
Czechoslovak Mathematical Journal

Said Bouali; Youssef Bouhafsi
A remark on the range of elementary operators

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 4, 1065–1074

Persistent URL: http://dml.cz/dmlcz/140805

Terms of use:
© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140805
http://dml.cz


Czechoslovak Mathematical Journal, 60 (135) (2010), 1065–1074

A REMARK ON THE RANGE OF ELEMENTARY OPERATORS

Bouali Said, Rabat, and Bouhafsi Youssef, Kénitra

(Received June 23, 2009)

Abstract. Let L(H) denote the algebra of all bounded linear operators on a separable
infinite dimensional complex Hilbert space H into itself. Given A ∈ L(H), we define the
elementary operator ∆A : L(H) −→ L(H) by ∆A(X) = AXA−X. In this paper we study
the class of operators A ∈ L(H) which have the following property: ATA = T implies
AT

∗
A = T

∗ for all trace class operators T ∈ C1(H). Such operators are termed generalized
quasi-adjoints. The main result is the equivalence between this character and the fact
that the ultraweak closure of the range of ∆A is closed under taking adjoints. We give a
characterization and some basic results concerning generalized quasi-adjoints operators.
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1. Introduction

Let H be a separable infinite dimensional complex Hilbert space and let L(H)

denote the algebra of all bounded linear operators on H into itself. Given A,B ∈

L(H), we define the elementary operator ∆A,B as

∆A,B : L(H) −→ L(H),

X 7−→ ∆A,B(X) = AXB −X.

If A = B, we write simply ∆A for ∆A,A. The properties of elementary operators,

their spectrum (see [9], [10], [12]), norm ([15], [17] and [18]) and ranges ([1], [2], [3],

[4], [6], [12], [13], [14], and [16]) have been studied intensively, but many problems

remain open [12].

In particular, L. Fialkow [12] and Z.Genkai [14] studied the problem of charac-

terizing operators A,B ∈ L(H) for which R(∆A,B), the range of ∆A,B, is dense in

L(H) in the norm topology.
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Our aim in this paper is a modest one. In the first section, we provide a charac-

terization of the case when the range R(∆A,B) is weakly and ultraweakly dense in

L(H). Complementary results related to the range of the elementary operator ∆A,B

are also given.

An operator A ∈ L(H) is said to be quasi-adjoint if the norm closure of the range

of ∆A is closed under taking adjoint, i.e. R(∆A) = R(∆A∗) = R(∆A)
∗

. In [4] it

is proved that if A is quasi-adjoint, then ATA = T implies AT ∗A = T ∗ for every

trace class operator T ∈ C1(H). In order to generalize these results, we initiate

the study of a more general class of operators A that have the following property:

ATA = T implies AT ∗A = T ∗ for all T ∈ C1(H). We call such operators generalized

quasi-adjoint operators. In the second section, We give a characterization and some

basic properties concerning this class of operators. Finally, we pose and mention

some open questions suggested by our results.

Notation and definitions

(1) Let L(H) be the algebra of all bounded linear operators acting on a complex

separable Hilbert space H , let K(H) denote the ideal of all compact operators on H ,

and let B(H) be the class of all finite rank operators. Finally, let C(H) = L(H)
∣

∣K(H)

denote the Calkin algebra.

(2) Given A,B ∈ L(H), R(∆A,B) will denote the range of the elementary operator

∆A,B and ker(∆A,B) the kernel of ∆A,B.

Let R(∆A,B) be the norm closure, then R(∆A,B)
w
will denote the weak closure,

and R(∆A,B)
w∗

the ultra-weak closure of the range R(∆A,B).

(3) Let C1(H) be the ideal of trace class operators. The ideal C1(H) admits a

complex valued function tr(T ) which has the characteristic properties of the trace of

matrices. The trace function is defined by tr(T ) =
∑

n

〈Ten, en〉, where (en) is any

complete orthonormal system in H .

(4) As a Banach space, C1(H) may be identified with the conjugate space of the

ideal K(H) of compact operators by means of the linear isometry T 7−→ ΦT , where

ΦT (X) = tr(XT ). Moreover, L(H) is the dual of C1(H). The ultra-weak continuous

linear functionals on L(H) are those of the form ΦT for some T ∈ C1(H), and

the weak continuous linear functionals on L(H) are those of the form ΦT where

T ∈ B(H).

(5) If ϕ is a linear functional on L(H), then ϕ∗, the adjoint of ϕ, is defined by

ϕ∗(X) = ϕ(X∗) for all X ∈ L(H).

(6) Recall that for x, y ∈ H , the operator x ⊗ y ∈ L(H) is defined by (x ⊗ y)z =

〈z, y〉x for all z ∈ H .
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(7) For any subset S of L(H), we denote the polar of S by

S◦ = {Φ ∈ L′(H) : Φ(x) = 0 for all x ∈ S}.

2. The range of the elementary operator ∆A,B

Lemma 2.1. Let S1 and S2 be two subspaces of L(H). Then S◦
1 ⊂ S◦

2 if and

only if S2 ⊂ S1.

P r o o f. This is an easy consequence of the bipolar theorem. �

Theorem 2.2. Let A,B ∈ L(H), then

R(∆A,B)◦ ≃ R(∆A,B)◦ ∩K(H)◦ ⊕ ker(∆B,A) ∩ C1(H).

P r o o f. Let Φ = ΦT + Φ◦ be the canonical decomposition of a continuous

linear functional Φ ∈ L′(H) into a trace form part and a functional vanishing on

K(H) [5]. Then we have Φ ∈ R(∆A,B)◦ if and only if Φ◦,ΦT ∈ R(∆A,B)◦ and we

have ΦT ∈ R(∆A,B)◦ if and only if T ∈ ker(∆B,A) ∩ C1(H).

Indeed, let x, y ∈ H, then we have

Φ(A(x ⊗ y)B) = ΦT (A(x ⊗ y)B) = tr(TAx⊗B∗y) = 〈TAx,B∗y〉

and

Φ(x⊗ y) = ΦT (x⊗ y) = tr(T (x⊗ y)) = 〈Tx, y〉 .

It follows that

〈TAx,B∗y〉 = 〈Tx, y〉 ,

for all x, y ∈ H and hence

ΦT (AXB) = ΦT (X)

for all finite rank operators X . Since the class of finite rank operators is dense in

L(H) relative to the ultra-weak operator topology, it follows that ΦT ∈ R(∆A,B)◦.

This implies that

Φ◦ = Φ − ΦT ∈ R(∆A,B)◦.

Conversely, the preceding computation shows that if BTA = T and T ∈ C1(H), then

ΦT ∈ R(∆A,B)◦. The proof is complete. �
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Corollary 2.3. Let A,B ∈ L(H). Then the following statements are equivalent:

(1) R(∆A,B)
w∗

= L(H).

(2) K(H) ⊂ R(∆A,B).

(3) ker(∆B,A) ∩C1(H) = {0}.

P r o o f. The negation of (1) and (3) is equivalent to the fact that there exists

a nonzero ultraweakly continuous linear form ΦT such that ΦT ∈ R(∆A,B)◦. By

Theorem 2.2 this occurs if and only if R(∆A,B)◦ 6⊂ K(H)◦. It follows from Lemma 2.1

that the last condition is equivalent to K(H) 6⊂ R(∆A,B). �

Corollary 2.4. Let A,B ∈ L(H), then

R(∆A,B) ∩K(H) = R(∆A,B)
w∗

∩K(H).

P r o o f. Setting S := R(∆A,B), we have trivially S
w∗

∩ K(H) ⊃ S ∩ K(H)

where

S ∩K(H) =
⋂

{ker(ψ) ∩K(H) : ψ ∈ L′(H), ψ(S) = 0},

and

S
w∗

∩K(H) =
⋂

{ker(ϕT ) ∩K(H) : T ∈ C1(H), ϕT (S) = 0}.

To establish the converse inclusion, we consider any K ∈ S
w∗

∩K(H) and ϕ ∈ L′(H)

such that ϕ(S) = 0 and prove that ϕ(K) = 0. By Theorem 2.2, the canonical

decomposition ϕ = ϕT +ϕ◦ satisfies ϕT (S) = ϕ◦(S) = 0. Since K ∈ K(H), we have

ϕ◦(K) = 0. On the other hand,

K ∈ S
w∗

∩K(H) =
⋂

{ker(ϕT ) ∩K(H) : T ∈ C1(H), ϕT (S) = 0},

which entails ϕT (K) = 0. Thus indeed ϕ(K) = ϕT (K) + ϕ◦(K) = 0. �

Theorem 2.5. Let A,B ∈ L(H). Then

(1) every finite rank operator in R(∆A,B)
w
∩ ker(∆A∗,B∗) vanishes,

(2) every trace class operator in R(∆A,B)
w∗

∩ ker(∆A∗,B∗) vanishes.

P r o o f. (1) Let T be a finite rank operator in R(∆A,B)
w
∩ ker(∆A∗,B∗), then

T ∗ ∈ ker(∆B,A) ∩ B(H). It follows that ΦT∗ vanishes on the range of ∆B,A. In

particular, ΦT∗(T ) = tr(T ∗T ) = 0, that is T ∗T = 0, thus T = 0.

(2) It suffices to replace B(H) with C1(H) in the above proof. �
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Theorem 2.6. Let A,B ∈ L(H). Then

(1) R(∆A,B)
w

= L(H) if and only if ker(∆B,A) ∩B(H) = {0};

(2) R(∆A,B)
w∗

= L(H) if and only if ker(∆B,A) ∩ C1(H) = {0}.

P r o o f. (1) Suppose that R(∆A,B)
w

= L(H) and T ∈ ker(∆B,A) ∩ B(H). It

follows that T ∗ ∈ R(∆A,B)
w
∩ ker(∆A∗,B∗), hence T = 0 by Theorem 2.5.

Conversely, assume that there exists T ∈ L(H)
∣

∣R(∆A,B)
w
. It follows that there is

an operator S ∈ B(H) such that tr(ST ) 6= 0 and tr(SX) = 0 for each X ∈ R(∆A,B).

Hence, we obtain that S ∈ ker(∆B,A) ∩B(H) and S 6= 0.

(2) It suffices to replace B(H) with C1(H) in the preceding proof.

Remark 2.7. If A,B ∈ L(H) are such that ‖A‖‖B‖ < 1, then Corollary 2.3 and

Theorem 2.6 show that R(∆A,B)
w

= R(∆A,B)
w∗

= L(H).

Theorem 2.8. Let A,B ∈ L(H). Then

1) R(∆B)
w
⊂ R(∆A)

w
if and only if ker(∆A) ∩B(H) ⊂ ker(∆B) ∩B(H);

2) R(∆B)
w∗

⊂ R(∆A)
w∗

if and only if ker(∆A) ∩ C1(H) ⊂ ker(∆B) ∩ C1(H).

P r o o f. (1) Assume that ker(∆A) ∩ B(H) ⊂ ker(∆B) ∩ B(H). Let ΦT be a

weakly continuous linear form that vanishes on R(∆A). Then it is easy to see that

ΦT (AXA−X) = tr[T (AXA−X)] = tr[(ATA− T )X ] = 0

for all X ∈ L(H), hence ATA = T and T ∈ ker(∆A) ∩ B(H) ⊂ ker(∆B) ∩ B(H).

Observe that

ΦT (BXB −X) = tr[T (BXB −X)] = 0,

thus ΦT annihilates R(∆B). It follows that R(∆B)
w
⊂ R(∆A)

w
. For the converse

implication we reverse the above argument.

(2) It suffices to replace B(H) with C1(H) in the preceding proof. �

Remark 2.9. Let a = (A1, A2, . . . , An) and b = (B1, B2, . . . , Bn) be n-tuples

of operators in L(H), let Ra,b denote the generalized elementary operator on L(H)

defined by Ra,b(X) =
n
∑

i=1

AiXBi. Notice that the above results still hold for the

elementary operator Ra,b.
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3. Generalized quasi-adjoint operators

Definition 3.1. Let A ∈ L(H). We say that the operator A is quasi-adjoint if

R(∆A) = R(∆A∗).

Remark 3.2. Let A ∈ L(H), then A is quasi-adjoint if and only if R(∆A) is a

self adjoint subspace of L(H). Equivalently, R(∆A)◦, the annihilator of R(∆A), is a

self adjoint subspace of L′(H) in the sense that Φ ∈ R(∆A)◦ implies Φ∗ ∈ R(∆A)◦.

Theorem 3.3. If A ∈ L(H) the following statements are equivalent:

(1) A is quasi-adjoint.

(2) (i) The element [A] of the Calkin algebra is quasi-adjoint, and

(ii) for T ∈ C1(H), ATA = T implies A∗TA∗ = T .

P r o o f. (1) =⇒ (2). Suppose that A is quasi-adjoint. (i) Let ψ ∈ R(∆[A])
◦. We

define a bounded linear functional Φ on L(H) by Φ(X) = ψ([X ]). It is clear that

Φ ∈ R(∆A)◦ if and only if ψ ∈ R(∆[A])
◦. Since A is quasi-adjoint, it follows from

the above Remark that Φ∗ ∈ R(∆A)◦ and consequently ψ∗ ∈ R(∆[A])
◦. Then [A] is

quasi-adjoint.

(ii) If ATA = T and T ∈ C1(H), then Theorem 2.2 implies that ΦT ∈ R(∆A)◦.

Since A is quasi-adjoint, it follows that (ΦT )∗ = ΦT∗ ∈ R(∆A)◦, from which we get

A∗TA∗ = T .

(2) =⇒ (1) Let Φ ∈ R(∆A)◦. We can write Φ = Φ◦ + ΦT , where Φ◦ ∈ R(∆A)◦ ∩

K(H)◦ and T ∈ ker(∆A) ∩ C1(H). By using (ii) one obtains A∗TA∗ = T , that

is ΦT∗ ∈ R(∆A)◦. It remains to show that Φ∗
◦
∈ R(∆A)◦. Let ϕ be the linear

functional on the Calkin algebra defined by ϕ([X ]) = Φ◦(X). Since Φ◦ vanishes

on K(H), it follows that ϕ is well defined. From (i), [A] is quasi-adjoint, hence

ϕ ∈ R(∆[A])
◦ implies that ϕ∗ ∈ R(∆[A])

◦, that is Φ∗
◦ ∈ R(∆A)◦. Thus we have

shown that Φ∗ = Φ∗
◦

+ ΦT∗ ∈ R(∆A)◦, consequently A is quasi-adjoint. �

Definition 3.4. An operator A ∈ L(H) is called generalized quasi-adjoint if

ATA = T and T ∈ C1(H) implies AT ∗A = T ∗. The set of generalized quasi-adjoint

operators is denoted by Q◦(H).

Theorem 3.5. Let A ∈ L(H). Then

(i) A is generalized quasi-adjoint if and only if R(∆A)
w∗

is self-adjoint;

(ii) Q◦(H), the set of generalized quasi-adjoint operators, is self-adjoint.

P r o o f. (i) R(∆A)
w∗

is self-adjoint if and only if R(∆A)◦ ∩ L′(H)w∗

is self-

adjoint. It follows from Theorem 2.2 that

R(∆A)◦ ≃ R(∆A)◦ ∩K(H)◦ ⊕ ker(∆A) ∩ C1(H).
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Consequently, we get

R(∆A)◦ ∩ L′(H)w∗ ∼= ker(∆A) ∩ C1(H).

(ii) It follows immediately from the definition. �

Example 3.6.

(i) If V is an isometry, in particular if ‖V −1‖‖V ‖ = 1, then V is a generalized

quasi-adjoint operator.

(ii) Every normal operator is generalized quasi-adjoint.

(iii) Every cyclic subnormal operator is generalized quasi-adjoint.

Proposition 3.7. Let A ∈ L(H) be a contraction. Then A is generalized quasi-

adjoint.

P r o o f. The result of [7] guarantees that for every T ∈ C1(H) we get that R(T )

reduces A, and (kerT )⊥ reduces A and the restrictions A
∣

∣R(T ) and A
∣

∣(kerT )⊥

are unitarily equivalent to unitary operators. Put H1 = H = R(T ) ⊕ R(T )
⊥

and

H2 = H = (kerT )⊥⊕ kerT . Then for A : H1 −→ H2 and T : H2 −→ H1, we get the

decompositions

A =

(

A1 0

0 A2

)

, A =

(

A′
1 0

0 A′
2

)

, and T =

(

T1 0

0 0

)

.

The condition ATA = T implies that A1T1A
′
1 = T1. Since A1 and A

′
1 are unitary

operators, it follows that A∗
1T1A

′
1
∗

= T1, or equivalently A
∗TA∗ = T . This completes

the proof. �

Proposition 3.8. Let A ∈ Q◦(H). If H◦ reduces A, then A|H◦ is a generalized

quasi-adjoint operator.

P r o o f. By virtue of the decomposition H = H◦ ⊕H⊥
◦ , we have A = A◦ ⊕ A1.

Suppose that A◦T◦A◦ = T◦ and T◦ ∈ C1(H◦). Define an operator T onH = H◦⊕H
⊥
◦

by T =
(

T◦ 0
0 0

)

, then ATA = T and T ∈ C1(H). Since A is generalized quasi-adjoint,

it follows that AT ∗A = T ∗. Hence one obtains A◦T
∗
◦
A◦ = T ∗

◦
. �

Lemma 3.9. Let A ∈ L(H). Then the following statements are equivalent:

(1) A is generalized quasi-adjoint.

(2) If ATA = T and T ∈ C1(H), then R(T ) and (kerT )⊥ reduce A and A|R(T )

and A|(kerT )⊥ are normal operators.

P r o o f. We omit the proof which may be based entirely on the proof of the well

known Lemma [8]. �
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Theorem 3.10. Let A ∈ L(H). If T ∈ C1(H) is such that T = U |T | is the polar

decomposition of T , then the operator A is generalized quasi-adjoint if and only if

A|T | = |T |A, A|T ∗| = |T ∗|A and ∆A(U) = 0.

P r o o f. Assume A is generalized quasi-adjoint. Let T ∈ C1(H) have the polar

decomposition T = U |T |. If ATA = T , it follows that AT ∗A = T ∗.

Then we have

A|T |2 = AT ∗T = AT ∗ATA = T ∗TA = |T |2A.

Analogously,

A|T ∗|2 = ATT ∗ = ATAT ∗A = TT ∗A = |T ∗|2A,

and by the functional calculus both operators |T | and |T ∗| commute with A. Hence,

we get A|T | = |T |A and A|T ∗| = |T ∗|A.

Moreover, ATA = T implies that (AUA − U)|T | = 0. Consequently, (AUA −

U)|R(T ) = 0, that is ∆A(U)|R(T ) = 0. Since A : kerT −→ kerT , we obtain that

∆A(U) = 0.

Conversely, the conditions A|T | = |T |A and ∆A(U) = 0 imply that ATA = T .

Since A commutes with |T | and |T ∗|, it follows from the Fuglede-Putnam Theorem

that R(T ) and (kerT )⊥ reduce A, and the restrictions A1 = A|R(T ) and A′
1 =

A|(kerT )⊥ are normal operators. Take the following two decompositions of H :

H1 = H = R(T ) ⊕R(T )
⊥

, and H2 = H = kerT⊥ ⊕ kerT.

In terms of these decompositions of H , for A : H2 −→ H1 we can write

A =

(

A1 0

0 A2

)

, A∗ =

(

A′
1
∗

0

0 A′
2
∗

)

and T =

(

T1 0

0 0

)

.

From ATA = T it follows that A1T1A
′
1 = T1. Since A1 and A

′
1 are normal operators,

we get A1T
∗
1A

′
1 = T ∗

1 , or equivalently AT
∗A = T ∗. This completes the proof. �

Proposition 3.11. Let A and B be generalized quasi-adjoint operators. If 1 6∈

σ(A)σ(B), then A⊕B is a generalized quasi-adjoint operator.

P r o o f. Let T =
(

T◦ T1

T2 T3

)

be a trace class operator on H ⊕H . It is easily seen

that (A⊕B)T (A⊕B) = T implies that

AT◦A = T◦, AT1B = T1, BT2A = T2 and BT3B = T3.

Since 1 6∈ σ(A)σ(B), it follows from Rosenblum’s Theorem [9] that the operators

∆A,B and ∆B,A are invertible. Consequently, we get T1 = T2 = 0.

Moreover, A and B are generalized quasi-adjoint operators, hence AT◦A = T◦

implies AT ∗
◦A = T ∗

◦ and BT3B = T3 implies BT
∗
3B = T ∗

3 . Thus (A⊕B)T ∗(A⊕B) =

T ∗. The proof is complete. �
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Proposition 3.12. Let A ∈ L(H). If there exist α, β ∈ C with αβ = 1 and

nonzero vectors f, g ∈ H such that

(i) Af = αf and ‖A∗f‖ 6= ‖αf‖,

(ii) A∗g = βg.

Then A is not a generalized quasi-adjoint operator.

P r o o f. A is generalized quasi-adjoint if and only if R(∆A)
w∗

is self adjoint.

Under the preceding hypothesis, we will show that R(∆A)
w∗

6= R(∆A∗)
w∗

. Suppose

first that A∗f 6= 0. We consider the operator T = g ⊗A∗f . It is easily seen that

〈(AY A− Y )f, g〉 = 0

for all Y ∈ L(H). On the other hand, one obtains that

〈(A∗TA∗ − T )f, g〉 = β(‖A∗f‖2 − ‖αf‖2)‖g‖2.

If A∗TA∗ − T ∈ R(∆A)
w∗

, then there exists a generalized sequence (Xα)α in L(H)

such that

AXαA−Xα −→ A∗TA∗ − T.

This implies that

0 = 〈(AXαA−Xα)f, g〉 −→ 〈(A∗TA∗ − T )f, g〉 = β(‖A∗f‖2 − ‖αf‖2)‖g‖2.

It follows that β(‖A∗f‖2 − ‖αf‖2)‖g‖2 = 0 which is absurd. If A∗f = 0 we consider

the operator T = g ⊗ f . By repeating the same argument we get the result. �

Some open problems

(1) Let (en)n=+∞

n=−∞ be an orthonormal basis forH and let S be the bilateral weighted

shift Sen = ωnen+1 for all n ∈ Z, with nonzero weights ωn. We ask if there exist

necessary and sufficient conditions on the weights of S in order that S be a quasi-

adjoint operator.

(2) Which weighted shifts are generalized quasi-adjoint operators?

(3) Is the set Q◦(H) of generalized quasi-adjoint operators norm closed?

(4) What characterizes compact generalized quasi-adjoint operators?

Acknowledgement. It is our great pleasure to thank the referee for his careful

reading of the paper and for several helpful suggestions.
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