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1. Introduction and statement of the main results

During the last two decades the variable exponent Lebesgue spaces Lp(x) have

been studied intensively. They seem to be the most adequate context for studying

a great variety of problems related to certain classes of fluids that are characterized

by their ability to undergo significant changes in their mechanical properties when

an electric field is applied (see [13]).

Recently, a number of authors, interested in studying the continuity of certain

classical operators from harmonic analysis, have succeeded in proving some bound-

edness results in such spaces. In fact, non-weighted strong inequalities for the

Hardy-Littlewood and the fractional maximal operators were obtained in the eu-

clidean setting, under certain property of regularity on the exponent. In particu-

lar, Lars Diening proved the continuity of the Hardy-Littlewood maximal operator

in R
n by requiring an additional property of constancy on the exponent outside a

fixed ball (see [4]). In proving his result, the technique developed by the author

differs from the one applied in the classical theory, essentially based on interpola-

tion. Cruz Uribe, Fiorenza and Neugebauer took advantage of these techniques and
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improved Diening’s result by additionally assuming some type of logarithm decay

on the exponent. Thus they obtained norm inequalities over open subsets of Rn

(see [3]).

Under the hypothesis of continuity and logarithm decay on the exponent, the well

known strong type inequality for the fractional maximal operator was proved in the

variable context over open subsets of Rn (see [2]).

In addition, boundedness results for the Hardy-Littlewood maximal operator were

obtained by Harjulehto, Hästö and Latvala in R
n over bounded domains with the

novelty of using a non necessarily doubling measure (see [6]).

On the other hand, for the maximal operator, weighted norm inequalities involv-

ing power weights, were obtained by Kokilashvili and Samko ([8]) in R
n over open

bounded domains.

In this article we prove weighted strong inequalities for fractional operators. For

maximal operators we include the case of the classical Hardy-Littlewood maximal

function in the setting of variable exponent spaces defined over bounded subsets of Rn

which have been equipped with a non necessarily doubling measure. Such inequalities

provide a weighted version of those contained in [6] for the Hardy-Littlewood maximal

function as well as those proved in [2] for the fractional maximal operator in the

standard context of Lebesgue measurable spaces.

Additionally the class of weights involved in our results is wider than that of power

functions considered in [8] for the case of the Hardy-Littlewood maximal operator

referred to the Lebesgue measure. It is worth mentioning that a weighted pointwise

relationship between the fractional and the Hardy-Littlewood maximal functions is

also proved and it is not only interesting in itself but essential for the proof of one

of our main results as well.

In the same context as the one described at the beginning, i.e., over generalized

Lebesgue spaces equipped with a non-doubling measure, we also obtain weighted

strong inequalities for the integral fractional operator. A version of Welland’s in-

equality in this variable setting is also given and it turns out to play a fundamental

role in proving the boundedness of that operator.

In the context of Lebesgue standard measure spaces we give, in some sense, certain

type of reverse Hölder inequality which proves to be appropriate to obtain a special

class of weights for which the continuity of the fractional integral holds. We want

to point out that this class is larger than that of power weights, generalizing in this

way the results due to Samko in [14]. Finally we should say that the techniques

developed by the author, essentially based on a Hedberg type inequality, differ from

ours since Welland’s inequality allows us to prove our results.

We first introduce the context in which we shall develop our results. Throughout

this paper Q = Q(x, l(Q)) will denote a cube centered at x with side length l(Q)
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and with sides parallel to the coordinate axes. Moreover, C will denote a positive

constant not necessarily the same on each occurrence.

Let us now consider a non-negative Borel regular measure µ defined over subsets

in Rn. If Ω is a bounded µ-measurable set and β : Ω → (0,∞) is a bounded function,

we shall say that µ is a lower Ahlfors β(·)-regular measure in Ω if there exists a

positive constant C such that the inequality

(1.1) C 6
µ(Q(x, l(Q)))

l(Q)β(x)

holds for every x ∈ Ω and for every cube Q ⊂ R
n such that 0 < l(Q) < diam(Ω).

In particular, whenever β is a constant function we shall simply say that µ is lower

Ahlfors β-regular in Ω.

A measure µ is said to satisfy the doubling property if there exists a positive

constant C such that the inequality µ(2Q) 6 Cµ(Q) holds for every cube Q. It is easy

to see that a measure µ satisfying this property is a lower Ahlfors measure. However,

there exist lower Ahlfors measures which fail to possess the doubling property (see

an example at the end of Section 3).

The interest in studying these measures appears in connection with the notion

of the dimension of a metric space. By dimension it is understood some quantity

relating the measure of a cube to its side length. Examples of measures with variable

dimensions are given in [6].

It is easy to see that lower Ahlfors β(·)-regularity implies lower Ahlfors β∗-

regularity, where β∗ = sup
Ω

β. In this paper we shall consider lower Ahlfors β-

regularity. It is not difficult to prove that all our results imply the corresponding

results for the lower β(·)-regularity case. In this article, β will denote a positive

number related to the operators we shall be working with.

We now introduce the functional space we are going to deal with. For additional

information see [9].

A non-negative µ-measurable function p from Ω to [1,∞) is called an exponent.

For simplicity we write p∗ = inf
Ω

p and p∗ = sup
Ω

p. Along this paper the exponent

will be assumed to be bounded, that is p∗ < ∞. We shall also suppose that p∗ > 1.

For any set A ⊂ Ω we denote (pA)∗ = inf
A

p and (pA)∗ = sup
A

p.

For any µ-measurable function f , the modular ̺p(·),Ω is defined by

̺p(·),Ω(f) =

∫

Ω

|f(x)|p(x) dµ(x)

and the formula

‖f‖p(·),Ω = inf{λ > 0: ̺p(·),Ω(f/λ) 6 1}
is seen to define a norm.

1009



The variable exponent Lebesgue space Lp(·)(Ω) consists of those µ-measurable

functions f supported in Ω for which ‖f‖p(·),Ω < ∞. We should mention that these
spaces are a special case of the Musielak-Orlicz spaces whose theory was developed

a long time ago (see for example [10]).

If p is an exponent such that p∗ > 1, let p′ be the function defined by 1/p(x) +

1/p′(x) = 1. Topics related to general properties of this space are treated in [9]. In

particular, the generalized Hölder inequality (see [9])

(1.2)

∫

Ω

|fg| dµ 6 C‖f‖p(·),Ω‖g‖p′(·),Ω

holds and it shall be useful in our proofs.

We shall deal with a class of bounded exponents which satisfy certain property of

regularity stronger than uniform continuity. More precisely, an exponent p is said to

be log-Hölder continuous if it satisfies the following inequality

|p(x) − p(y)| 6
C

log(1/|x − y|) , x, y ∈ Ω, |x − y| 6 1/2.

It is worth mentioning that this condition guarantees regularity results on variable

exponent spaces. In [4], the author proves that this condition along with the addi-

tional assumption that p is constant outside a fixed ball is sufficient for the maximal

operator to be bounded in Lp(·)(Rn). Moreover in [12] it is shown that the bounded-

ness of this operator might fail for a general exponent p. In fact, the authors proved

that the modulus of continuity is optimal.

We finally introduce the maximal functions we are interested in along with the

class of weights involved with their properties of boundedness.

Let µ be a lower Ahlfors β-regular measure. For 0 6 α < β the centered fractional

maximal operator of a locally integrable function f is defined by

(1.3) Mαf(x) = sup
r>0

1

µ(Q(x, r))1−α/β

∫

Q(x,r)

|f(y)| dµ(y)

where Q(x, r) denotes a cube centered at x with side-length equal to r. If α = 0

in (1.3) we simply write M0 = M for the classical Hardy-Littlewood maximal func-

tion.

A version of the fractional integral operator associated to the maximal one defined

above is given by

(1.4) Iαf(x) =

∫

Ω

f(y)|x − y|α
µ(Q(x, 2|x − y|)) dµ(y).
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The operator above is equivalent to the one defined in [1] in the context of a (quasi)-

metric space equipped with a lower Ahlfors measure whenever the quasi-distance is

a fixed multiple of the euclidean distance.

Let s be a real number such that 1 < s < ∞. We say that a weight w belongs to

the As(Ω) class if there exists a positive constant C such that the inequality

(

1

µ(Q)

∫

Q∩Ω

w dµ

)(

1

µ(Q)

∫

Q∩Ω

w−1/(s−1) dµ

)s−1

6 C

holds for each cube Q centered at a point in Ω.

If µ is the classical Lebesgue measure in R
n, 0 < α < n, 1 < p < n/α, 1/q =

1/p−α/n and s = 1 + q/p′, it is well known that the As(R
n) class characterizes the

boundedness of Mα from Lp(wp/q) into Lq(w) (see for example [11]). In particular,

if α = 0 and 1 < p < ∞ this result gives the boundedness of M in Lp(w).

Before stating our main results we introduce some additional notation.

Given a continuous function t defined in Ω we shall denote

Ωt
r = {x ∈ Ω: t(x) > r}

for each r ∈ R. Let us observe that this set is not empty whenever r < t∗. Given

ε > 0, related to this set, we define

(1.5) Ωt
r,ε = Ωt

r −
⋃

x∈Ω−Ωt
r

B(x, ε).

It is easy to see that if µ is a lower Ahlfors β-regular measure in Ω then there exists

ε0 > 0 such that µ(Ωt
r,ε) > 0 for every ε 6 ε0.

Now we proceed to state our main results.

Theorem 1.1. Let 0 6 α < β and let p be a log-Hölder continuous exponent

such that 1 < p∗ 6 p(x) 6 p∗ < β/α. Let q and s be respectively defined by

1/q(x) = 1/p(x) − α/β and s(x) = 1 + q(x)/(p(x))′. Let µ be a lower Ahlfors β-

regular measure in Ω and r ∈ (1, s∗). If w is a weight such that w(·)q(·) ∈ Ar−δ(Ω),

for some δ ∈ (0, r − 1] and
∫

Ω−Ωs
r,ε0

w(x)−(p(x))′ dµ(x) < ∞ for some ε0 > 0, then

there exists a positive constant C = C(ε) such that

‖wMαf‖q(·),Ωs
r,ε

6 C‖wf‖p(·),Ω

for every function f such that wf ∈ Lp(·)(Ω) and for every ε 6 ε0.
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Notice that if supp f ⊂ Ωs
r,ε then the hypothesis

∫

Ω−Ωs
r,ε

w(x)−(p(x))′ dµ(x) < ∞
in the theorem above can be removed and we obtain

Corollary 1.1. Let α, p, q, s and µ be as in Theorem 1.1 and let w be a weight

such that w(·)q(·) ∈ Ar−δ(Ω), for some δ such that 0 < δ 6 r − 1. Then there exists

a positive constant C such that the inequality

‖wMαf‖q(·),Ωs
r,ε

6 C‖wf‖p(·),Ωs
r,ε

holds for every function f such that wf ∈ Lp(·)(Ωs
r,ε) and supp f ⊂ Ωs

r,ε.

From the fact that Ωs
s∗−δ,ε = Ω we immediately obtain the following result.

Corollary 1.2. Let α, p, q, s and µ be as in Theorem 1.1. If w is a weight such

that w(·)q(·) ∈ As∗−δ(Ω), for some δ such that 0 < δ < s∗ − 1 then there exists a

positive constant C such that the inequality

‖wMαf‖q(·),Ω 6 C‖wf‖p(·),Ω

holds for every function f such that wf ∈ Lp(·)(Ω).

Corollary 1.3. Let β = n, and α, p, q and s be as in Theorem 1.1, and µ be the

Lebesgue measure in R
n. Let x0 ∈ Ω and w(x) = |x − x0|η, η ∈ R. If −n/q(x0) <

η < n/(p(x0))
′ then there exists a positive constant C such that the inequality

‖wMαf‖q(·),Ω 6 C‖wf‖p(·),Ω

holds for every function f such that wf ∈ Lp(·)(Ω).

Remark 1.1. The case α = 0 in the corollary above was proved in [8]. The

authors also show that the range of η is sharp by proving that the reciprocal result

is true whenever x0 ∈ Ω. Following similar arguments, an analogous result can be

obtained for the case α > 0.

An application of Corollaries 1.2 and 1.3 allows us to obtain two results concerning

one-weighted-type inequalities for the fractional integral operator defined in (1.4).

Let 0 < α < β. Let p be an exponent such that 1 < p∗ < p(x) < p∗ < ∞ for every
x ∈ Ω and let q be the function defined by 1/q(x) = 1/p(x) − α/β.

If 0 < ε < min{α, β − α, β/q∗, β(1/p∗ − 1/q∗)}, let q+
ε , q−ε , s+

ε and s−ε be the

functions defined by

1

q+
ε (x)

=
1

p(x)
− α + ε

β
,

1

q−ε (x)
=

1

p(x)
− α − ε

β
,
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and

s+
ε (x) = 1 +

q+
ε (x)

(p(x))′
, s−ε (x) = 1 +

q−ε (x)

(p(x))′
.

Theorem 1.2. Let 0 < α < β and let µ be a lower Ahlfors β-regular measure in Ω.

Let p be a log-Hölder continuous exponent such that 1 < p∗ 6 p(x) 6 p∗ < β/α and

q be defined by 1/q(x) = 1/p(x) − α/β. Let w be a weight such that wq+
ε ∈ A(s+

ε )∗

and wq−

ε ∈ A(s−

ε )∗
. Then there exists a positive constant C such that

‖wIαf‖q(·),Ω 6 C‖wf‖p(·),Ω.

In the non-weighted case, the theorem above was proved by Almeida and Samko

in [1] in the context of (quasi)-metric measure spaces. The authors give bound-

edness results with measures either satisfying the doubling condition or the lower

Ahlfors condition. Moreover, for doubling measures they generalized their result for

a variable index α.

In the classical Lebesgue context and for a particular class of weights in A1, we

prove that certain variable powers of such weights also remain in that class. This

property allows us to obtain weights for which the boundedness of the fractional

integral holds. In order to make the results more precise we introduce those special

weights.

Let Q0 be a cube in R
n and let µ be the standard Lebesgue measure. We shall be

interested in those weights w belonging to A1(Q0) for which the following properties

hold:

i) For almost every x ∈ Q0, w(x) > 1.

ii) The weight w has m singularities x1, x2, . . . , xm in Q0.

iii) There exist two positive numbers θ and r such that w(x) 6 |x−xi|−θ, for almost

every x ∈ Q(xi, r) ∩ Q̄0 and for each i = 1, 2, . . . , m.

Theorem 1.3. Let (Q0, µ) be the measure space consisting of the cube Q0 in R
n

and of the classical Lebesgue measure µ. Let w be a weight in the A1(Q0) class that

satisfies the properties stated above.

Then there exists a positive number δ such that wα also belongs to the A1(Q0)

class for every function α satisfying both a log-Hölder condition and the inequality

1 6 α(x) 6 1 + δ for almost every point x in Q0.

Corollary 1.4. Let α, p and q be as in Corollary 1.3, and µ be the Lebesgue

measure in a cube Q0. For a pair of weights w1 and w2 in the A1(Q0) class that

satisfy the hypotheses of Theorem 1.3 and for ε > 0 small enough, let w be the weight
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defined by w = w
1/q−

ε
1 w

(1/q−

ε )(1−(s−

ε )∗)
2 . Then there exists a positive constant C such

that the inequality

‖wIαf‖q(·),Q0
6 C‖wf‖p(·),Q0

holds for every function f such that wf ∈ Lp(·)(Q0).

Remark 1.2. When w is a product of a finite number of power weights, the

corollary above can be proved using similar techniques, for Q0 replaced by a more

general bounded set Ω. In particular, when w is a power weight, this result was

proved by Samko ([14]) but for a variable index α.

The structure of this paper goes on as follows. Section 2 contains certain types

of inequalities frequently used in the variable context. A pointwise estimate relating

both operators M and Mα is also shown. Section 3 is devoted to proving our main

results. Finally, an example of weights in a bounded subset equipped with a non

doubling measure is also given.

2. Preliminary results

The following result is a version for cubes of Lemma 3.6 in [7] relating lower

Ahlfors regularity and log-Hölder continuity of the exponent and it is essential to

prove Theorem 2.1. We omit its proof since it is similar to the one for balls.

Lemma 2.1. Let µ be a lower Ahlfors β-regular measure and let p be a log-Hölder

continuous exponent. Then, there exists a positive constant C such that

(2.1) µ(Q)(pQ)∗−(pQ)∗ 6 C

for every cube Q centered at Ω.

Theorem 2.1. Let µ be a lower Ahlfors β-regular measure in a bounded µ-

measurable set Ω. Let 0 < t < t∗ be a log-Hölder continuous function in Ω and

ε > 0. Then there exists a positive constant C = C(ε) such that the inequality

(2.2) Mf(x)t(x) 6 C(1 + M(|f |(·)t(·))(x))

holds for almost every x ∈ Ωt
1,ε and for every function f such that ‖f‖t(·),Ωt

1,ε
6 1

and
∫

Ω−Ωt
1,ε

|f | dµ 6 1, where Ωt
1,ε is defined as in (1.5).

Remark 2.1. The fact that t is allowed to take positive values is essential in

the proof of Theorem 1.1. If t∗ > 1 and µ is the standard Lebesgue measure the

inequality above is proved in [8]. Inequalities of this type were originally proved

in [4].
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P r o o f. Let x be a fixed point in Ωt
1,ε. If Q is any cube centered at x, it is enough

to prove that the inequality

(2.3)

(

1

µ(Q)

∫

Q

|f(y)| dµ(y)

)t(x)

6 C

(

1 +
1

µ(Q)

∫

Q

|f(y)|t(y) dµ(y)

)

holds for some positive constant C.

Let us first assume that µ(Q) > 1/2. Note that

∫

Q

|f(y)| dµ(y) =

∫

Q∩Ωt
1,ε

|f(y)| dµ(y) +

∫

Q∩(Ω−Ωt
1,ε)

|f(y)| dµ(y).

The second term in the inequality above is bounded by 1 by hypothesis. For the first

we take into account that in Q ∩ Ωt
1,ε we have that t(x) > 1. Then, from the fact

that
∫

Q∩Ωt
1,ε

( 1

µ(Q) + 1

)(t(x))′

dµ(x) 6

∫

Q

1

µ(Q) + 1
dµ(x) < 1,

we have that ‖χQ‖t′(·),Q∩Ωt
1,ε

6 µ(Q) + 1. Then, by the generalized the Hölder

inequality (1.2), the remark above and the hypotheses we obtain

(

1

µ(Q)

∫

Q∩Ωt
1,ε

|f(x)| dµ(x)

)t(x)

6
1

µ(Q)t(x)
‖f‖t(x)

t(·),Q∩Ωt
1,ε
‖χQ‖t(x)

t′(·),Q∩Ωt
1,ε

6

(

1 +
1

µ(Q)

)t(x)

6 C.

Now we assume that µ(Q) < 1/2 and l(Q) > Cε where C is a constant depending

on the dimension. Then, from the definition of µ a constant C depending on ε and

the dimension can be found so that µ(Q) > C. Then we proceed as in the case above

to obtain the result.

If µ(Q) < 1/2 and l(Q) < Cε then it is easy to check that (Ω−Ω1)∩Q = ∅. Then
t(x) > 1 in Q.

If tQ = min
y∈Q

t(y), by applying the Hölder inequality we obtain

(2.4)

(

1

µ(Q)

∫

Q

|f(y)| dµ(y)

)t(x)

6
1

µ(Q)t(x)/tQ

(
∫

Q

|f(y)|tQ dµ(y)

)t(x)/tQ

.

Since
∫

Q

|f(y)|tQ dµ(y) =

∫

Q∩{|f |61}

|f(y)|tQ dµ(y) +

∫

Q∩{|f |>1}

|f(y)|tQ dµ(y)

6 2

(

µ(Q) +
1

2

∫

Q

|f(y)|t(y) dµ(y)

)

,
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and as the expression in brackets is less than 1, from (2.4) we get

(

1

µ(Q)

∫

Q

|f(y)| dµ(y)

)t(x)

6 Cµ(Q)1−t(x)/tQ

(

1 +
1

µ(Q)

∫

Q

|f(y)|t(y) dµ(y)

)

.

But this is (2.3) because of (2.1). �

The following lemma gives a pointwise estimation relating both operators M and

Mα and it proves to be essential to obtain our main results.

Lemma 2.2. Let µ be a lower Ahlfors β-regular measure in Ω. Let 0 < α < β

and p be an exponent such that 1 < p∗ 6 p(x) 6 p∗ < β/α. Let q be defined by

1/q(x) = 1/p(x) − α/β. If s(x) = 1 + q(x)/p′(x), then the following inequality

Mα(f/w)(x) 6 (M(|f |p(·)/s(·)w−q(·)/s(·))(x))s(x)/q(x)

(
∫

Q

|f |(y)p(y) dµ(y)

)α/β

holds for every function f and for every weight w.

P r o o f. Let f be a non negative function and let g be the function defined by

gs = fpw−q. Since f/w = gs/pwq/p−1 = g1−α/βgs/p+α/β−1wαq/β then, by the Hölder

inequality we have that

1

µ(Q)1−α/β

∫

Q

f

w
dµ 6

1

µ(Q)1−α/β

∫

Q

gs/pwq/p−1 dµ

6

(

1

µ(Q)

∫

Q

g dµ

)1−α/β(
∫

Q

g(s/p+α/β−1)(β/α)wq dµ

)α/β

.

Since s/q = 1 − α/β and (s/p + α/β − 1)β/α = s the last expression is bounded by

(Mg(x))s(x)/q(x)

(
∫

Q

gswq dµ

)α/β

6 (Mg(x))s(x)/q(x)

(
∫

Q

fp dµ

)α/β

.

�

The following result gives a Welland type inequality in the context of lower Ahlfors

measures. The proof in the euclidean setting is given in [15]. For more general

measures see, for instance, [5].

Lemma 2.3. Let 0 < α < β and 0 < ε < min{α, β − α}. Then the inequality

(2.5) |Iαf(x)| 6 C(Mα+εf(x)Mα−εf(x))1/2

holds.

1016



P r o o f. Let s be a positive number. We split Iα as follows

Iαf(x) =

∫

|x−y|<s

|f(y)||x − y|α
µ(Q(x, 2|x − y|)) dµ(y)(2.6)

+

∫

|x−y|>s

|f(y)||x − y|α
µ(Q(x, 2|x − y|)) dµ(y)

= I + II.

By using the property of the measure µ, for the first term we have

I =

∞
∑

k=0

∫

2−k−1s6|x−y|<2−ks

|f(y)||x − y|α
µ(Q(x, 2|x − y|)) dµ(y)

6 sα
∞
∑

k=0

2−kα

µ(Q(x, 2−ks))

∫

|x−y|<2−ks

|f(y)| dµ(y)

6 sα
∞
∑

k=0

2−kα

µ(Q(x, 2−ks))(α−ε)/β

1

µ(Q(x, 2−ks))1−(α−ε)/β

∫

|x−y|<2−ks

|f(y)| dµ(y)

6 CsεMα−εf(x)
∞
∑

k=0

2−kε 6 CsεMα−εf(x).

For the second term we have

II =
∞
∑

k=0

∫

2ks6|x−y|<2k+1s

|f(y)||x − y|α
µ(Q(x, 2|x − y|)) dµ(y)

6 sα
∞
∑

k=0

2(k+1)α

µ(Q(x, 2k+1s))

∫

|x−y|<2k+1s

|f(y)| dµ(y)

6 sα
∞
∑

k=0

2(k+1)α

µ(Q(x, 2k+1s))(α+ε)/β

1

µ(Q(x, 2k+1s))1−(α+ε)/β

×
∫

|x−y|<2k+1s

|f(y)| dµ(y)

6 Cs−εMα+εf(x)

∞
∑

k=0

2−kε 6 Cs−εMα+εf(x).

Combining both estimates from (2.6) we obtain

Iαf(x) 6 C(sεMα−εf(x) + s−εMα+εf(x))

and thus, by minimizing the expression in brackets in the inequality above as a

function of s we obtain the desired result. �
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3. Proofs of the main results

We now proceed to prove our main results.

P r o o f of Theorem 1.1. It is enough to prove that the inequality

‖wMα(f/w)‖q(·),Ωs
r,ε

6 C‖f‖p(·),Ω

holds for every function f such that ‖f‖p(·),Ω 6 C. But, by Lemma 2.2, it is enough

to prove that

‖w(M(|f |p/sw−q/s))s/q‖q(·),Ωs
r,ε

6 C‖f‖p(·),Ω

which is equivalent to seing that the inequality ̺q(χΩs
r,ε

w(M(|f |p/sw−q/s))s/q) 6 C

holds whenever ‖f‖p(·),Ω 6 C.

Let s̃(x) = s(x)/r. Since wq ∈ Ar(Ω), Hölder’s inequality implies that

̺s̃(χΩs
r,ε
|f |p/sw−q/s) =

∫

Ωs
r,ε

|f |p/rw−q/r dµ

6 C

(
∫

Ω

|f |(x)p(x) dµ(x)

)1/r(∫

Ω

w(x)−q(x)/(r−1) dµ(x)

)1/r′

6 C.

Thus ‖|f |p/sw−q/s‖s̃(·),Ωs
r,ε

6 C. On the other hand, the hypothesis on the weight

gives

∫

Ω−Ωs
r,ε

|f |p/sw−q/s dµ(x) 6 C‖|f |p/s‖s(·),Ω−Ωs
r,ε
‖w−q/s‖(s(·))′,Ω−Ωs

r,ε
6 C.

Thus Theorem 2.1 can be applied by choosing t(x) = s̃(x) and taking into account

that Ωs
r,ε = Ωs̃

1,ε. Then we get

̺q(χΩs
r,ε

w(M(|f |p/sw−q/s))sq) =

∫

Ωs
r,ε

(M(|f |p/sw−q/s)(x))s(x)w(x)q(x) dµ(x)

=

∫

Ωs
r,ε

((M(|f |p/sw−q/s)(x))s̃(x))rw(x)q(x) dµ(x)

6 C

∫

Ωs
r,ε

(1 + M((|f |p/sw−q/s)s̃(·)))rwq dµ

6 C + C

∫

Ω

(M((|f |p/sw−q/s)s̃(·)))rwq dµ.

From the fact that wq ∈ Ar−δ, Marcinkiewicz interpolation theorem can be applied

in order to obtain the boundedness of the maximal operator M in Lr(wq). Then,
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from the estimation above we get that

̺q(χΩs
r,ε

w(M(|f |p/sw−q/s))s/q) 6 C + C

∫

Ω

|f |p(x) dµ(x) 6 C.

�

P r o o f of Corollary 1.3. Without loss of generality we may assume that

‖f‖p(·),Ω = 1. Thus, we have to prove that ‖wMα(f/w)‖q(·),Ω 6 C.

Since p is a log-Hölder continuous exponent it is easy to check that so is q and

w(x)q(x) ∼ w(x)q(x0). In fact, this can be obtained from the property of continuity

of q if |x−x0| 6 1/2. Otherwise the statement is immediate because the boundedness

of Ω.

Since n/q(x0) < β < n/(p(x0))
′ then wq ∈ As(x0)(R

n) and there exists a positive

number η such that wq ∈ As(x0)−η(Rn); in particular, wq ∈ As(x0)−η(Ω). By virtue

of the continuity of p and s two positive numbers δ and ε can be chosen satisfying

Q(x0, δ) ⊂ Ωs
s(x0)−η/2,ε and β(p(x))′ < n for x ∈ Q(x0, δ). Thus, we have

‖wMα(f/w)‖q(·),Ω 6 ‖wMα(f/w)‖q(·),Q(x0,δ) + ‖χΩ\Q(x0,δ)wMα(f/w)‖q(·),Ω

6 ‖wMα(f/w)‖q(·),Ωs
s(x0)−η/2,ε

+ ‖χΩ\Q(x0,δ)wMα(f/w)‖q(·),Ω.

It is easy to see that the hypotheses on the weight are satisfied as Ω is bounded and

Ω \ Ωs
s(x0)−η/2,ε ⊂ {x ∈ Ω: |x − x0| > Cδ}. Thus Theorem 1.1 can be applied to

estimate the first term.

If β 6 0, w is bounded below for x ∈ Ω \ Q(x0, δ) and its reciprocal is bounded

above in Ω and the boundedness of the second term follows by virtue of the non-

weighted norm inequality for Mα. On the other hand, if β > 0, let Q be a cube such

that l(Q) 6 δ/2. Since |y − x0| > δ/2 when y ∈ Q then

|x − x0|β
|Q|1−α/n

∫

Q

f(y)

|y − x0|β
dy 6 C(diam Ω)βMαf(x).

On the other hand, if l(Q) > δ/2 we have

|x − x0|β
|Q|1−α/n

∫

Q

f(y)

|y − x0|β
dy 6 (diamΩ)β(I + II)

where

I =
1

|Q|1−α/n

∫

Q∩{|y−x0|6δ/2}

f(y)

|y − x0|β
dy

and

II =
1

|Q|1−α/n

∫

Q∩{|y−x0|>δ/2}

f(y)

|y − x0|β
dy.

It is easy to see that II 6 CδMαf(x). Thus we proceed to estimate I. Let p̄ =

(pQ(x0,δ/2))∗, by applying the Hölder inequality and taking into account that βp̄′ < n,
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we obtain that

I 6
1

|Q|1−α/n

(
∫

Q∩{|y−x0|6δ/2}

|f |p̄
)1/p̄(∫

{|y−x0|6δ/2}

|y − x0|−βp̄′

)1/p̄′

6 C

(

1

|Q|

∫

Q∩{|y−x0|6δ/2}

|f |p̄
)1/p̄

6 C

(

1

|Q|

∫

Q∩{|f |61}

|f |p̄ + Cδ

∫

{|f |>1}∩{{|y−x0|6δ/2}}

|f |p̄
)1/p̄

6

(

C + Cδ

∫

{|f |>1}∩{{|y−x0|6δ/2}}

|f |p(y) dy

)1/p̄

6 C

where in the last inequality we have used that ‖f‖p,Ω = 1. Thus we have the

pointwise inequality

w(x)Mα(f/w)(x) 6 C + CMαf(x),

which allows us to obtain the desired result by using the non-weighted classical

boundedness of Mα and the fact that Ω is bounded. �

P r o o f of Theorem 1.2. It is enough to prove that the inequality

‖wIα(f/w)‖q(·),Ω 6 C‖f‖p(·),Ω

holds for every function f such that ‖f‖p(·),Ω 6 C.

If we define q+(x) = 2q+
ε /q(x) and q−(x) = 2q−ε /q(x) then 1/q+(x)+1/q−(x) = 1.

By applying Welland’s inequality and Young’s inequality we obtain

∫

Ω

∣

∣

∣
Iα

( f

w

)∣

∣

∣

q

wq dµ(3.1)

6 C

(
∫

Ω

1

q+
Mα+ε

( f

w

)qq+/2

wqq+/2 dµ +

∫

Ω

1

q−
Mα−ε

( f

w

)qq−/2

wqq−/2 dµ

)

6 C

(
∫

Ω

Mα+ε

( f

w

)q+
ε

wq+
ε dµ +

∫

Ω

Mα−ε

( f

w

)q−

ε

wq−

ε dµ

)

.

Now the desired inequality follows immediately because of the hypothesis on the

weights and by virtue of Corollary 1.2. �

P r o o f of Theorem 1.3. Let us see that wα ∈ A1(Q0). In fact, a positive

constant τ can be chosen in such a way that, if µ(Q) 6 τ then either Q does contain

only one singularity or it does not contain any at all.
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If Q contains no singularity it is easy to see that w ∼= C and then, from the

fact that w > 1 we obtain the result. Now let xi be the only singularity contained

in Q. Since 1 < w(x) 6 |x − xi|−θ and α satisfies a log-Hölder condition, by taking

logarithms, we obtain

0 6 |α(x) − α(xi)| log w 6 C

which allows us to immediately obtain that wα(x) ∼= wα(xi) for almost every x ∈ Q.

Thus the result follows easily whenever µ(Q) is small enough.

Let us now consider those cubes Q for which µ(Q) > τ . By a well-known property

of Muckenhoupt classes there exists a positive number δ such that w1+δ ∈ A1(Q0).

Let us see that this number does work. Let α be a function as in the hypothesis.

Since 1 < α(x) < 1 + δ, for almost every x in Q, we have

wα(Q)

µ(Q)
6

w1+δ(Q)

µ(Q)
6 C

(w(Q)

µ(Q)

)1+δ

6 Cw(Ω)1+δ
6 Cw(x)α(x).

�

P r o o f of Corollary 1.4. The thesis follows by observing that w satisfies the

hypothesis in Theorem 1.2 in the context of the measure space (Q0, µ), where Q0 is

a cube and µ is the Lebesgue measure. As w1, w2 ∈ A1, there exist two positive

numbers δ1 and δ2 such that both weights w
1+δ1
1 and w1+δ2

2 also belong to that class.

We choose δ = min{δ1, δ2}. Now let ε be a positive number as defined in Theorem 1.2
and let αε be the function defined by αε(x) = q+

ε (x)/q−ε (x). If ε < δβ/((2+δ)q∗), we

then have that 1 < αε < 1 + δ. Moreover, since q has the log-Hölder property, it is

easy to see that so does αε. Thus w
q−

ε ∈ A(s−

ε )∗
since w1w

1−(s−

ε )∗
2 ∈ A(s−

ε )∗
. Moreover

Theorem 1.3 can now be applied to conclude that wq+
ε = wαε

1 w
αε(1−(s−

ε )∗)
2 ∈ A(s−

ε )∗
.

By virtue of the monotonic character of the Muckenhoupt classes it is also true that

wq+
ε ∈ A(s+

ε )∗
and we are done. �

We finally obtain a family of weights in the Ap(·)(Ω) class where Ω has been

equipped with a measure µ that fails to have the standard doubling property.

Let X1 = {(x, x), x ∈ (0, 1)}, X2 = (−1, 0)2 and Ω = X1 ∪ X2. If Ω is any cube

containing Ω and µi is the i-dimensional Lebesgue measure for i = 1, 2, let µ be the

measure supported in Ω and defined by µ = µi in Xi for i = 1, 2. It is easy to prove

that µ is lower Ahlfors 2-regular. If 1 < p < ∞, let w be the weight defined in Ω by

w(x, y) =

{

xα if (x, y) ∈ X1,

|xy|α if (x, y) ∈ X2,

with −1 < α < p − 1. Then w belongs to the class Ap(Ω). In fact, if Q is a cube

contained in Ω, it might happen that Q is a proper subset of X1 or of X2, otherwise
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Q intersects both of them. In the first two cases the statement follows immediately

from the Ap conditions for the 1-dimensional and 2-dimensional Lebesgue measure

respectively.

Let us prove the remaining case. Given b 6 a < 0, and l > 0 such that 0 < b+ l <

a + l let Q = (a, a + l) × (b, b + l). Let I = (a, 0), J = (b, 0) and K = (0, b + l) thus

Q ∩ Ω = (I × J) ∪ {(x, x), x ∈ K} and µ(Q) = µ(Q ∩ Ω) = µ2(I × J) +
√

2µ1(K).

By the definition of w and Tonelli’s theorem we obtain

(

1

µ(Q)

∫

Q

w dµ

)(

1

µ(Q)

∫

Q

w−1/(p−1) dµ

)p−1

6
1

µ1(I)p

(
∫

I

|x|α dx

)(
∫

I

|x|α/(1−p) dx

)p−1

× 1

µ1(J)p

(
∫

J

|x|α dx

)(
∫

J

|x|α/(1−p) dx

)p−1

+
1

µ1(K)p

(
∫

K

|x|α dx

)(
∫

K

|x|α/(1−p) dx

)p−1

+ C
( µ1(I)µ1(J)

µ1(I)µ1(J) +
√

2µ1(K)

)α+1(
√

2µ1(K)

µ1(I)µ1(J) +
√

2µ1(K)

)p−α−1

+ C
( µ1(I)µ1(J)

µ1(I)µ1(J) +
√

2µ1(K)

)p−α−1(
√

2µ1(K)

µ1(I)µ1(J) +
√

2µ1(K)

)α+1

6 C

where we have used the one dimensional Ap inequality for both the first and the

second terms and the range of α for the boundedness of the last two terms.
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