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Abstract. We introduce the new notion of pseudo-D -parallel real hypersurfaces in a
complex projective space as real hypersurfaces satisfying a condition about the covariant
derivative of the structure Jacobi operator in any direction of the maximal holomorphic
distribution. This condition generalizes parallelness of the structure Jacobi operator. We
classify this type of real hypersurfaces.
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1. Introduction

Let CPm, m > 2, be a complex projective space endowed with the metric g of

constant holomorphic sectional curvature 4. Let M be a connected real hypersurface

of CPm without boundary. Let J denote the complex structure of CPm and N a

locally defined unit normal vector field on M . Then −JN = ξ is a tangent vector

field to M called the structure vector field on M . We also call D the maximal

holomorphic distribution on M , that is, the distribution on M given by all vectors

orthogonal to ξ at any point of M and let (ϕ, ξ, η, g) be the almost contact metric

structure that the Kaehlerian structure of CPm induces on M .

The study of real hypersurfaces in nonflat complex space forms is a classical topic in

Differential Geometry. The classification of homogeneous real hypersurfaces in CPm

was obtained by Takagi, see [11], [12], [13], and is given by the following list: A1:

Second author is partially supported by MEC-FEDER Grant MTM2007-60731. First
and third authors are supported by Grant Project No. R17-2008-001-01001-0 from Korea
Science and Engineering Foundation.
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Geodesic hyperspheres. A2: Tubes over totally geodesic complex projective spaces.

B: Tubes over complex quadrics and RPm. C: Tubes over the Segre embedding of

CP 1 × CPn, where 2n + 1 = m and m > 5. D: Tubes over the Plucker embedding

of the complex Grassmann manifold G(2, 5). In this case m = 9. E: Tubes over the

cannonical embedding of the Hermitian symmetric space SO(10)/U(5). In this case

m = 15.

Other examples of real hypersurfaces are ruled real ones, that were introduced by

Kimura, [5]: Take a regular curve γ in CPm with tangent vector field X . At each

point of γ there is a unique complex projective hyperplane cutting γ so as to be

orthogonal not only to X but also to JX . The union of these hyperplanes is called

a ruled real hypersurface. It will be an embedded hypersurface locally although

globally it will in general have self-intersections and singularities. Equivalently a

ruled real hypersurface is such that D is integrable or, equivalently, g(AD,D) = 0,

where A denotes the shape operator of the immersion, see [5]. For further examples

of ruled real hypersurfaces see [6].

Except these real hypersurfaces there are very few examples of real hypersurfaces

in CPn. So, in Section 3, we present some results about non-existence of certain

families of real hypersurfaces in complex projective space.

On the other hand, Jacobi fields along geodesics of a given Riemannian manifold

(M̃, g̃) satisfy a very well-known differential equation. This classical differential equa-

tion naturally inspires the so-called Jacobi operator. That is, if R̃ is the curvature

operator of M̃ , and X is any tangent vector field to M̃ , the Jacobi operator (with

respect to X) at p ∈ M , R̃X ∈End(TpM̃), is defined as (R̃XY )(p) = (R̃(Y, X)X)(p)

for all Y ∈ TpM̃ , being a selfadjoint endomorphism of the tangent bundle TM̃ of M̃ .

Clearly, each tangent vector field X to M̃ provides a Jacobi operator with respect

to X .

Let M be a real hypersurface in a complex projective space and let ξ be the

structure vector field on M . We will call the Jacobi operator on M with respect

to ξ the structure Jacobi operator on M . In [2] the authors classify, under certain

additional conditions, real hypersurfaces of CPm whose structure Jacobi operator is

parallel, in a certain sense, in the direction of ξ, namely, they suppose that R′

ξ = 0,

where R′

ξ(Y ) = (∇ξR)(Y, ξ)ξ. They obtain class A1 or A2 hypersurfaces and a

non-homogeneous real hypersurface. In [3] they classify real hypersurfaces in CPm

whose structure Jacobi operator commutes both with the shape operator and with

the restriction of the complex structure to M .

In [10] we proved the non-existence of real hypersurfaces in CPm, m > 3, whose

structure Jacobi operator is D-parallel, that is, ∇XRξ = 0, for any X ∈ D.

In this paper, we introduce the notion of pseudo-D-parallelness of the structure

Jacobi operator for real hypersurfaces in CPm. It generalizes D-parallelness of the
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structure Jacobi operator. The structure Jacobi operator of a real hypersurface of

CPm is pseudo-D-parallel if it satisfies

(1.1) (∇XRξ)Y = c{η(Y )ϕAX + g(ϕAX, Y )ξ}

where c is a nonzero constant, X ∈ D and Y ∈ TM . We obtain the following

Theorem. Let M be a real hypersurface in CPm, m > 3, with pseudo-D-parallel

structure Jacobi operator. If c 6= −1 then c < 0 and M is locally congruent to a

geodesic hypersphere of radius r such that cot2(r) = −c.

2. Preliminaries

Throughout this paper, all manifolds, vector fields, etc., will be considered of class

C∞ unless otherwise stated. LetM be a connected real hypersurface in CPm, m > 2,

without boundary. Let N be a locally defined unit normal vector field on M . Let ∇

be the Levi-Civita connection on M and (J, g) the Kaehlerian structure of CPm.

For any vector field X tangent to M we write JX = ϕX +η(X)N , and −JN = ξ.

Then (ϕ, ξ, η, g) is an almost contact metric structure on M , see [1]. That is, we

have

(2.1) ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y )

for any tangent vectors X, Y to M . From (2.1) we obtain

(2.2) ϕξ = 0, η(X) = g(X, ξ).

From the parallelism of J we get

(2.3) (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ

and

(2.4) ∇Xξ = ϕAX

for any X , Y tangent to M , where A denotes the shape operator of the immersion.

As the ambient space has holomorphic sectional curvature 4, the equations of Gauss

and Codazzi are given, respectively, by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(ϕY, Z)ϕX − g(ϕX, Z)ϕY(2.5)

− 2g(ϕX, Y )ϕZ + g(AY, Z)AX − g(AX, Z)AY,
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and

(2.6) (∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ

for any tangent vectors X , Y , Z to M , where R is the curvature tensor of M .

In the sequel we need the following results:

Theorem 2.1 [8]. Let M be a real hypersurface of CPm, m > 2. Then the

following are equivalent:

1. M is locally congruent to one of the homogeneous hypersurfaces of class A1

or A2.

2. ϕA = Aϕ.

Theorem 2.2 [8]. Let M be a real hypersurface in CPm, m > 2. If ξ is principal

with principal curvature α, given a principal vector field X ∈ D with principal

curvature λ, ϕX is also principal with principal curvature (αλ + 2)/(2λ − α).

3. Some previous results

Proposition 3.1. There exist no real hypersurfaces in CPm, m > 4, whose shape

operator is given by Aξ = αξ + βU , AU = βξ, AϕU = 0 and there exist two nonnull

holomorphic distributions D0 and Dc such that D0 ⊕Dc = span{ξ, U, ϕU}⊥, for any

Z ∈ D0, AZ = 0, for any W ∈ Dc, AW = −(c + 1)α−1W , where U is a unit vector

field in D, α and β are nonvanishing smooth functions defined on M , (ϕU)(β) = 0

and c is a constant c 6= 0,−1.

P r o o f. For any W ∈ Dc, Codazzi equation yields (∇W A)ϕW − (∇ϕW A)W =

−2ξ. Taking its scalar product with ξ we get

(3.1) βg([ϕW, W ], U) = 2
(c + 1

α

)2

+ 2c.

The scalar product with U gives

(3.2) g([ϕW, W ], U) = 2β.

From (3.1) and (3.2) we get

(3.3) α2(β2 − c) = (c + 1)2.
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As c is constant and we suppose (ϕU)(β) = 0, from (3.3) (β2 − c)(ϕU)(α) = 0.

From (3.3) β2 − c 6= 0. Thus (ϕU)(α) = 0. The Codazzi equation also gives

(∇ϕUA)ξ − (∇ξA)ϕU = U . If we develop it, as (ϕU)(β) = (ϕU)(α) = 0 we obtain

(3.4) β∇ϕUU + A∇ξϕU = U.

Taking its scalar product with U we get 1 = g(∇ξϕU, βξ) = −βg(ϕU, ϕAξ) = −β2.

This is impossible and finishes the proof. �

With a proof similar to the proof of Proposition 3.2 in [10] we obtain

Proposition 3.2. Let M be a ruled real hypersurface in CPm, m > 2. Then M

does not satisfy (1.1) for any X ∈ D, Y ∈ TM .

Proposition 3.3. There exist no real hypersurfaces M in CPm, m > 3, whose

shape operator is given by Aξ = (c + 1)ξ + βU , AU = βξ + (β2/(c + 1) − 1)U ,

AϕU = −ϕU , AZ = −Z, for any tangent vector Z orthogonal to span{ξ, U, ϕU},

where U is a unit vector field in D, β is a nonvanishing smooth function defined on

M and c is a constant c 6= 0,−1.

P r o o f. Let us call DU = span{ξ, U, ϕU}⊥ and take Z ∈ DU . Codazzi equation

gives (∇ZA)U − (∇UA)Z = 0. If we take its scalar product with U we get

(3.5) g(∇UU, Z) =
2Z(β)

β
,

and its scalar product with ξ yields

(3.6) g(∇UU, Z) =
Z(β)

β
.

From (3.5) and (3.6) we obtain

(3.7) Z(β) = 0.

If we develop (∇UA)ξ− (∇ξA)U = −ϕU and take its scalar product with U we have

U(β) = 2β(c + 1)−1ξ(β), and its scalar product with ξ gives ξ(β) = 0. Thus we get

(3.8) U(β) = ξ(β) = 0.

If we now develop (∇ϕUA)ξ − (∇ξA)ϕU = U and take its scalar product with U we

obtain

(3.9) (c + 1) + (ϕU)(β) −
β2

c + 1
− β2 +

β2

c + 1
g(∇ξϕU, U) = 0.
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If we take its scalar product with ξ, it follows

(3.10) g(∇ξϕU, U) = 4 + c.

From (3.9) and (3.10) we have (ϕU)(β) = −(2β2 + (c + 1)2)/(c + 1). Bearing in

mind (3.7) and (3.8) this yields

(3.11) grad(β) = ωϕU,

where ω = −(2β2 + (c + 1)2)/(c + 1). Then ∇X grad(β) = X(ω)ϕU + ω∇XϕU ,

for any X ∈ TM . As g(∇X grad(β), Y ) = g(∇Y grad(β), X), for any X, Y ∈ TM

we obtain X(ω)g(ϕU, Y ) + ωg(∇XϕU, Y ) = Y (ω)g(ϕU, X) + ωg(∇Y ϕU, X), for any

X, Y ∈ TM . If we suppose ω 6= 0, taking Y = ξ we have −g(U, AX) = g(∇ξϕU, X),

for any X ∈ TM . If we take X = U we get g(∇ξϕU, U) = −g(AU, U) = 1 −

β2/(c + 1). From (3.10) we obtain β2 = −(c + 3)(c + 1). Then β is constant. Thus

anyway ω = 0, which means 2β2 + (c + 1)2 = 0, which is impossible, finishing the

proof. �

4. Proof of the theorem

We suppose c 6= 0,−1.

Suppose firstly that M is not Hopf. Thus, at least locally, we can write Aξ =

αξ +βU , where U is a unit vector field in D and β is a nonvanishing function. From

(1.1) we get

(4.1) − g(Y, ϕAX)ξ − η(Y )ϕAX + g(∇XAξ, ξ)AY + g(Aξ, ϕAX)AY

+ α(∇XA)Y − g(Y,∇XAξ)Aξ − g(AY, ξ)∇XAξ

= c{η(Y )ϕAX + g(ϕAX, Y )ξ},

for any X ∈ D, Y ∈ TM . Taking Y = ϕU in (4.1) we obtain −(c + 1)g(U, AX)ξ +

g(∇XAξ, ξ)AϕU +g(Aξ, ϕAX)AϕU +α(∇XA)ϕU −g(ϕU,∇XAξ)Aξ = 0. Its scalar

product with ξ gives (c + 1)g(U, AX) + αg(AϕU, ϕAX) = 0. And taking X = ϕU

we have (c + 1)g(AU, ϕU) = 0. Thus

(4.2) g(AU, ϕU) = 0.

Take Y = U in (4.1). Its scalar product with ξ yields

(4.3) −(β2 − (c + 1))g(AϕU, X) + αg(AϕAU, X) = 0
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for any X ∈ D. Thus −(β2 − (c + 1))AϕU + αAϕAU has no component in D. From

(4.2) we get

(4.4) −(β2 − (c + 1))AϕU + αAϕAU = 0.

On the other hand, −(c + 1)g(AU, X) + αg(AϕAϕU, X) = 0, for any X ∈ D. Thus

−(c + 1)AU + αAϕAϕU has no component in D. This yields

(4.5) (c + 1)AU − αAϕAϕU = β(c + 1 + αg(AϕU, ϕU))ξ.

From (4.5) we have (c + 1)g(AU, U) = αg(AϕAϕU, U) and from (4.4), −(β2 −

(c + 1))g(AϕU, ϕU) + αg(AϕAU, ϕU) = 0. From these equalities we get

(4.6) (c + 1)g(AU, U) = (c + 1 − β2)g(AϕU, ϕU).

Then we take Y ∈ DU , X ∈ D in (4.1) and the scalar product with ξ. We obtain

(c + 1)g(ϕAX, Y ) = −αg(AY, ϕAX). Taking X = Y we have

(4.7) g(ϕX, AX) = 0

for any X ∈ DU . Moreover (c + 1)AϕX + αAϕAX has no component in D.Thus

(4.8) (c + 1)AϕX + αAϕAX = αβg(ϕAX, U)ξ

for any X ∈ DU . If we change X by ϕX in (4.8) we obtain −(c + 1)AX +

αAϕAϕX = αβg(ϕAϕX, U)ξ. Its scalar product with X yields −(c + 1)g(AX, X)+

αg(AϕAϕX, X) = 0. The scalar product of (4.8) with ϕX gives (c+1)g(AϕX, ϕX)−

αg(AϕAϕX, X) = 0. From these expressions we get

(4.9) g(AX, X) = g(AϕX, ϕX)

for any X ∈ DU . Taking Y ∈ DU , X = ϕU in(4.1) and its scalar product with ξ we

have (c + 1)g(ϕAϕU, Y ) = −αg(AY, ϕAϕU). As for any X ∈ D, (c + 1)g(AX, U) =

−αg(AϕU, ϕAX), we get g(AU, Y ) = g(AϕU, ϕY ), for any Y ∈ DU . Changing Y

by ϕY , for any Y ∈ DU , −g(Y, AϕU) = g(AU, ϕY ). Thus AϕU − ϕAU has no

component in DU , and from (4.6)

(4.10) AϕU − ϕAU =
β2

c + 1
g(AϕU, ϕU)ϕU.

We want to prove that AU and AϕU have no component in DU . Thus we can suppose

AU = βξ + g(AU, U)U + µZ, AϕU = g(AϕU, ϕU)ϕU + εW , where µ, ε are smooth
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functions onM and Z, W unit vector fields in DU . Then, ϕAU = g(AU, U)ϕU+µϕZ.

Thus AϕU −ϕAU = β2(c + 1)−1g(AϕU, ϕU)ϕU + εW − µϕZ. From (4.10) we have

(4.11) εW = µϕZ.

Taking Y = ϕZ, X = U in (4.1) and its scalar product with ξ we get

−(c + 1)g(AU, Z) = αg(AϕZ, ϕAU).

This gives

(4.12) (c + 1)µ + αµg(AU, U) + αµg(AϕZ, ϕZ) = 0.

Taking Y = Z, X = ϕU in (4.1) and its scalar product with ξ, we have similarly

(4.13) (c + 1)µ + αµg(AϕU, ϕU) + αµg(AZ, Z) = 0.

From (4.12) and (4.13), if µ 6= 0, it follows α 6= 0 and g(AϕU, ϕU) + g(AZ, Z) =

g(AU, U) + g(AϕZ, ϕZ). From (4.9) we should have g(AϕU, ϕU) = g(AU, U). From

(4.6), β2g(AϕU, ϕU) = 0. This yields AU = βξ + µZ, AϕU = µϕZ, g(AZ, Z) =

g(AϕZ, ϕZ) = −(c + 1)/α. From (4.5) we obtain (c+1)AU −αAϕAϕU = (c+1)βξ.

This gives (c + 1)βξ + (c + 1)µZ + αµAZ = (c + 1)βξ. Thus (c + 1)µZ + αµAZ = 0.

Taking its scalar product with U we get αµ2 = 0, which is impossible. We have

obtained that µ must be zero, and if we write AϕU = δϕU , we have AU = βξ +

(1 − β2/(c + 1))δU . Moreover, DU is A-invariant. Take a unit Z ∈ DU such that

AZ = λZ. From (4.8) it follows that (c + 1)AϕZ + αλAϕZ = 0. If AϕZ = 0, taking

X = ϕZ in (4.8) we get −(c + 1)AZ = 0. Thus λ = 0. Thus the unique eigenvalues

of A that could appear in DU are either 0 or −(c + 1)/α. We also can conclude that

the corresponding eigenspaces are holomorphic, that is, they are invariant by ϕ.

Suppose firstly that there exists Z ∈ DU such that AZ = AϕZ = 0. The Codazzi

equation gives (∇ZA)ξ − (∇ξA)Z = −ϕZ. Developing this equation and taking its

scalar product with ϕZ we get

(4.14) g(∇ZU, ϕZ) = −
1

β
.

On the other hand, (∇ZA)ϕU − (∇ϕUA)Z = 0. This implies Z(δ)ϕU + δ∇ZϕU −

A∇ZϕU +A∇ϕUZ = 0. Taking its scalar product with Z, and bearing in mind (2.3),

we obtain

(4.15) δg(∇ZU, ϕZ) = 0.
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If δ 6= 0, (4.14) and (4.15) give a contradiction. Thus δ = 0. In this case, if for any

Z ∈ DU , AZ = 0, recall that we have AU = βξ, AϕU = 0. Thus we obtain a ruled

real hypersurface. Proposition 3.2 implies that this case does not occur.

Now we suppose that there exists Z ∈ DU such that AZ = 0, that is Z ∈ D0 and

there exists W ∈ DU such that AW = −(c + 1)/αW . From Proposition 3.1 we have

(ϕU)(β) 6= 0. From (1.1) (∇ϕURξ)U = −cδξ. On the other hand, (∇ϕURξ)U =

(ϕU)(β2)U − β2∇ϕUU + δξ − αA∇ϕUU + α2δξ + αβδU . Its scalar product with

U yields (ϕU)(β2) = 0. Thus this kind of real hypersurfaces does not satisfy our

condition.

Therefore we must suppose that AU = βξ + δ(1 − β2/(c + 1))U , AϕU = δϕU ,

AZ = −(c + 1)α−1Z for any Z ∈ DU . From the Codazzi equation (∇ZA)ϕZ −

(∇ϕZA)Z = −2ξ. Developing it and taking its scalar product with ξ we get

(4.16) βg([ϕZ, Z], U) = 2c + 2
(c + 1

α

)2

.

and its scalar product with U yields

(4.17)
(c + 1

α
+ δ

(
1 −

β2

c + 1

))
g([ϕZ, Z], U) − 2β

c + 1

α
= 0.

From (4.16) and (4.17) we have

(4.18) [(c + 1)2 + αδ(c + 1 − β2)][(c + 1)2 + cα2] = α2β2(c + 1)2.

From (1.1), (∇ϕURξ)U = −cδξ. Taking its scalar product with ξ we obtain

(4.19) −cδ = δ
[
α
(
1 −

β2

c + 1

)
δ − β2 + 1

]
.

If we suppose that δ = 0, Aξ = αξ + βU , AϕU = 0, AZ = −(c + 1)α−1Z, for any

Z ∈ DU . From Codazzi equation we have (∇ϕUA)ξ − (∇ξA)ϕU = U . Taking its

scalar product with U we have (ϕU)(β) = β2 +1. But as from (1.1) (∇ϕURξ)U = 0,

taking its scalar product with U we get (ϕU)(β2) = 0, giving a contradiction. Thus

δ 6= 0. From (4.18) and (4.19) we obtain

(4.20) α2 = (c + 1)2.

Thus changing, if necessary, ξ by −ξ, we can suppose that α = c + 1. From (4.18)

and (4.20) we have

(4.21) (α − β2)(1 + δ) = 0.
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From Proposition 3.3 δ 6= −1. Then from (4.21), β2 = α = c + 1. That is, Aξ =

(c + 1)ξ + βU , AU = βξ, AϕU = δϕU , AZ = −Z, for any Z ∈ DU .

From (1.1) we get (∇URξ)ϕU = (∇ϕURξ)ϕU = (∇ZRξ)ϕU = 0, for any Z ∈ DU .

Taking the corresponding scalar products with ϕU we get

(4.22) U(δ) = (ϕU)(δ) = Z(δ) = 0,

for any Z ∈ DU . Codazzi equation implies (∇UA)ϕU − (∇ϕUA)U = −2ξ. This

yields δg(∇ϕUU, ϕU) = 0. On the other hand, as (∇ξA)ϕU − (∇ϕUA)ξ = −U , we

obtain ξ(δ) = βg(∇ϕUU, ϕU). From these equations we get

(4.23) ξ(δ) = 0.

From (4.22) and (4.23) we conclude that δ is constant.

Suppose δ = 0. Codazzi equation yields (∇ϕUA)ξ − (∇ξA)ϕU = U . Its scalar

product with U gives β2 = −1, which is impossible. Thus δ 6= 0.

From the Codazzi equation (∇UA)ϕU − (∇ϕUA)U = −2ξ, and its scalar product

with U yields

(4.24) g(∇UϕU, U) = −2β.

From (1.1), (∇URξ)ϕU = 0. Taking its scalar product with U we get

(4.25) (δ + 1)g(∇UϕU, U) = 0.

From (4.24) and (4.25) we should have δ = −1 and we arrive to a contradiction. So

we conclude that M must be Hopf, that is Aξ = αξ. Now α is locally constant and

(4.1) changes to

− g(Y, ϕAX)ξ − η(Y )ϕAX + α(∇XA)Y − α2g(Y, ϕAX)ξ − α2η(Y )ϕAX(4.26)

= c{η(Y )ϕAX + g(Y, ϕAX)ξ}

for any X ∈ D, Y ∈ TM . Taking its scalar product with ξ we obtain

(c + 1)g(ϕAX, Y ) + αg(AϕAX, Y ) = 0

for any X ∈ D, Y ∈ TM . Thus

(4.27) (c + 1)ϕAX + αAϕAX = 0
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for any X ∈ D. Then for any X, Y ∈ D, g((c + 1)ϕAX + αAϕAX, Y ) = 0 =

−g(X, (c + 1)AϕY + αAϕAY ). Thus

(4.28) (c + 1)AϕY + αAϕAY = 0

for any Y ∈ D. From (4.27) and (4.28) we have ϕAY = AϕY for any Y ∈ D. As

also Aϕξ = ϕAξ = 0, we conclude that Aϕ = ϕA. Now from Theorem 2.1, M must

be locally congruent to a real hypersurface of type either A1 or A2.

If M is of type A1, for any X ∈ D, AX = cot(r)X . From (1.1) (∇XRξ)ξ =

cot(r)cϕX = − cot3(r)ϕX . Thus c = − cot2(r) and M is locally congruent to a

geodesic hypersphere of radius r such that cot2(r) = −c. It is easy to see that this

geodesic hypersphere satisfies (1.1)

IfM is of type A2 we write Aξ = 2 cot(2r)ξ. In D we have two nonzero holomorphic

distributions corresponding, respectively to the eigenvalues cot(r) and− tan(r). Take

a unit X such that AX = cot(r)X . From (1.1), if we develop (∇XRξ)ξ we obtain

c = − cot2(r). The same procedure applied to a unit Y such that AY = − tan(r)Y

yields c = − tan2(r). This gives c = −1, which is impossible.

This finishes the proof. �

Remark. It is easy to see that geodesic hypersphere of radius 1

4
π satisfies (1.1)

for the case c = −1, although we have been not able to find a complete classification

in this case.
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