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Abstract. Let ϕ and ψ be holomorphic self-maps of the unit disk, and denote by Cϕ, Cψ
the induced composition operators. This paper gives some simple estimates of the essential
norm for the difference of composition operators Cϕ−Cψ from Bloch spaces to Bloch spaces
in the unit disk. Compactness of the difference is also characterized.
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1. Introduction

Let D be the unit disk in the complex plane. The algebra of all holomorphic

functions with domain D will be denoted by H(D). Let S(D) be the set of analytic

self-maps of D. Every self-map ϕ induces the composition operator Cϕ defined by

Cϕf = f ◦ ϕ for f ∈ H(D).

We recall that the Bloch space B consists of all f ∈ H(D) such that

‖f‖B = sup
z∈D

(1 − |z|2)|f ′(z)| <∞;

then ‖ · ‖B is a complete semi-norm on B, which is Möbius invariant.
It is known that B is a Banach space under the norm

‖f‖ = |f(0)| + ‖f‖B.

The second author was partially supported by the National Natural Science Foundation
of China (Grand Nos. 10971153, 10671141).
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The essential norm of a continuous linear operator T is the distance from T to the

compact operators, that is,

‖T ‖e = inf{‖T −K‖ : K is compact}.

Notice that ‖T ‖e = 0 if and only if T is compact, so the estimate on ‖T ‖e leads to
conditions for T to be compact.

Much effort has been expended on characterizing those analytic maps which induce

bounded or compact composition operators. Readers interested in this topic can be

referred to the books [22] by Shapiro and [3] by Cowen and MacCluer, which are

excellent sources for the development of the theory of composition operators up to

the middle of the last decade, and the recent papers [4], [16], [26], [27], [28], [29], [30]

and others.

In the past few years, many authors have been interested in studying the mapping

properties of the difference of two composition operators, that is, an operator of the

form

T = Cϕ − Cψ .

The primary motivation for this has been the desire to understand the topological

structure of the whole set of composition operators acting on a given function space.

When X is a Banach space of analytic functions, we write C(X ) for the space of

composition operators on X under the operator norm topology. In 2005, Moorhouse
[18] answered the question of compact difference for composition operators acting

on the Bergman space A2
α, α > −1, and gave a partial answer to the component

structure of C(A2
α). Most papers in this area have focused on the classical reflexive

spaces, however, some classical non-reflexive spaces have also been discussed lately

in the unit disk D in the complex plane. Hosokawa and Ohno, [10] in 2006, and [11]

in 2007, discussed the topological structures of the sets of composition operators and

gave a characterization of compact difference on the Bloch space and little Bloch

space in the unit disk.

In 2008, Fang and Zhou [6] also gave a characterization of compact difference

between the Bloch space and the set of all bounded analytic functions on the unit

polydisk. In 2001, MacCluer and co-authors [15] used the pseudo-hyperbolic metric

to discuss the topological components of the set of composition operators acting on

H∞(D). They provided a geometric condition under which two composition opera-

tors with non-compact difference lie in the same component. In 2005, Hosokawa and

co-authors [9] continued this investigation. They studied properties of the topological

space of weighted composition operators on the space of bounded analytic functions

on the open unit disk in the uniform operator topology. These results were extended

to the setting of H∞(BN ) by Toews [24] in 2004, and independently by Gorkin and
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co-authors [8] in 2003, and to the setting of H∞(DN ) by Fang and Zhou [5] in 2008,

where BN is the unit ball, D
N is the unit polydisk. In 2008, Bonet and co-authors [2]

discussed the compact difference for the composition operator on weighted Banach

spaces of holomorphic functions in the unit disk, which also were extended to the

unit polydisk by Wolf in [25] in 2008. The case of weighted composition operators

on weighted Banach spaces of holomorphic functions in the unit disk was treated by

Lindström and Wolf in [13] in 2008.

Building on this foundation, the present paper continues this line of research, and

gives some simple estimates of the essential norm for the difference of composition

operators acting on the Bloch space in the unit disk. By way of application, a

characterization of compact difference is given.

2. Notation and background

For a ∈ D, the involution ϕa which interchanges the origin and the point a, is

defined by

ϕa(z) =
a− z

1 − az
.

For z, w in D, the pseudo-hyperbolic distance between z and w is given by

̺(z, w) = |ϕz(w)| =
∣

∣

∣

z − w

1 − zw

∣

∣

∣
,

and the hyperbolic metric is given by

β(z, w) = inf
γ

∫

γ

| dξ|
1 − |ξ|2 =

1

2
ln

1 + ̺(z, w)

1 − ̺(z, w)
,

where γ is any piecewise smooth curve in D from z to w.

It is well known that

1 − ̺2(z, w) =
(1 − |z|2)(1 − |w|2)

|1 − zw|2 .

For ϕ ∈ S(D), the Schwarz-Pick lemma shows that ̺(ϕ(z), ϕ(w)) 6 ̺(z, w), and

if equality holds for some z 6= w, then ϕ is an automorphism of the disk. It is also

well known that for ϕ ∈ S(D), Cϕ is always bounded on B.
The Schwarz-Pick type derivative ϕ# of ϕ is defined by

ϕ#(z) =
1 − |z|2

1 − |ϕ(z)|2 ϕ
′(z).
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It follows from the Schwarz-Pick lemma that

(2.1) |ϕ#(z)| 6 1

for all z ∈ D.

For z, w ∈ D, define

♭(z, w) = sup
‖f‖B61

|(1 − |z|2)f ′(z) − (1 − |w|2)f ′(w)|.

It follows from Proposition 2.2 in [11] that

(2.2) ̺2(z, w) 6 ♭(z, w) 6 20̺(z, w)

for any z, w ∈ D.

From the definition of Bloch space, it is easy to check the next lemma by adapting

some integral estimates.

Lemma 2.1. If f ∈ B, then

|f(z)| 6

(

1 +
1

2
ln

4

1 − |z|2
)

‖f‖

for any z ∈ D.

The following lemma (i.e. Montel’s theorem) will be important in the sequel. The

proof is so elementary that we omit it here.

Lemma 2.2. Suppose that {fk} is a bounded sequence in B. Then there exists a
subsequence {fks

} of {fk} which converges uniformly on compact subsets of D to a
holomorphic function f ∈ B.

Lemma 2.3. Let ϕ ∈ S(D) and ‖ϕ‖∞ < 1. Then Cϕ is a compact operator from

B to B.

P r o o f. For ϕ ∈ S(D) and ‖ϕ‖∞ < 1 there exists an r > 0 such that ‖ϕ‖∞ <

r < 1. So for any z ∈ D we have |ϕ(z)| < r. For a sequence {fj} ⊂ B with ‖fj‖ 6 M

it follows from (2.1) that

|(Cϕfj)′(z)|(1 − |z|2) = |f ′
j(ϕ(z))ϕ′(z)|(1 − |z|2)

= |f ′
j(ϕ(z))|(1 − |ϕ(z)|2|ϕ#(z)|

6 ‖fj‖ 6 M.
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By Lemma 2.2 there exists a subsequence {fjs} of {fj} which converges uniformly
on compact subsets of D to a holomorphic function f ∈ B, and f ′

ks
(z) also converge

uniformly on compact subsets of D to the holomorphic function f ′(z). So if s is large

enough, for any ε > 0 and w ∈ E = {rz : z ∈ D} ⊂ D we have

|f ′
js

(w) − f ′(w)| < ε.

So

‖Cϕfjs − Cϕf‖ = sup
z∈D

(1 − |z|2)|f ′
js

(ϕ(z))ϕ′(z) − f ′(ϕ(z))ϕ′(z)|

+ |fjs(ϕ(0)) − f(ϕ(0))|

= sup
z∈D

1 − |z|2
1 − |ϕ(z)|2 |ϕ

′(z)|(1 − |ϕ(z)|2)|f ′
js

(ϕ(z)) − f ′(ϕ(z))|

+ |fjs(ϕ(0)) − f(ϕ(0))|
6 sup

z∈D

|f ′
js

(ϕ(z)) − f ′(ϕ(z))| + |fjs(ϕ(0)) − f(ϕ(0))|

6 sup
w∈E

|f ′
js

(w) − f ′(w)| + |fjs(ϕ(0)) − f(ϕ(0))| → 0,

as s→ ∞. This implies that Cϕ is a compact operator on B. �

The following lemma is due to [17].

Lemma 2.4. Let ϕ ∈ S(D). The essential norm of Cϕ : B → B is

‖Cϕ‖e = lim
s→1

sup
|ϕ(z)|>s

|ϕ#(z)|.

Remark 1. This lemma implies that Cϕ is compact if and only if ϕ
#(z) → 0

whenever |ϕ(z)| → 1.

Remark 2. From the definition of the essential norm it is clear that if Cϕ or Cψ

is a compact operator, then ‖Cϕ − Cψ‖e = ‖Cψ‖e or ‖Cϕ‖e. In this case, Lemma 2.4
can be used to give an estimate of ‖Cϕ − Cψ‖e. So, throughout the remainder of
this paper, we assume that neither Cϕ nor Cψ is a compact operator. By Lemma 2.3

we may assume that ‖ϕ‖∞ = 1 and ‖ψ‖∞ = 1.
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Lemma 2.5. For ϕ, ψ : D → D we have

(2.3) |ϕ#(z) − ψ#(z)| 6
10

r
sup{̺(ϕ(w), ψ(w)) : ̺(z, w) 6 r}

for 0 < r < 1.

P r o o f. Let ϕw(z) = (w − z)/(1 − wz) be an automorphism of the disk. For

any z, z′, w, w′ ∈ D, by the conformal invariance of pseudo-hyperbolic distance, we

have
∣

∣

∣

ϕw(z) − ϕw(z′)

1 − ϕw(z′)ϕw(z)

∣

∣

∣
= ̺(ϕw(z), ϕw(z′)) = ̺(z, z′),

so

(2.4) |ϕw(z) − ϕw(z′)| 6 2̺(z, z′).

For fixed z, denote f(w) = ϕw(z). Then ∂f/∂w(w) = 1/(1 − wz) and

∂f

∂w
(w) =

(w − z)z

(1 − wz)2
=
zϕw(z)

1 − wz
.

Consequently,

|∇f(w)| =

√

∣

∣

∣

∂f

∂w
(w)

∣

∣

∣

2

+
∣

∣

∣

∂f

∂w
(w)

∣

∣

∣

2

6
2

1 − |w| 6
4

1 − |w|2 .

Let γ be any piecewise smooth curve in D from w to w′, and γ(0) = w′, γ(1) = w.

Then

|ϕw(z) − ϕw′(z)| = |f(w) − f(w′)| = |f(γ(1)) − f(γ(0))|

6

∫ 1

0

|(f ◦ γ)′(t)| dt =

∫ 1

0

|∇f(γ(t))||γ′(t)| dt =

∫

γ

|∇f(ξ)|| dξ|

6 4

∫

γ

| dξ|
1 − |ξ|2 .

So

(2.5) |ϕw(z) − ϕw′(z)| 6 4 inf
γ

∫

γ

| dξ|
1 − |ξ|2 = 2 ln

1 + ̺(w,w′)

1 − ̺(w,w′)
.

If x = ̺(w,w′) < 1
2 , it is clear that F (x) = ln (1 + x)/(1 − x) − 4x is a decreasing

function and F (0) = 0. So we have ln (1 + x)/(1 − x) < 4x. It follows from (2.5)

that

(2.6) |ϕw(z) − ϕw′(z)| 6 8̺(w,w′).
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If x = ̺(w,w′) > 1
2 , then we have

(2.7) |ϕw(z) − ϕw′(z)| 6 2 6 4̺(w,w′).

Combining (2.6) and (2.7), we obtain

(2.8) |ϕw(z) − ϕw′(z)| 6 8̺(w,w′).

Taken together (2.8) with (2.4) and using the triangle inequality, we have

|ϕw(z) − ϕw′(z′)| 6 |ϕw(z) − ϕw(z′)| + |ϕw(z′) − ϕw′(z′)|(2.9)

6 2̺(z, z′) + 8̺(w,w′).

Note that for z ∈ D, the derivative of ϕϕ(z) ◦ ϕ ◦ ϕz at the origin equals ϕ#(z).

Therefore, if r ∈ (0, 1), the Cauchy integral formula for derivatives yields the repre-

sentation

ϕ#(z) =
1

2πi

∫

|ζ|=r

ϕϕ(z) ◦ ϕ ◦ ϕz(ζ)
ζ2

dζ.

An analogous formula holds for ψ#(z). Now we can apply (2.9) to get the estimates

|(ϕϕ(z) ◦ ϕ ◦ ϕz)(ζ) − (ϕψ(z) ◦ ψ ◦ ϕz)(ζ)|
6 2̺(ϕ(ϕz(ζ)), ψ(ϕz(ζ))) + 8̺(ϕ(z), ψ(z)).

As ζ traverses the set {|ζ| = r}, we can easily prove that the point w = ϕz(ζ) runs

through the pseudo-hyperbolic circle ̺(z, w) = r by the Schwarz-Pick lemma. That

is, for z ∈ D, {w ∈ D : ̺(z, w) = r} = {w = ϕz(ζ) : |ζ| = r}. Let

S = sup{̺(ϕ(w), ψ(w)) : ̺(z, w) 6 r}.

We arrive at the estimate

|ϕ#(z) − ψ#(z)| 6
10

2π

∫

|ζ|=r

S

r2
| dζ| =

10S

r
,

which completes the proof of this lemma. �
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Lemma 2.6. For fixed r ∈ (0, 1), take a positive number δ ∈ (r, 1). Denote

Eδ = {z ∈ D : |ϕ(z)| > δ}, Tr,δ,w = {z ∈ Eδ : ̺(z, w) 6 r}, and C(δ) = inf{|ϕ(w)| :
z ∈ Tr,δ,w}. If z ∈ Eδ and z ∈ Tr,δ,w, then w ∈ EC(δ) and lim

δ→1
C(δ) = 1.

P r o o f. For any z ∈ Eδ and z ∈ Tr,δ,w, by the Schwarz-Pick lemma, we know

that ̺(ϕ(z), ϕ(w)) 6 ̺(z, w) 6 r. So

∣

∣

∣

ϕ(z) − ϕ(w)

1 − ϕ(z)ϕ(w)

∣

∣

∣

2

6 r2.

Consequently,

|ϕ(z)|2 + |ϕ(w)|2 − 2 Reϕ(z)ϕ(w) 6 r2(1 + |ϕ(z)|2|ϕ(w)|2 − 2 Reϕ(z)ϕ(w)).

By 1 > |ϕ(z)|2 > δ2 > r2 we get

δ2 − r2 + (1 − r2)|ϕ(w)|2 − 2(1 − r2)|ϕ(w)| < 0.

So a direct calculation shows that

|ϕ(w)| > (1 − r2) −
√

(1 − r2)(1 − δ2)

1 − r2
.

It is easy to check that

C(δ) =
(1 − r2) −

√

(1 − r2)(1 − δ2)

1 − r2

and lim
δ→1

C(δ) = 1. It is obvious that w ∈ EC(δ). This completes the proof of this

lemma. �

With a little calculation, we can get the following lemma.

Lemma 2.7. Suppose f ∈ B and ‖f‖B 6 1. Then

‖(Cϕ − Cψ)f‖B 6 sup
‖z‖61

{|ϕ#(z) − ψ#(z)| + |ϕ#(z)|♭(ϕ(z), ψ(z))}.

The following lemma comes from [17].
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Lemma 2.8. Let Kmf(z) = f((m− 1)m−1z), then Km has the following prop-

erties:

(a) Km is a compact operator on B.
(b) For every f ∈ B, (I −Km)f tends to 0 uniformly on compact subsets of the

unit disk as m → ∞, so [(I −Km)f ]′(z) also tends to 0 on compact subsets of

the unit disk.

3. Main theorem

In 2007, Hosokawa and Ohno [11] showed that Cϕ − Cψ is compact if and only

if (i) ϕ#(z)̺(ϕ(z), ψ(z)) → 0 whenever |ϕ(z)| → 1, (ii) ψ#(z)̺(ϕ(z), ψ(z)) → 0

whenever |ψ(z)| → 1, (iii) ϕ#(z) − ψ#(z) → 0 whenever |ϕ(z)ψ(z)| → 1.

Before explaining our main result we need to fix some notation.

For δ > 0, set

E(1)
δ

= {z ∈ D : |ϕ(z)| > δ},
E(2)

δ
= {z ∈ D : |ψ(z)| > δ}

and

Eδ = {z ∈ D : max(|ϕ(z)|, |ψ(z)|) > δ}.

It is clear that Eδ = E(1)
δ

∪ E(2)
δ
.

Denote Fδ = D−Eδ. χE(i)
δ

(z) is a characteristic function depending on E(i)
δ
defined

by

χ
E

(i)
δ

(z) =

{

1, z ∈ E(i)
δ
,

0, z /∈ E(i)
δ
,

i = 1, 2.

Theorem 3.1. Suppose ϕ, ψ : D → D and neither Cϕ nor Cψ : B → B is a
compact operator, then

1

2
lim
δ→1

sup
z∈Eδ

(1 − ̺2(ϕ(z), ψ(z)))(χ
E

(1)
δ

(z)|ψ#(z)| + χ
E

(2)
δ

(z)|ϕ#(z)|)̺(ϕ(z), ψ(z))

6 ‖Cϕ − Cψ‖e 6 80 lim
δ→1

sup
z∈Eδ

̺(ϕ(z), ψ(z)).

P r o o f. We begin by proving the upper estimate. For fixed m, we know CϕKm

and CψKm are compact operators on B by Lemma 2.8. Therefore

‖Cϕ − Cψ‖e 6 ‖Cϕ − Cψ − CϕKm + CψKm‖B.
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Hence for 0 < δ < 1,

‖Cϕ − Cψ − CϕKm + CψKm‖B
= sup

‖f‖61

‖(Cϕ − Cψ − CϕKm + CψKm)f‖B

6 sup
‖f‖61

sup
z∈Eδ

(1 − |z|2)|[(I −Km)f ]′(ϕ(z))ϕ′(z) − [(I −Km)f ]′(ψ(z))ψ′(z)|

+ sup
‖f‖61

sup
z∈Eδ

(1 − |z|2)|f ′(ϕ(z))ϕ′(z) − f ′(ψ(z))ψ′(z)

−
(

1 − 1

m

)

f ′
((

1 − 1

m

)

ϕ(z)
)

ϕ′(z) +
(

1 − 1

m

)

f ′
((

1 − 1

m

)

ψ(z)
)

ψ′(z)|.

By virtue of (2.1) and (b) in Lemma 2.8 we can choose m large enough such that the

first term on the right hand side is less than any given ε, and denoting the second

term by I we have

I 6 sup
‖f‖61

sup
z∈Eδ

{

(1 − |z|2)|f ′(ϕ(z))ϕ′(z) − f ′(ψ(z))ψ′(z)|

+ (1 − |z|2)
∣

∣

∣

(

1 − 1

m

)

f ′
((

1 − 1

m

)

ϕ(z)
)

ϕ′(z)

−
(

1 − 1

m

)

f ′
(

(1 − 1

m
)ψ(z)

)

ψ′(z)
∣

∣

∣

}

6 sup
‖f‖61

sup
z∈Eδ

{|ϕ#(z) − ψ#(z)| + |ϕ#(z)|♭(ϕ(z), ψ(z))

+
∣

∣

∣

[(

1 − 1

m
)ϕ

]#

(z) −
[(

1 − 1

m

)

ψ
]#

(z)
∣

∣

∣

+
∣

∣

∣

[(

1 − 1

m

)

ϕ
]#

(z)
∣

∣

∣
♭
((

1 − 1

m

)

ϕ(z),
(

1 − 1

m

)

ψ(z))
}

6 sup
z∈Eδ

{

20 sup
̺(z,w)6 1

2

̺(ϕ(w), ψ(w)) + 20̺(ϕ(z), ψ(z))

+ 20 sup
̺(z,w)61

2

̺
((

1 − 1

m

)

ϕ(w),
(

1 − 1

m

)

ψ(w))

+ 20̺
((

1 − 1

m

)

ϕ(z),
(

1 − 1

m

)

ψ(z)
)}

6 sup
w∈EC(δ)

40̺(ϕ(w), ψ(w)) + sup
z∈Eδ

40̺(ϕ(z), ψ(z))

6 40 sup
w∈EC(δ)

̺(ϕ(w), ψ(w)) + 40 sup
w∈EC(δ)

̺(ϕ(w), ψ(w)

= 80 sup
w∈EC(δ)

̺(ϕ(w), ψ(w)).

The second inequality follows by Lemma 2.7; the third inequality follows by

Lemma 2.5 and (2); the fourth inequality follows by Lemma 2.6 and

̺
((

1 − 1

m

)

ϕ(w),
(

1 − 1

m

)

ψ(w)
)

6 ̺(ϕ(w), ψ(w)),
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where C(δ) = 1 − 2
3

√
3
√

1 − δ2 and lim
δ→1

C(δ) = 1. So letting m→ ∞, δ → 1, we get

the upper estimate.

Now we turn to the lower estimate. Define

a =
1

2
lim
δ→1

sup
z∈Eδ

(1 − ̺2(ϕ(z), ψ(z)))

× (χ
E

(1)
δ

(z)|ψ#(z)| + χ
E

(2)
δ

(z)|ϕ#(z)|)̺(ϕ(z), ψ(z)).

Let δm = 1 − 1/m, then δm → 1 as m→ ∞.
Recall that in the conditions of the theorem we assume that neither Cϕ or Cψ is

a compact operator. So ‖ϕ‖∞ = 1 and ‖ψ‖∞ = 1 by Lemma 2.3, hence for every m,

Eδm
6= ∅. So there exists zm ∈ Eδm

such that

a =
1

2
lim
m→∞

(1 − ̺2(ϕ(zm), ψ(zm)))

× (χ
E

(1)
δ

(zm)|ψ#(zm)| + χ
E

(2)
δ

(zm)|ϕ#(zm)|)̺(ϕ(zm), ψ(zm).

Since zm ∈ Eδm
implies |ϕ(zm)| > δm or |ψ(zm)| > δm, without loss of generality we

assume |ϕ(zm)| → 1. Setting

fm(z) = ϕ2
ϕ(zm)(z) − ϕ2(zm),

it is obvious that {fm} converges to zero uniformly on compact subsets of D as
m → ∞ and ‖fm‖ 6 2 for any m = 1, 2, . . .. So the compactness of K implies that

‖Kfm‖ → 0 as m→ ∞, and it follows that

‖Cϕ − Cψ −K‖B >
1

2
lim sup
m→∞

‖(Cϕ − Cψ −K)fm‖B

>
1

2
lim sup
m→∞

(‖(Cϕ − Cψ)fm‖B − ‖Kfm‖B)

=
1

2
lim sup
m→∞

‖(Cϕ − Cψ)fm‖B

=
1

2
lim sup
m→∞

sup
z∈D

(1 − |z|2)|f ′
m(ϕ(z))ϕ′(z) − f ′

m(ψ(z))ψ′(z)|

>
1

2
lim sup
m→∞

(1 − |zm|2)|f ′
m(ϕ(zm))ϕ′(zm) − f ′

m(ψ(zm))ψ′(zm)|

= lim sup
m→∞

(1 − |zm|2)|ϕϕ(zm)(ϕ(zm))ϕ′
ϕ(zm)(ϕ(zm))ϕ′(zm)

− ϕϕ(zm)(ψ(zm))ϕ′
ϕ(zm)(ψ(zm))ψ′(zm)|

= lim sup
m→∞

(1 − |zm|2)
∣

∣

∣

ϕ(zm) − ψ(zm)

1 − ϕ(zm)ψ(zm)

∣

∣

∣

1 − |ϕ(zm)|2
|1 − ϕ(zm)ψ(zm)|2

|ψ′(zm)|

= lim sup
m→∞

(1 − ̺2(ϕ(zm), ψ(zm))|ψ#(zm)|̺(ϕ(zm), ψ(zm)).
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Similarly, if |ψ(zm)| → 1, then let

gm(z) = ϕ2
ψ(zm)(z) − ψ2(zm).

We get

‖Cϕ − Cψ −K‖B > lim sup
m→∞

(1 − ̺2(ϕ(zm), ψ(zm))|ϕ#(zm)|̺(ϕ(zm), ψ(zm)).

So by the above argument we have the lower estimate:

‖Cϕ − Cψ −K‖B
>

1

2
lim
m→∞

(1 − ̺2(ϕ(zm), ψ(zm)))

×
(

χ
E

(1)
δ

(zm)|ψ#(zm)| + χ
E

(2)
δ

(zm)|ϕ#(zm)|
)

̺(ϕ(zm), ψ(zm)) =

= lim
δ→0

sup
z∈Eδ

(1 − ̺2(ϕ(z), ψ(z)))

×
(

χ
E

(1)
δ

(z)|ψ#(z)| + χ
E

(2)
δ

(z)|ϕ#(z)|
)

̺(ϕ(z), ψ(z)).

The proof is complete. �

Remark 3. Concerning the lower estimate, take a sequence {zm} ⊂ E
(1)
δ \ E(2)

δ ,

that is, |ϕ(zm)| → 1| but |ψ(zm)| → t < 1. Then ̺(ϕ(zm), ψ(zm)) → 1, and we have

(1 − ̺2(ϕ(zm), ψ(zm)))̺(ϕ(zm), ψ(zm))|ϕ#(zm)| → 0.

Similarly, if {zm} ⊂ E
(2)
δ \ E(1)

δ , then

(1 − ̺2(ϕ(zm), ψ(zm)))̺(ϕ(zm), ψ(zm))|ϕ#(zm)| → 0.

Thus the supremum of the lower estimate of Theorem 3.1 should be taken over

E
(1)
δ ∩E(2)

δ , hence χE(i)
δ

can be removed. Consequently, we have a better estimate:

lim
δ→1

sup
z∈E

(1)
δ

∩E
(2)
δ

(1 − ̺2(ϕ(z), ψ(z)))max{|ϕ#(z)|, |ψ#(z)|}

6 ‖Cϕ − Cψ‖e 6 80 lim
δ→1

sup
z∈Eδ

̺(ϕ(z), ψ(z)).
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Corollary 3.2. For ϕ, ψ ∈ S(D), and neither Cϕ nor Cψ being a compact operator

we have

(a) if lim
δ→1

sup
z∈Eδ

̺(ϕ(z), ψ(z)) = 0, then Cϕ − Cψ is a compact operator on B;

(b) if Cϕ − Cψ is a compact operator on B, then

lim
δ→1

sup
z∈Eδ

(1 − ̺2(ϕ(z), ψ(z)))(χ
E

(1)
δ

(z)|ψ#(z)|

+ χ
E

(2)
δ

(z)|ϕ#(z)|)̺(ϕ(z), ψ(z)) = 0;

(c) if Cϕ − Cψ is a compact operator on B, then

lim
δ→1

sup
z∈E

(1)
δ

∩E
(2)
δ

(1 − ̺2(ϕ(z), ψ(z)))max{|ϕ#(z)|, |ψ#(z)|} = 0.
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