‖)] + ‖vn‖
= (1− b′n) ‖xn − p‖+ b′n[e

0(0 + δ ‖xn − p‖)] + ‖vn‖
= (1− b′n) ‖xn − p‖+ b′nδ ‖xn − p‖+ ‖vn‖

which implies that

‖yn − p‖ ≤ (1− b′n + b′nδ) ‖xn − p‖+ ‖vn‖ . (16)

By observing that 0 ≤ b′n ≤ 1, 0 ≤ δ < 1 and since 0 ≤ (1 − b′n + b′nδ) < 1, we
obtain

‖yn − p‖ ≤ ‖xn − p‖+ ‖vn‖ . (17)

Substitute (17) into (15) yields

‖xn+1 − p‖ ≤ (1− bn) ‖xn − p‖+ bnδ ‖xn − p‖+ bnδ ‖vn‖+ ‖un‖ .

and hence,

‖xn+1 − p‖ ≤ (1 − bn + bnδ) ‖xn − p‖+ bnδ ‖vn‖+ ‖un‖ . (18)
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By applying Lemma 1 and using the fact that

0 ≤ bn ≤ 1, 0 ≤ δ < 1, 0 ≤ (1 − bn + bnδ) < 1,
∞∑

n=0

bn = ∞,

∞∑

n=0

‖un‖ < ∞ and lim
n→∞

‖vn‖ = 0,

we obtain
lim
n→∞

‖xn+1 − p‖ = 0

which implies that {xn}∞n=0 converges strongly to a common fixed point of S
and T .
This completes the proof. �

Remark 4 Our result in Theorem 2 is a generalization of Theorem 2.1 of Rafiq
[14].

Theorem 3 Let K be a nonempty closed convex subset of a normed linear
space E. Suppose that S : K → K is a selfmap of K satisfying the contractive
condition (12). Suppose also that {xn}∞n=0 is a sequence defined iteratively by
(4).
Let FS be the set of fixed points of S such that FS 	= φ. If in iteration (4)

we have,
∑∞

n=0 bn = ∞ and ∑∞
n=0 ‖un‖ < ∞, then {xn}∞n=0 converges strongly

to the unique fixed point of S.

Proof By assumption, FS 	= φ. Let p ∈ FS . Therefore, for arbitrary x0 ∈ K
and by using iteration process (4), we get

xn+1 − p = (1 − bn)xn + bnSxn + un − p

= (1 − bn)xn + bnSxn − bnp− (1− bn)p+ un

= (1 − bn)(xn − p) + bn(Sxn − p) + un

and hence,

‖xn+1 − p‖ = ‖(1− bn)(xn − p) + bn(Sxn − p) + un‖
≤ (1 − bn) ‖xn − p‖+ bn ‖Sxn − p‖+ ‖un‖
= (1 − bn) ‖xn − p‖+ bn ‖Sxn − Sp‖+ ‖un‖
= (1 − bn) ‖xn − p‖+ bn ‖Sp− Sxn‖+ ‖un‖

Since S satisfies the contractive condition (12), we get

‖xn+1 − p‖
≤ (1− bn) ‖xn − p‖+ bn[e

L‖p−Sp‖(2δ ‖p− Sp‖+ δ ‖p− xn‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bn[e

L‖p−p‖(2δ ‖p− p‖+ δ ‖xn − p‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bn[e

L(0)(2δ(0) + δ ‖xn − p‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bn[e

0(0 + δ ‖xn − p‖)] + ‖un‖
= (1− bn) ‖xn − p‖+ bnδ ‖xn − p‖+ ‖un‖
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and hence,
‖xn+1 − p‖ ≤ (1− bn + bnδ) ‖xn − p‖+ ‖un‖ .

By using Lemma 1 and the fact that

0 ≤ bn ≤ 1, 0 ≤ δ < 1, 0 ≤ (1− bn + bnδ) < 1,
∞∑

n=0

bn = ∞ and
∞∑

n=0

‖un‖ < ∞,

we obtain
lim
n→∞

‖xn+1 − p‖ = 0

which implies that {xn}∞n=0 converges strongly to a fixed point of S.
To prove the uniqueness, we take p1, p2 ∈ FS and assume that p1 	= p2.
By using the contractive condition (12) and 0 ≤ δ < 1, we get

‖p1 − p2‖ = |Sp1 − Sp2‖
≤ eL‖p1−Sp1‖(2δ ‖p1 − Sp1‖+ δ ‖p1 − p2‖)
= eL‖p1−p1‖(2δ ‖p1 − p1‖+ δ ‖p1 − p2‖)
= eL(0)(2δ(0) + δ ‖p1 − p2‖)
= e0(0 + δ ‖p1 − p2‖)
= δ ‖p1 − p2‖)
< ‖p1 − p2‖

which is a contradiction. Hence, p1 = p2.
This completes the proof. �

Remark 5 The uniqueness result in Theorem 3 is a generalization of Corollary
2.2 of Rafiq [14].
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