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Abstract. In this paper we give an extension of q-Pfaff-Saalschütz formula by means of
Andrews-Askey integral. Applications of the extension are also given, which include an
extension of q-Chu-Vandermonde convolution formula and some other q-identities.
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1. Introduction and statement of main result

The following is Andrews-Askey integral [1] which can be derived from Ramanu-

jan’s 1ψ1 summation:

(1.1)
∫ d

c

(qt/c, qt/d; q)∞
(at, bt; q)∞

dqt =
d(1 − q)(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞

provided that no zero factors occur in the denominators of the integral.

Andrews-Askey integral is an important formula in basic hypergeometric series.
In [4], the author gives a more general q-integral: If |q| < 1 and no zero factors occur

in the denominators of the integral, then
∫ t

s

(qω/s, qω/t; q)∞Pn(ω, c/a; q)Pm(ω, d/b; q)

(aω, bω; q)∞
dqω(1.2)

=
t(1 − q)(c; q)n(d; q)m(q, tq/s, s/t, abst; q)∞

anbm(as, at, bs, bt; q)∞

×

n
∑

k=0

(q−n, as, at; q)kq
k

(q, c, abst; q)k
3ϕ2

(

bs, bt, q−m

d, abstqk
; q, q

)

,
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where

P0(a, b; q) = 1, Pn(a, b; q) = (a− b)(a− bq) . . . (a− bqn−1), n > 1.

It is obvious that the case m = n = 0 of (1.2) results in (1.1). In this paper we use
(1.2) to derive an extension of the q-Pfaff-Saalschütz formula. The following theorem

is the main result of this paper.

Theorem 1.1. If |q| < 1 and no zero factors occur in the denominators, then

m
∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k
3ϕ2

(

a, b, q−n

cqk, ab/cqn−1
; q, q

)

(1.3)

=
(a, b; q)m(c/a, c/b; q)n

(c; q)m+n(ab/c; q)m(c/ab; q)n

.

Note that there are some important special cases of (1.3). For example, the case

m = 0 of (1.3) results in the q-Pfaff-Saalschütz formula:

(1.4) 3ϕ2

(

a, b, q−n

c, abc−1q1−n
; q, q

)

=
(c/a, c/b; q)n

(c, c/ab; q)n

.

2. Notation and known results

We first recall some definitions, notation and known results from [2] which will
be used for the proof of Theorem 1.1. Throughout this paper, it is supposed that

0 < |q| < 1. The q-shifted factorials are defined as

(2.1) (a; q)0 = 1, (a; q)n =
n−1
∏

k=0

(1 − aqk), (a; q)∞ =
∞
∏

k=0

(1 − aqk).

We also adopt the following compact notation for multiple q-shifted factorials:

(2.2) (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n . . . (am; q)n,

where n is an integer or∞. In 1846, Heine introduced the r+1ϕr basic hypergeometric

series, which is defined by

(2.3) r+1ϕr

(

a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, x

)

=

∞
∑

n=0

(a1, a2, . . . , ar+1; q)nx
n

(q, b1, b2, . . . , br; q)n

.
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The q-Chu-Vandermonde sums are

(2.4) 2ϕ1

(

a, q−n

c
; q, q

)

=
an(c/a; q)n

(c; q)n

and, reversing the order of summation, we have

(2.5) 2ϕ1

(

a, q−n

c
; q, cqn/a

)

=
(c/a; q)n

(c; q)n

.

F.H. Jackson defined the q-integral by [3]

(2.6)
∫ d

0

f(t) dqt = d(1 − q)

∞
∑

n=0

f(dqn)qn

and

(2.7)
∫ d

c

f(t) dqt =

∫ d

0

f(t) dqt−

∫ c

0

f(t) dqt.

3. The proof of theorem 1.1

In this section we use the generalized Andrews-Askey integral (1.2) to prove The-

orem 1.1.

P r o o f. Using the Andrews-Askey integral (1.1) we arrive at

(3.1)
∫ d

c

(qt/c, qt/d; q)∞
(atqn, btqm; q)∞

dqt =
d(1 − q)(q, dq/c, c/d, abcdqm+n; q)∞

(acqn, adqn, bcqm, bdqm; q)∞
.

On the other hand, if we employ the formulas

(at; q)n = (−1)nanq(
n

2
)Pn(t, 1/aqn−1; q),(3.2)

(bt; q)m = (−1)mbmq(
m

2 )Pm(t, 1/bqm−1; q)(3.3)
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and use the generalized Andrews-Askey integral (1.2), we obtain
∫ d

c

(qt/c, qt/d; q)∞
(atqn, btqm; q)∞

dqt =

∫ d

c

(qt/c, qt/d; q)∞(at; q)n(bt; q)m

(at, bt; q)∞
dqt(3.4)

= (−1)n+manbmq(
n

2
)+(m

2
)

×

∫ d

c

(qt/c, qt/d; q)∞Pm(t, a/abqm−1; q)Pn(t, b/baqn−1; q)

(at, bt; q)∞
dqt

= (−1)n+manbmq(
n

2
)+(m

2
)

×
d(1 − q)(a/bqm−1; q)m(b/aqn−1; q)n(q, dq/c, c/d, abcd; q)∞

ambn(ac, ad, bc, bd; q)∞

×
m

∑

k=0

(q−m, ac, ad; q)kq
k

(q, a/bqm−1, abcd; q)k
3ϕ2

(

bc, bd, q−n

b/aqn−1, abcdqk
; q, q

)

.

Substituting the relations

(−1)m(b/a)mq(
m

2
)(a/bqm−1; q)m = (b/a; q)m,

and
(−1)n(a/b)nq(

n

2)(b/aqn−1; q)n = (a/b; q)n

into (3.4) we obtain
∫ d

c

(qt/c, qt/d; q)∞
(atqn, btqm; q)∞

dqt(3.5)

=
d(1 − q)(b/a; q)m(a/b; q)n(q, dq/c, c/d, abcd; q)∞

(ac, ad, bc, bd; q)∞

×
m

∑

k=0

(q−m, ac, ad; q)kq
k

(q, a/bqm−1, abcd; q)k
3ϕ2

(

bc, bd, q−n

b/aqn−1, abcdqk
; q, q

)

.

Combining (3.1) and (3.5) yields

d(1 − q)(b/a; q)m(a/b; q)n(q, dq/c, c/d, abcd; q)∞
(ac, ad, bc, bd; q)∞

(3.6)

×

m
∑

k=0

(q−m, ac, ad; q)kq
k

(q, a/bqm−1, abcd; q)k
3ϕ2

(

bc, bd, q−n

b/aqn−1, abcdqk
; q, q

)

=
d(1 − q)(q, dq/c, c/d, abcdqm+n; q)∞

(acqn, adqn, bcqm, bdqm; q)∞
.

Replacing bc, bd and abcd by a, b and c, respectively, and making simple rearrange-

ments, we have (1.3). �

Letting a→ ∞, a→ 0 in (1.3), respectively, we obtain the following extensions of
the q-Chu-Vandermonde convolution formula.
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Corollary 3.1. We have

(3.7)
m

∑

k=0

(q−m, c/b; q)kq
k

(q, c, ; q)k
2ϕ1

(

b, q−n

cqk
; q,

cqn

b

)

=
(c

b

)m (b; q)m(c/b; q)n

(c; q)m+n

and

(3.8)
m

∑

k=0

(q−m, c/b; q)k

(q, c, ; q)k

(bqm)k
2ϕ1

(

b, q−n

cqk
; q, q

)

= bn
(b; q)m(c/b; q)n

(c; q)m+n

.

It is easy to see that the case m = 0 or n = 0 in (3.7) or (3.8) results in the

q-Chu-Vandermonde convolution formula.

4. Some applications

In this section we give some q-identities as applications of (1.3). First we give the
following q-identity.

Theorem 4.1. For any integer n > 1 we have

(4.1) 3ϕ2

(

a, b, q−n

c, abc−1q2−n
; q, q

)

=
{

1 −
(1 − a)(1 − b)

(1 − cqn−1)(1 − abq/c)

} (c/a, c/b; q)n−1

(c, c/ab; q)n−1

.

P r o o f. Let m = 1 in (1.3) to get

(4.2)

3ϕ2

(

a, b, q−n

c, ab/cqn−1
; q, q

)

+
q(1 − q−1)(1 − c/a)(1 − c/b)

(1 − q)(1 − c)(1 − c/ab)
3ϕ2

(

a, b, q−n

cq, ab/cqn−1
; q, q

)

=
(1 − a)(1 − b)(c/a, c/b; q)n

(1 − ab/c)(c; q)n+1(c/ab; q)n

.

Substituting the q-Pfaff-Saalschütz formula (1.4) on the left-hand side of (4.2) and

making some simple rearrangements, we have

(4.3) 3ϕ2

(

a, b, q−n

cq, abc−1q1−n
; q, q

)

=
{

1 −
(1 − a)(1 − b)

(1 − cqn)(1 − ab/c)

}(cq/a, cq/b; q)n−1

(cq, cq/ab; q)n−1

.

After letting cq = c in (4.3), we get (4.1). �
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Corollary 4.2. For any integer n > 1 we have

(4.4) 2ϕ1

(

b, q−n

c
; q,

cqn−1

b

)

=
(

1 −
c− bc

bq − bcqn

) (c/b; q)n−1

(c; q)n−1

.

P r o o f. Letting a→ ∞ in (4.1), we obtain (4.4). �

Similarly, if we let m = 2, 3, . . ., in (1.3), we can get some more identities like
(4.1). Then we give another kind of a q-identity.

Theorem 4.3. For any integer m > 1, we have

m
∑

k=0

(q−m, a, b; q)k

(q, c, ab/cqm−1; q)k

·
qk

1 − cqk
(4.5)

=
{

1 −
(1 − a)(1 − b)

(1 − cqm)(1 − ab/c)

} (c/a, c/b; q)m−1

(c; q)m(c/ab; q)m−1

.

P r o o f. Let n = 1 in (1.3) to get

m
∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k
3ϕ2

(

a, b, q−1

cqk, ab/c
; q, q

)

=

m
∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k

{

1 +
q(1 − q−1)(1 − a)(1 − b)

(1 − q)(1 − ab/c)(1 − cqk)

}

=

m
∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k

−
(1 − a)(1 − b)

(1 − ab/c)

m
∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k

·
qk

1 − cqk

=
(1 − c/a)(1 − c/b)(a, b; q)m

(1 − c/ab)(c; q)m+1(ab/c; q)m

.

Hence, we have

(1 − a)(1 − b)

(1 − ab/c)

m
∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k

·
qk

1 − cqk
(4.6)

=
m

∑

k=0

(q−m, c/a, c/b; q)kq
k

(q, c, c/abqm−1; q)k

−
(1 − c/a)(1 − c/b)(a, b; q)m

(1 − c/ab)(c; q)m+1(ab/c; q)m

.

We use the q-Pfaff-Saalschütz formula (1.4) in (4.6) with n = m, a = c/a and b = c/b.
After simple rearrangements, we have

m
∑

k=0

(q−m, c/a, c/b; q)k

(q, c, c/abqm−1; q)k

·
qk

1 − cqk
(4.7)

=
{

1 −
(1 − c/a)(1 − c/b)

(1 − cqm)(1 − c/ab)

} (a, b; q)m−1

(c; q)m(ab/c; q)m−1

,

which is equivalent to (4.5). �

1136



Corollary 4.4. For any integer m > 1 we have

(4.8)
m

∑

k=0

(q−m, b; q)k

(q; q)k(c; q)k+1

(cqm

b

)k

=
(

1 −
c− bc

b− bcqm

) (c/b; q)m−1

(c; q)m

,

and

(4.9)
m

∑

k=0

(q−m, b; q)k

(q, c; q)k

·
qk

1 − cqk
=

(

1 −
1 − b

1 − cqm

) (c/b; q)m−1

(c; q)m

.

P r o o f. Letting a → ∞, or a → 0 in (4.5), we obtain, respectively, (4.8) and
(4.9). �
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