
Kybernetika

Martin Gavalec; Karel Zimmermann
Solving systems of two–sided (max, min)–linear equations

Kybernetika, Vol. 46 (2010), No. 3, 405--414

Persistent URL: http://dml.cz/dmlcz/140756

Terms of use:
© Institute of Information Theory and Automation AS CR, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/140756
http://project.dml.cz


KYBERNET IKA — VOLUME 4 6 ( 2 0 1 0 ) , NUMBER 3 , PAGES 4 0 5 – 4 1 4

SOLVING SYSTEMS OF TWO–SIDED
(MAX, MIN)–LINEAR EQUATIONS

Martin Gavalec and Karel Zimmermann

A finite iteration method for solving systems of (max, min)-linear equations is presented.
The systems have variables on both sides of the equations. The algorithm has polynomial
complexity and may be extended to wider classes of equations with a similar structure.

Keywords: (max, min)-linear equations, two-sided system

Classification: 08A72, 90B35, 90C47

1. INTRODUCTION

Problems on algebraic structures, in which pairs of operations (max,+) or (max,min)
replace addition and multiplication of the classical linear algebra, appear in the lit-
erature approximately since the sixties of the last century (see e.g. [6], [11]). A
systematic theory of such algebraic structures was published probably for the first
time in [6]. Systems of so-called (max,+)- or (max,min)-linear equations with vari-
ables on only one side of the equations were investigated, among other problems,
in these publications. Since the operation ‘max’ replacing addition is not a group
operation, but only a semigroup one, there is a substantial difference between solv-
ing systems with variables on one side of the equations, and systems with variables
occurring on both sides. The former systems will be called ‘one-sided’ and the latter
ones ‘two-sided’. Special two-sided systems were studied in [4], [5], [6], [9], [11] in
connection with the so-called (max,+)- or (max,min)-eigenvalue problem. General
two-sided (max,+)-linear systems were studied in [2], [3], [7]. The general results
obtained in these papers are influenced by the fact that the second operation in
(max,+) algebra is a group operation, while in (max,min) algebra it is an idempo-
tent semigroup operation. The presented paper uses special properties of operation
min and describes a simple polynomial algorithm for solving two-sided (max,min)-
linear systems.

Two-sided systems with a more general structure, in which residuated functions
occur on both sides of the equations, were investigated in [8], where a general iter-
ation method for solving such systems was proposed. In general case, the method
does not work in finite time and an approximation of the solution is only obtained as
a result of the computation. If the method is applied to a (max,min)-linear system,
then it works in finite time and gives an exact solution, however, the convergence is
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rather slow and only pseudopolynomial complexity can be proved. Applications of
the problems mentioned above to synchronization of events, system reliability and
fuzzy relations can be found e.g. in [1], [6], [9], [10], [11].

In this paper, a polynomial method for solving a general two-sided system of max-
min linear equations is presented. The method finds the maximum solution of the
system. Computational complexity of the proposed method is O(mn · min(m,n)),
where m is the number of equations and n is the number of variables (O(n3), if
m = n). The method is demonstrated on a small numerical example. Two other
examples showing further application areas are presented.

2. NOTATION AND FORMULATION OF THE PROBLEM

Let us introduce the following notation: I = {1, . . . ,m}, J = {1, . . . , n}, R =
(−∞,∞), R = [−∞,∞], Rn = R × · · · × R (n-times), similarly R

n
= R × · · · × R.

Further, we denote α ∧ β ≡ min{α, β} for any α, β ∈ R, and we set per definition
−∞∧∞ = −∞.

Let aij , bij ∈ R, i ∈ I, j ∈ J be given numbers. Then we define for any vector

x = (x1, . . . , xn) ∈ R
n
and for every i ∈ I

ai(x) ≡ max
j∈J

(aij ∧ xj)

bi(x) ≡ max
j∈J

(bij ∧ xj)

We will consider the following system of (max,min)-linear (i.e. (max,∧)-linear)
equations

ai(x) = bi(x) for i ∈ I (1)

The set of all solutions of system (1) will be denoted by M . Further we define sets
M(x), Mi(x) for any x ∈ R

n
, i ∈ I as follows

M(x) ≡ {x; x ∈ M & x ≤ x} (2)

Mi(x) ≡ {x; ai(x) = bi(x) & x ≤ x} (3)

The inequalities between vectors in equations (2), (3), as well as in the rest of the
paper, are meant componentwise.

Let us note that sets M(x), Mi(x) are always nonempty, since x(α) ≡ (α, . . . , α)
belongs to M(x), if α ≤ min {aij ∧ bij ∧ xj ; (i, j) ∈ I × J}. Let us further note that
for x ≡ (∞, . . . ,∞) and x = (−∞, . . . ,−∞) we have M(x) = M and x ≤ x for any
x ∈ M .

Definition 2.1. Let L ⊆ R
n
, x̃ ∈ L, such that for every x ∈ L the inequality x ≤ x̃

holds true. Then x̃ is called the maximum element of L.

Remark 2.2. The algorithm presented in this paper will find the maximum element
in M(x) for any given x ∈ R

n
.
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3. THEORETICAL BACKGROUND

In this section we prepare the theoretical background for an algorithm for finding
the maximum element xmax in M(x).

If x ∈ M(x), then we evidently have xmax = x. Therefore we will assume in what
follows that x 6∈ M(x). Further, we can assume w.l.o.g. that the notation has been
possibly changed in such a way that ai(x) ≤ bi(x) holds for all i ∈ I. Since we have
assumed that x 6∈ M(x), the set

I<(x) ≡
{
i ∈ I; ai(x) < bi(x)

}

is nonempty. Let us set further

I=(x) ≡
{
i ∈ I; ai(x) = bi(x)

}

and let us introduce the following notations for any given upper bound x

α(x) ≡ min
{
ai(x); i ∈ I<(x)

}

I<(α(x)) ≡
{
i ∈ I<(x); ai(x) = α(x)

}

I=(α(x)) ≡
{
i ∈ I=(x); ai(x) ≤ α(x)

}

J(α(x)) ≡
{
j ∈ J ;

(
∃i ∈ I<(α(x))

)[
bij ∧ xj > α(x)

]}

Notice that J(α(x)) is always nonempty if x /∈ M . To simplify the explanations,
we will replace in what follows the notation α(x) with α, if it cannot cause any
confusion.

Theorem 3.1. Let us assume that x 6∈ M(x). Let us define x̃ as follows

x̃j =

{
α for j ∈ J(α)
xj for j ∈ J \ J(α) .

(4)

Then the following assertions are fulfilled

(i) x̃ is the maximum element of the set of all solutions of the system

ai(x) = bi(x) for i ∈ I<(α) ∪ I=(α) (5)

xj ≤ xj for j ∈ J , (6)

(ii) for every i ∈ I with ai(x̃) 6= bi(x̃) the following inequalities hold true

α <min
(
ai(x), bi(x)

)
(7)

α ≤min
(
ai(x̃), bi(x̃)

)
, (8)

hence α(x̃) ≥ α(x).

P r o o f . (i) Let k ∈ I<(α) be chosen arbitrarily. Then ak(x) = α < bk(x). Let us
set

Jk(α) ≡
{
j ∈ J ; bkj ∧ xj > α

}
.
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Then Jk(α) 6= ∅, Jk(α) ⊆ J(α). Note that for any j ∈ Jk(α) both bkj > α and
xj > α hold true. It follows immediately from the definition of x̃ that

bkj ∧ x̃j ≤ α for j ∈ J

bkj ∧ x̃j = α for j ∈ Jk(α)

hence bk(x̃) = α (we remind that ak(x) = α).
Let p be any index of J such that ak(x) = akp ∧ xp . Then akp ∧ xp = α, hence

akp ≥ α and we have according to (4)

akp ∧ x̃p = akp ∧ α = α if p ∈ J(α) ,

akp ∧ x̃p = akp ∧ xp = ak(x) = α if p 6∈ J(α) .

Further, since akj ∧ x̃j ≤ akj ∧ xj for all j ∈ J , we obtain that ak(x̃) = α = bk(x̃).
Let us assume now that k is an arbitrary index of I=(α) so that we have ak(x) ≤ α

and ak(x) = bk(x) = βk ≤ α. Let s ∈ J be an index such that ak(x) = aks ∧ xs.
If s 6∈ J(α), then x̃s = xs by (4) and thus aks ∧ x̃s = aks ∧ xs = βk. Let us
assume, on the other hand, that s ∈ J(α). Then there exists index i ∈ I such
that bis ∧ xs > α and therefore it must be xs > α. Since we have assumed that
ak(x) = aks ∧ xs = βk ≤ α, and we have xs > α, it must be aks = βk. Since
s ∈ J(α), we have x̃s = α ≥ βk, and therefore we have aks ∧ x̃s = βk. By the
inequality akj ∧ x̃j ≤ akj ∧ xj ≤ βk which holds for all j ∈ J , we obtain ak(x̃) = βk.

Next we compute the value bk(x̃). We have assumed that bk(x) = βk ≤ α. Let
us assume that bk(x) = bks ∧ xs for some s ∈ J . Similarly as above, we have
bks∧ x̃s = bks∧xs, if s /∈ J(α). If s ∈ J(α), then we have xs > α ≥ βk, x̃s = α ≥ βk

and therefore it must be bks = βk, so that bks∧ x̃s = bks ∧α = βk. By the inequality
bkj ∧ x̃j ≤ bkj ∧ xj , which holds for all j ∈ J , we obtain bk(x̃) = βk = ak(x̃). In
other words, the equality with index k ∈ I=(α), which holds for x, remains satisfied
also for x̃.

For the proof of assertions (i) it remains to prove that x̃ is the maximum element
satisfying the system (5), (6). Let us assume for this purpose that x is a vector
such that x 6≤ x̃, so that there exists an index r ∈ J such that x̃r < xr ≤ xr.
Therefore it must be r ∈ J(α) and there exists an index i ∈ I<(α) such that
ai(x̃) = α < bir ∧ xr ≤ bi(x) and according to the above considerations we have
air = α = air ∧ x̃r = air ∧ xr . Since this equality holds for any index r with the
property x̃r < xr ≤ xr and for the other indices j ∈ J we have xj ≤ x̃j ≤ xj , we
obtain that ai(x) = ai(x̃) = α < bir ∧ xr ≤ bi(x), and therefore x does not satisfy
the system (5), (6), which completes the proof.

(ii) Let us assume that ai(x̃) 6= bi(x̃) holds for some fixed i ∈ I. Then, in view of
the assertion (i), we have i /∈ I<(α) and i /∈ I=(α). By definition of the set I<(α)
we get that either i /∈ I<(x) (i.e. ai(x) = bi(x)), or α < ai(x) < bi(x). Further
we get, by definition of the set I=(α), that either i /∈ I=(x) (i.e. ai(x) < bi(x)),
or α < ai(x) = bi(x). Summarizing, the inequality (7) is fulfilled in the case when
ai(x) < bi(x), as well as in the case ai(x) = bi(x).

For the proof of (8) we use first the fact that, in view of (7), there is k ∈ J such
that aik ∧ xk > α, which implies aik > α. If k ∈ J(α), then by definition of x̃ we
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have x̃k = α, hence aik ∧ x̃k = α. On the other hand, if k /∈ J(α), then x̃k = xk and
aik∧x̃k = aik∧xk > α. In both cases we get ai(x̃) = maxj∈J(aij∧x̃j) ≥ aik∧x̃k ≥ α.
The inequality bi(x̃) ≥ α is proved analogously. �

4. THE ALGORITHM

Summarizing the considerations of Section 3, we propose an algorithm to find the
maximum element xmax of the set M(x). In every iteration we find x̃ using formula
(4). According to Theorem 3.1, x̃ is the maximum element of the set of all solutions of
the system (5), (6). Therefore, if x̃ ∈ M(x), then x̃ = xmax and we stop. Otherwise,
we use x̃ as the new upper bound and repeat the procedure.

Let us assume that x̃ 6∈ M(x) and let us change the notation in such a way that
ai(x̃) ≤ bi(x̃) for all i ∈ I. To avoid confusion in further explanations, we return to
the full notation α(x) for any upper bound x. Then we have α(x̃) ≡ min{ai(x̃); i ∈
I<(x̃)} and, according to the inequality (8) in Theorem 3.1 we get the inequality
α(x̃) ≥ α = α(x), which immediately implies the set inclusion I=(α(x)) ⊆ I=(α(x̃)).
By this inclusion, the vector x̃ fulfills every equation with index i ∈ I=(α(x)), which
is fulfilled by the previous vector x and the common value ai(x) = bi(x) on both sides
of the equation is less or equal than α = α(x). However, if ai(x) = bi(x) > α(x),
then the equation need not be satisfied by x̃.

By definition of x̃ we have bij ∧ x̃j ≤ x̃j = α(x) for all i ∈ I, j ∈ J(α(x)). On
the other hand, the definition of J(α(x̃)) says that for every j ∈ J(α(x̃)) there is
i ∈ I<(α(x̃)) such that bij ∧ x̃j > α(x̃) ≥ α(x). These contradictory statements
imply J(α(x̃)) ∩ J(α(x)) = ∅. Therefore, if we use x̃ as a new upper bound on the
next iteration, we will decrease at least one new variable in (4). Therefore we will
perform at most n iterations. Besides, since α(x̃) ≥ α(x), all the equations already
satisfied with indexes i ∈ I<(α(x)) ∪ I=(α(x)) will remain satisfied, in accordance
with Theorem 3.1. It follows that in the next iteration with the new upper bound
x̃ after applying formula (4), the already satisfied equations remain satisfied and
at least one new equation with index i ∈ I<(α(x̃)) will hold true. Therefore, the
number of iterations does not exceed min(n,m). The corresponding algorithm is
described explicitly below, step by step.

ALGORITHM A

1 Input m, n, x ;

2 If x ∈ M(x), then xmax := x ; STOP;

3 Change notation so that ai(x) ≤ bi(x) for all i ∈ I;

4 Compute α(x), I<(α(x)), I=(α(x));

5 Set x̃j := α(x) if j ∈ J(α(x)), x̃j := xj otherwise;

6 If x̃ ∈ M(x), then xmax := x̃; STOP;
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7 Set x := x̃; go to 3 ;

One passing between steps 3 and 7 is called an iteration. The algorithm creates
a sequence α1, α2, . . . , αQ and the corresponding upper bounds for the solution set
M . The key observation for obtaining the complexity bound is the inequality

αq+1 ≥ αq for each q . (9)

Let us call a variable xj active in iteration q if j ∈ J(αq). In other words, variable
xj is decreased to the value αq in iteration Q. Thanks to inequality (9), a variable
active in some iteration can never again become active. Then, since J(αq) is never
empty, we get that the number of iterations Q is not greater than n. Further, the
set I<(αq) is nonempty in each iteration and if the index i of some equation belongs
to I<(αq), then i ∈ I=(αq′ ) for each q′ > q. This proves Q ≤ m.

Every iteration has the computational complexity O(mn). Since the number
of iterations does not exceed min(m,n), we obtain the total complexity O(mn ·
min(m,n)). If m = n, then the total complexity is O(n3).

Remark 4.1. Let us include additionally in our considerations some lower bound
x and set M(x, x) ≡ {x ; x ≥ x & x ∈ M(x)}. It follows immediately from our
previous results that the set M(x, x) is nonempty if and only if x ≤ xmax, where
similarly as above xmax is the maximum element of M(x).

We illustrate the work of algorithm A by the following numerical example.

Example 4.2. Let us consider system of equations (1) with the following matrices
A, B:

A =




7 2 3 1 0
2 7 2 0 −1
10 8 4 2 1
2 1 2 1 0

100 6 1 1 8




B =




9 4 8 1 1
6 7 8 −3 3
15 14 9 −2 0
0 −1 2 0 0

100 0 −5 1 10




1 m := 5, n := 5, I := {1, 2, 3, 4, 5}, J := {1, 2, 3, 4, 5}, k := 0,

x := (100, 100, 100,∞, 100) ∈ R
5
;

2 x 6∈ M(x);

3 we have already ai(x) ≤ bi(x) for all i ∈ I;

4 α(x) = 7, I<(α(x)) = I<(7) = {1, 2}, I=(α(x)) = I=(7) = {4},
J(α(x)) = J(7) = {1, 3};

5 x̃ = (7, 100, 7,∞, 100);

6 I<(7) ∪ I=((7) 6= I ;

================= 1st iteration =================

3 we have already ai(x) ≤ bi(x) for all i ∈ I;
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4 α(x) = 8, I<(α(x)) = I<(8) = {3, 5}, I=(α(x)) = I=(8) = {1, 2, 4},
J(α(x)) = J(8) = {2, 5};

5 x̃ = (7, 8, 7,∞, 8);

6 I<(8) ∪ I=(8) = I, x̃ = (7, 8, 7,∞, 8) = xmax , STOP .

================= 2nd iteration =================

Below we present two examples, showing areas where the problems considered in
this paper can be applied.

Example 4.3. Let us consider a situation, in which transportation means of differ-
ent size are transporting goods from places i ∈ I to one terminal T . The goods are
unloaded in T and the transportation means (possibly with other goods uploaded
in T ) have to return to i.

We assume that the connection between i and T is only possible via one of the
places (e.g. cities) j ∈ J , the roads between i and j are one-way roads, and the
capacity of the road between i ∈ I and j ∈ J is equal to aij . We have to join places
j with T by a two-way road with a capacity xj in both directions. The total capacity
of the connection between i and T is therefore equal to max{aij ∧ xj ; j ∈ J}. The
transport from T to i is carried out via other one-way roads between places j ∈ J
and i ∈ I with (in general, different) capacities between j and i equal to bij . Since
the roads between T and j are two-way roads, the total capacity of the connection
between T and i is equal to max{bij ∧ xj ; j ∈ J} for all i ∈ I.

We assume that the transportation means can only pass through some roads
with the capacity which is not smaller than the capacity of the transportation mean
and our task is to choose appropriate capacities xj , j ∈ J . In order that each of
the transportation means may return to i, it is natural to require for each i that
the maximal attainable capacity of connections between i and T via j is equal to
maximal attainable capacity of connections between T and i on the way back. In
other words, we have to choose xj , j ∈ J in such a way that

max{aij ∧ xj ; j ∈ J} = max{bij ∧ xj ; j ∈ J} for all i ∈ I .

We see that the problem transforms to solving system (1) with some finite upper
bounds on x, since in reality the chosen capacities cannot be unbounded.

Note that the model is flexible enough to include different real situations. If, for
instance, the road between i and j does not exist, we set simply aij = 0, if the
road is a two way road with equal capacity in both directions, we set bij = aij , or,
if we do not want to connect j with T , we set the lower and upper bound on xj

equal to 0. Also the connection of T with j does not need necessarily have the same
capacity xj in both directions, in such a case we can insert on the right-hand sides
different variables yj , and the transformation to system of the form (1) is then only
a technical problem. Namely, in this case we have a vector of variables (x, y) ∈ R2n

and we can introduce additional coefficients aij = −∞ for j = n + 1, . . . , 2n on
the left hand side and bij = −∞ for j = 1, . . . , n on the right hand side of every
equation.
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The next example shows an application within the fuzzy set theory.

Example 4.4. First let us recall that the height of a fuzzy set F is defined as the
maximum of the values of its membership function µF on its support S. We will
introduce the notation Hght(F ) = max {µF (y); y ∈ S }. Further let

{
µ
(1)
i : J → [0, 1] ; i ∈ I

}
,

{
µ
(2)
i : J → [0, 1] ; i ∈ I

}

be membership functions of two groups of fuzzy sets

{
A

(1)
i ; i ∈ I

}
,

{
A

(2)
i ; i ∈ I

}

with a finite support J . We want to find a fuzzy set X with membership function
µX : J → [0, 1] (i.e. we want to find values µX(j) for j ∈ J) in such a way that

Hght
(
A

(1)
i ∩∗ X

)
= Hght

(
A

(2)
i ) ∩∗ X

)
for all i ∈ I ,

where the intersection ∩∗ means the intersection of two fuzzy sets. In other words,
we have to solve the the following system of equations with respect to µX(j), j ∈ J

max
j∈J

(
µ
(1)
i (j) ∧ µX(j)

)
= max

j∈J

(
µ
(2)
i (j) ∧ µX(j)

)
for all i ∈ I

µX(j) ∈ [0, 1] for all j ∈ J .

Let us set aij ≡ µ
(1)
i (j), bij ≡ µ

(2)
i (j), xj ≡ µX(j), xj = 0, xj = 1 for all

i ∈ I, j ∈ J . Then we see that we have to solve a system of the form (1). The
maximum element xmax of M(x, x) can be found in this case by making use of
the unchanged algorithm A, because the lower bound x = 0 ∈ Rn satisfies the
inequalities xj ≤ aij ∧bij for all i ∈ I, j ∈ J (compare Remark 4.1). The maximum
element xmax represents a fuzzy set X with the highest membership values to the set
of feasible solutions of the problem. We could also require that x 6= 0 and proceed
in accordance with Remark 4.1.

The next remark shows one possible interpretation of the setX from the preceding
example.

Remark 4.5. Let goals Gk, k ∈ K ≡ {1, . . . , p} be given. The goals should be
achieved by using treatments Tj, j ∈ J . The goals may be e.g. projects, plans or
symptoms of diseases, the treatments may represent e.g. incentives, investments,
medicaments etc. We assume that for each goal Gk a fuzzy set Rk of effective
treatments with finite support J and membership function µGk

: J → [0, 1] is given
(if µGk

(j) = 1, then treatment Tj is strongly effective, if µGk
(j) = 0, it is not

effective). To simplify the notation, let us set in the sequel µGk
(j) = rkj .

We want to find values µX(j), j ∈ J of fuzzy set X , of intensively applied treat-
ments, the values of the membership function µX may be interpreted as intensity of
application of Tj (i.e. if µX(j) = 1, then Tj is strongly applied, if µX(j) = 0, then Tj
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is not applied at all). Value Hght(Rk ∩∗ X) = maxj∈J (rkj ∧ xj) can be interpreted
as a level, with which goal Gk is achieved (’hit’) if x = (x1, . . . , xn) is chosen and
the effectiveness of the treatments with respect to goal Gk is taken into account.

In other words, we can introduce fuzzy set G of ‘achieved’ goals with membership
function µG : K → [0, 1], µG(k,X) ≡ Hght(Rk ∩∗ X) = maxj∈J (rkj ∧ xj) for every
k ∈ K (the value µG(k) = 1 means that goal Gk is achieved, and µG(k) = 0 means
that Gk is not achieved, if the application intensity X with µX(j) = xj , j ∈ J
is chosen). To simplify the notation, we set rk(x) ≡ maxj∈J (rkj ∧ xj). Because
of some technological, ecological, medical or other reasons, we may require that
some relations between values rk(x), k ∈ K must hold e.g. rs(x) = rt(x) for some
s, t ∈ K, s 6= t (it can be interpreted that some goals should be achieved on equal
level). The maximum element xmax ensures the maximal level of achievement of the
goals under the given conditions.

For similar reasons it can be required that some upper and lower bounds x, x ∈
[0, 1]n for intensities x are given. By appropriate change of notation, such system
of relations can be transformed to a system of (max,min)-linear equations with
lower and upper bounds imposed on x of a similar form like the one considered in
Example 4.4.
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Theoretical Computer Science 293 (2003), 3–12.



414 M. GAVALEC AND K. ZIMMERMANN

[8] R.A. Cuninghame-Green and K. Zimmermann: Equation with residual functions.
Comment. Math. Univ. Carolinae 42 (2001), 729–740.

[9] E. Sanchez: Resolution of eigen fuzzy sets equations. Fuzzy Sets and Systems 1
(1978), 69–74.

[10] E. Sanchez: Inverses of fuzzy relations. Applications to possibility distributions and
medical diagnosis. Fuzzy Sets and Systems 1 (1978), 75–86.

[11] N.N. Vorobjov: Extremal algebra of positive matrices (in Russian). Datenverar-
beitung und Kybernetik 3 (1967), 39–71.

Martin Gavalec, University of Hradec Králové, Faculty of Informatics and Management,
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