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Abstract. The nonlinear integro-differential system associated with the penetration of
a magnetic field into a substance is considered. The asymptotic behavior as ¢ — oo of
solutions for two initial-boundary value problems are studied. The problem with non-zero
conditions on one side of the lateral boundary is discussed. The problem with homogeneous
boundary conditions is studied too. The rates of convergence are given. Results presented
show the difference between stabilization characters of solutions of these two cases.
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1. INTRODUCTION

Integro-differential equations arise in the study of various problems in physics,
chemistry, technology, economics etc. (see, for example, [1]-[4], [6]-[8], [10]-][12],
[19], [26], [27], [29]). One kind of integro-differential systems arises in mathematical
modelling of the process of penetrating of a magnetic field into a substance. Pene-
trating into a material a variable magnetic field induces in it a variable electric field
which causes the appearance of currents. The currents lead to the heating of the
material and increasing of its temperature. For quasistationary approximation the
corresponding system of Maxwell’s equations has the form [20]

0H
(11) W = —I'Ot(l/m rot I{)7
00 5
(1.2) vy = U (rot H)=,
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where H = (Hq, Ha, H3) is the vector of the magnetic field, € is temperature, ¢, and
Vm characterize the heat capacity and the electroconductivity of the substance.

If ¢, and vy, have the form ¢, = ¢,(0), Vi = v (0), then the system (1.1)—(1.2)
can be rewritten in the following form [9]:

t
(1.3) oH = —rot {a</ |rotH|2dT> rot H],
ot o

where the function a = a(S) is defined for S € [0, 00).
If the magnetic field has the form H = (0,U,V) and U = U(z,t), V = V(x,t),
then we have

rot(a(S)rot H) = (07 —%(G(S)g—g), —(,% (a(s)g—‘x/))

where

(1.4) S(a,t) = /Ot {(Z_Z)Q + (?9_‘;)1 dr

Therefore, we obtain the following system of nonlinear integro-differential equa-

tions:

09 # w5 5w 5]

where S is defined by relation (1.4).

The model of (1.3) type is complex and has been intensively studied by many
authors. The existence and uniqueness of global solutions of initial-boundary value
problems for equations and systems of (1.3) type were studied in [9], [13], [21], [22],
[24], [25] and in a number of other works as well. The existence theorems that
are proved in [9] and [13] are based on a priori estimates, Galerkin’s method and
compactness arguments as in [23] and [28] for nonlinear parabolic equations. The
asymptotic behavior as ¢ — oo of the solutions of such type models have been
object of intensive research in recent years [14]-[17]. Note that in [14] and [17] the
corresponding scalar equation of the (1.3) type was considered. System (1.4)—(1.5)
for the case a(S) = (1 +5)?, —1/2 < p < 0 was investigated in [16].

In [15] the asymptotic behavior of solutions of the initial-boundary value problem
for the system (1.4)—(1.5) with homogeneous boundary data is studied. In the present
work the study of asymptotics for large time of solutions of the first boundary value
problems for the system (1.4)—(1.5) is continued. The attention is paid to the case
a(S)=(1+S5)P,0<p<1.
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We organize our paper as follows. Section two is devoted to the asymptotic be-
havior of the solutions as ¢ — oo of the initial-boundary value problem with non-zero
boundary data on one side of the lateral boundary. In the third section the same
problem with zero lateral boundary data on the whole boundary is studied.

2. THE PROBLEM WITH NON-ZERO DATA ON ONE SIDE
OF LATERAL BOUNDARY

In this section we study asymptotic behavior of the solution to the following nonlin-
ear system of integro-differential equations under nonhomogeneous Dirichlet bound-
ary conditions on one side of lateral boundary:

(2.1) O = I fats) } L= L7 wnee
(22)  UOH=V0.)=0, ULt =, V(Li)=a 30,
(2.3) U o>=UO<> V(2,0) = Vo(x), z < 0.1,
where

(2.4) S(z,t) = /Ot {(‘Z—g)z + (‘Z—Z)Q} ar,

a(S) = (1+8)P,0 < p < 1591 = const > 0, 1y = const > 0, Y2 +1p3 # 0; Uy = Up(x)
and Vp = V() are given functions; @ = (0,1) x (0, o).

Now we are going to investigate the asymptotic behavior of the solutions of the
problem (2.1)—(2.4) as t — oo.

We use the usual Lo-inner product and norm:

1
(u,v):/o w(@yo(@)dz, |l = (u, )2,

Denote by H* and H} the usual Sobolev spaces of real functions.

In this section we use the scheme of [5] in which the adiabatic shearing of incom-
pressible fluids with temperature-dependent viscosity is studied.

Let us mention that boundary conditions (2.2) are used here taking into account
the physical problem considered in [18].

Note that for problem (2.1)—(2.4) the following statement is valid.

Theorem 2.1. Let a(S) = (1 +5)?, 0 < p < 1. Suppose also that Uy, Vp €
H?(0,1), Up(0) = Vo(0) = 0, Up(1) = 91, Vo(1) = tha, ¥7 + 43 # 0. Then for the
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solution of problem (2.1)—(2.4) the following asymptotic relations hold as t — oco:

8Ué§jt) —r = O(tllﬂ))’ 8V£§z7t) —Y2 = O(tllﬂﬂ)

uniformly in z on [0, 1].

A series of lemmas is necessary in order to prove Theorem 2.1.

Lemma 2.1. For the solution of problem (2.1)—(2.4) the following estimates are

true: t pl OUN2 R a2
/0/0 (E) dedr <G, /0/0 (E) dzdr < C.

Note that in this work C', C;, and ¢ denote positive constants independent of ¢.

Proof. Let us differentiate the first equation of the system (2.1) with respect
tot

(2.5)

2U 0 [9(1+ S)PoU LU
W‘a_x[ 2z T+ 5‘t8x}_

ot Ox
After multiplying (2.5) by 0U/0t, carrying out integration by parts gives

(2.6) %% O (%[t]) da:—i—/ (1+S)”(§;§E)2dx

! oUN3 02U

p—1
+p/ (1+5) (83:) otox
oU (8V)2 0*U
dz \ 9z /) Otox

dz = 0.

+p/ (1+ 5Pt

In an analogous way we deduce

2.7) %% 0 (aa‘t/) dx+/ (1+S)p(g;g;)2dx

! OV 3 02V
p—1
+p/ (1+5) (8x> otox
oV 10UN2 02V
p—1
+p/ (1+5) 83:(83:) otox

xz = 0.

Combining (2.6), (2.7), and taking into account the relation S(x,¢) > 0, we obtain

s (150 1% ) 2 (Il + I5zzl)
o4 [uarer g G+ (5]

wp [0+ 2[(EY (2] ar <o
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or

WL 2 [ (JZL )+ |2 ) ar
//‘1+Splahgg+(@31dmh<a

Ox
Using Poincaré’s inequality and taking into account the restriction on p, after
simple transformations we have

e [ G+ (G are [ [ (G + (52)]arar<c
Thanks to (2.8) we deduce the desired results of Lemma 2.1. O
Lemma 2.2. For the function S the following estimates hold:

e/ OF2) (1) <1+ S(x,t) < Cpt/OH2P) (4),

where

(2.9) <p(t)=1+/0/0 (01 +o03)dxdr

and o1 = (1+ S)P(0U/0x), o9 = (1 4+ S)P(OV /Ox).
Proof. From (2.4) it follows that
oS (8U)2

OV \2
7= (a) (&

(2.10) %) . S(x,0) = 0.

Let us multiply the first relation of (2.10) by (1 + S)2?

1 o1+ 8 <8U 2

1+2p ot %) (1+5)2p+<g‘;) (1+ 5y

The system (2.1) can be rewritten as

oUu - 80’1 oV o 80’2

(2.11) o ot on
We have

14+2p
(2.12) 1_o0+9) =0} + 03,

1+2p ot
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(2.13) U%(x,t)z/o o? dy—l—//m 801€t dédy
Y
1
)
- t)d d¢ dy,
/OU y—l—Z//y o1(€ £
1 x
A= [ dwnaw [ @ﬁﬁhw
Y
[t L 8V(£t>
—[;%@¢my+géll oa(e.) 28 ey,

In view of (2.9), (2.13

~—

, and Lemma 2.1, from (2.12) we obtain

1 Sl+2p
1+2p( +5)
1

t
2, 2
= o] +o3)dr +
/0(1 2) 1+2p

://Xﬁmﬂ+ﬁmﬂmmT
0JO

o [ 6 D s L

142

2Ajﬁﬁmﬂ+ﬁmﬂmwr
o [ IEEDY (Y avar+ o

t 1
2//Xﬁmﬂ+ﬁmﬂmw«ux<@¢m
0JO

ie.,
(2.14) 14 S(x,t) < Cp'/U+2) (3,
In an analogous way we deduce

(2.15)

1
1 S 1+2p
01+

:/yﬂﬁwﬂ+ﬁmﬂmwr

+2/// € 2ED o6 nPETD) e gy or
1+2p
1
25// 7)+03(y, 7)) dydr = C1 = Sop(t) = Ca.
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We have
(2.16) Co(14 9)'2P > Oy,

Thus, via relations (2.15) and (2.16) we obtain

1
1 1+4+2p 2 -
(153, + o) 048 > 50l0)
or
(2.17) 1+ S(x,t) = et/ 2P (1),
Estimates (2.14) and (2.17) yield that Lemma 2.2 is true. d

Lemma 2.3. The following inequalities are true:

1
C@Qp/(1+2p)(t) < / (U%(x,t) + a%(x,t)) dz < C<p2p/(1+2p) (t)
0

Proof. Taking into account Lemma 2.2, we get
! oU ov
2 2 _ 2p
[t [0 (G
'[rou oV
S e/ (420) (¢ / oU d
“r *) 0 ( Ox ) * ( Ox ) *

I DRI

= (Y3 + ¢3)cp/ 120 (1),

or
1
(2.15) [ @0 + 3.0 do > e/ ),
0
From (2.8) it follows that

(2.19) / (%[j de < C, / dx <.

Let us multiply the first and second equations of the system (2.1) scalarly by U
and V| respectively. Using the boundary conditions (2.2), we have

/ U%—tdx+/01(1+3)p(g—[])2dx=¢101(1,t),
/O V%—‘de—k/ol(l—kS) (g‘;) da = Paoa(1, 1),
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Using these equalities, Lemma 2.2, relations (2.11), (2.13), (2.18), (2.19), and the
maximum principle

|U(z, )| < max [Up(y)], [V(z,t)| < max [Vo(y)l, 0<z<1, t>0,
0<y<1 <y<l1

we get

{ /0 1 07 (z,t) + 03 (2, 1)] dx}2
< 2{/010%’(:5,@(142+2U010§(x7t)dx]2
<o [[oor (G el [ [avor(G) o] }

< 40 p?/1+20) (1)

Jwnor ([ v s wmor s ([ v )]

<4C1¢2p/ 1+2p)()
! oo 1 L 9opn2
2 2 1 2
X {(¢1+¢2)<2/0 Jldx—f—/ ((%) dx+2/ UQd:H/O (—&C) dx>
! 2 ! a 2
+ [ U?de (a dx+ Ve
0 0

<40 ¢2P/(1+2P) (t)

! L oU N2 ! oV
2 2 2 vy 2
X {(¢1+¢2)<2/0 aldx—i—/o (8t) dx+2/0 JdeJr/ ((%) dx)
oU oV
(a0 [ (57" o+ (s o) [ (5]
1 C 1
< 40, P/ (H2P) (1) {cz /0 (af—l—ag)dx—l—wjzp)(t) /0 (af+a§)dx].

Now, taking into account relation ¢(t) > 1, we get

1
/ (03(x1) + 02(z, £)) dz < O/ A2 (1),
0

So, Lemma, 2.3 is proved. O

From Lemma 2.3 and relation (2.9) we deduce

d
(2.20) ep210420) () < %Zi) < 2/ 0+20) ().
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Lemma 2.4. The derivatives OU/0t and OV /0t satisfy the inequality

[y

Proof. Identity (2.6) yields

oV \2 _
(E) } dz < Co~2/0+2) (1),

d 1 1 02U \2
(2.21) — d 1 P d
a J, ( x+/0( +9) ((%ax) o
oU N6 OUN2 1OV \4
<2p 1 p=2 2 2/ 1 p=2
/( +9) (8x) dz+2p 0( +9) (8x) (8x> dz
Now using Lemmas 2.2, 2.3, keeping in mind the definitions of o1, o9 the relations
1 1 2 1 1 2
801 2 o 0 o1 802 2 o 1o} ()
/0 (%) dx*_/o 9152 4T /0 (%) dx*_/o 25 47
and (2.13), from (2.21) we get

% i (%It]) dm+c<pp/(1+2p)()/Ol(g;[ifdm

1
< O~ OPH2)/042p) () / (0% + o20d) da
0

1
< Oy Bp+2)/(142p) (t)/ o (w,t) yda{ | Juax oj 2(z, t)]2 + [maX o2 (z, t)] }

0 0<z<

/2 80 1/252
< Coip~ Br2)/(1420) 3 ({ o?dx + 2 o? da: [/ 1 ] }
0

A
+{/0105dx+2[/0102dx]1/2v (802) e

/

(5

2

—
N——

13/4¢ 1 8201 2 1/442
< Cop™ (3p+2)/(1+2p) (t) <{ 01 dx + 2 01 dz {/ ) } }
0 xXr

ALl (12204 )

< CypP=2/(H20) (1) 4 €y~ BPF2)/(142p) (1) 32/ (142P) (1)

AU G [ G o] )

< CypP=2)/(142p) (t) + C5<p*(p+4)/(1+2p)( t)

1 2 2 1 2 2
€ p/(1+2p) o°U / il
_’_4%4j (t)[/o (8t5‘x) dz+ 0 <8t8x) dz) .
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So, taking into account the restrictions on p, the last inequality gives

oU T 102UN\2 02V \?]
- p/(1+2p) _ < (p—2)/(1+2p)
/ (875) o+ " (t)/o _ (5:) (s | de < cv ®)-

Similarly,

(2L - (2] ar < asmy

ov
p/(1+2p) _
/ (5‘15) de+ o ®) /0 S\owoz) ~ \owos

Thanks to Poincaré’s inequality we arrive at

(2.22) %/01 [(%—3)2 + (8V) } dr + = ¢P/(1+2p)(t)/01 [(%_(Z)

ot
From (2.22), using Gronwall’s inequality, we get

o [ [+ (2)]e
8U)2

< exp<_g/0 ¢p/(1+2p>(7)d7>{/01[<a + (%‘;) } dx‘t ;.

t T
+C / exp (E / s017/(1+2p) () df) s0(1)*2)/(1+2p) (1) d’T}.
0 2 Jo

1, applying L’Hopital’s rule and estimate (2.20), we obtain

(5]

< CpP=2)/042p) (1),

Noting that ¢(t) >

(2.24)  lim Joexp(§ Jy #T% (€) d€) 1
=20 exp(§ fy @ (7) d7)

’2( ydr
o (1)

—2
) exp(5 Jy ¢ (r) dr) o5 1
= lim
N t p —3—2p
= exp(§ o 9T (1) dr) (§0175 (1) — T T (1) 52)
1
< thm o <C.
—00 ; — T it2p (t)

The inequalities (2.23) and (2.24) ensure validity of Lemma 2.4

Let us now estimate 9S/0x in L1(0,1).

Lemma 2.5. For S5/0x the following inequality is true

/ ‘ ‘dx < CpP/(+20) (t).
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Proof. Differentiating (2.12) with respect to =, we get

0

85 0o Ooo
ot } 29150

2
e + 200 ——

(2.25) o o

{(1 + 8)2%P

From Lemmas 2.3 and 2.4 one can easily see that the following estimates are true:
Looou )
226) [ |G| de < Cpr /(om0 ) — i ),
/ ‘02 ‘da: <C p/(1+2p)( )30—1/(1+2p)(t) _ C(p(p—l)/(uzp) (t).
Finally, using Lemma 2.2, relations (2.11), (2.20), (2.25), and (2.26), we have

oS ¢ oU oV
2p 22 =
(1+5) o /0 (2018 +2028 )dT,

t
0

©
< Cyp20/(+20) (1) / =D/ (1420) 4,
1

]
— Cypm 20/ (20 ) /1 Ao/ (1+29)

= Oy 2/ (F20) (1) (P F20) (1) — 1) < Cp™P/(1F2P) (1),

Thus, Lemma 2.5 is proved. O

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1.  From (2.13), keeping in mind Lemma 2.3 and rela-
tion (2.26), we get

1 1
oU (y,t
st < [ atw a2 [ oo 2| a
0 0

< O/ O+2) (1) 4 =D/ (420) (1) < O 2/ (1+20) (1),

or
(2.27) oy (2, 1) < CpP/H2P) (1),
Taking into account (2.11), (2.27), Lemmas 2.2, 2.4, 2.5, and the relation

QU _ 00, .08
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we derive

/‘82(%2 /‘ (1+5)" /‘011+S) pﬂ%‘dx

U‘ ‘ dx}lm[/o (1+S)2pdxr/2

S
+p/0 ‘01(1-1—5) —8x‘dx
< Oy~ Y/ OF2) (1) o/ (142p) (1)

1
08
p/(142p) (4),—(P+1)/(1+2p) ‘_‘
+ O (1) 0 [ |52]ae
< C<p‘(p+1>/(1+2”) (t).
Hence, we have
82
de < Cp~P+1)/0+2p) (4
/ ‘ 83:2 ‘ Cy (®)-
From this, taking into account the relation
U (z,t) /1 U (y,1) // 9*U
= d d
o , Oy 852 &dy,
we obtain that
RS LGS l/x PUE e q
' Oz e y 0€2 Y
82
/‘ ‘d < Cp~ (/0420 ().

The same estimate is valid for 0V/dz:

‘8V(a:,t)

(2.29) o

— 1/)2‘ < Cp~ PN/ 0420) (4,

After integrating, from (2.20) it is easy to show that the following estimates are
true:

(2.30) et Loty <Ot > 1.

Once (2.30) is checked, one derives from (2.28) and (2.29) the validity of Theo-
rem 2.1. g
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Now, let us prove the second main result of this section.

Theorem 2.2. Let a(S) = (1 +5)?, 0 < p < 1. Suppose also that Uy, Vy €
H3(0,1), Up(0) = Vo(0) = 0, Up(1) = 91, Vo(1) = thy, ¥7 + 43 # 0. Then for the
solution of problem (2.1)—(2.4) the following asymptotic relations hold as t — oco:

uniformly in z on [0, 1].

Proof. Let us multiply (2.21) on ©* (1+2P)(#). Keeping in mind Lemma 2.2
and estimates (2.28), (2.29), we arrive at

oU L/ 92U \2
2/(1+2p) 2/(1+2p) p/(1+2p)
» Ok / (875) dr+ep By ®) /0 (5192) =

< CpP/(142p) (t).

Integrating the last inequality on (0,t), using the formula of integrating by parts,
relation (2.20), and Lemma 2.4 we get

t 1
c/ (p(p+2)/(1+2p)(7-)/ (§2§{C>2dxd7_
0 T
oU L oU N2
< _ ,2/(1+2p) il
ST (t)/0(8t>d+/(8t)dxt:0

2 t ou
(1-2p)/(1+2p) ded / p/(1429) () 47
+1+2p/0<'0 ()dr/(ar) zdr +C (7)

® ®
<O / ety + Cy / @ P/UH2) dop 4 Cy
1 1

< CSO(P+1)/(1+2P) (t),

or

' (p+2)/(1+2p) LU N2 (p+1)/(1+2p)
2.31 o'\P P dzdr < Cp'? P)(t).
(2:31) /0 (T)/o (8Tax> zdr<C ®)
Analogously, we can show that

' (p+2)/(1+2p) NEARY (p+1)/(1+2p)
2.32 p\P P dedr < Cp'? P)(¢).
(2:32) /0 (T)/o (87’83:) vdr<C ®)
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Multiply equation (2.5) scalarly on 3/ (1+2P)(¢)(52U/0t?). Integration by parts
gives

1 2 3
02U ; U U
3/(14+2p) 3/(1+2p) P
/0 4 (t)(8t2) df”/ W0+ 5) 557 ooz 0

o o 2 287 0o
After integrating the last equality on (0,t) we get
// /(42) (- (?;g) dzdr
// VIS aT(e?:ax) drdr
o [ e sy () 5 () deo
oo [ e s G () g (g et =0

Applying again the formula of integrating by parts and relation (2.4) we obtain
1 3/(142p) /1 92U \2 1 /1 92U \2
- t 1+ 85)P de — = i I | ‘
27 ®) ) 1+9) (atax) T3, ((’%Em) |izo
3 t 1 dsﬁ aQU 9
< (2=2p)/(142p) (1) 22 (1 P dz d
2+4p// v gy 1+ 57 (55;) dodr

// 3/(1420) (11 4 §)P~ 1[(?;) +(ZZ)2](82U )dedr

oTox
oUN3 &2U L oUN3 92U
—pe? )/ (1+8)" (8x> 8t5‘xd +p/0 (%) Jtox dx‘t:o
dy U3 92U
(2—2p)/(1+2p) -
1+2p// ()d (1+8) (8x> 5‘T5‘xdxd7-

p—1) // 3/(1+2p) )1+ 5)P~ 2{(5‘0') +(€;(a{) (8{/)2} 92U de dr

oz oT0x
2
4 3p / / 14 sy () (S0 Y dwar
0Jo

oTox
oU 10V \2 9*U LoU [0V \2 9*U
o3/ (1420) (4 p—1 il
()/ (1+9) 8x(3x) ataxda:—i—p/o 8x(5‘x> otox x‘t:O
d oU 0V \2 0°U
(2-2p)/(1+2p) .y 9P =127 (22
1—|—2p// ()d (1+5) 83:(83:) 878mdxd7
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ra=) [ [0 s
0J0
0 ou (0 9*U
X {(8_;])2 + (%)2] (';x] ( 5‘3)287('% dodr
oo [ s s (5 () oo

. ou oV 92U 9*V
3/(1+2p) p-1
+ 2p/0 /0 7 (M)A +5) Oz Oz 0TOx OTOx dvdr.

Using Lemma 2.2, a priori estimates (2.20), (2.28), (2.29), (2.31), (2.32), and
Schwarz’s inequality, we get

(3+p)/(1+2p) 1 9277 \2
cp (t) / 0°U
2 (8tax) dz

< O o PHD/(1420) () 1 P/ (1420) (4
2H5‘taxH ‘t o+ 1$ (t) + Cap (t)

f ! DU \2
23/ (1+2p) p
+8¢ (t)/o 1+ (5s-) de

1
T Gy 0420)(p) / (1+ 8)P2de + Cy
0

! ! 02U \2
2/(142p) P
+/0 o (T)/O (148 (557 ) dedr

t 1
+Cs / @ (20) (1) / (1+8)P2dadr
0

0

2

b /o) ' o°U
—|—/<p P T/ 1+ 8 dxdr
o (7) 0( )(5‘8>

t 1
+Cq / !/ (1420) (1) / (1+ Sy~ dadr + Crp®+D/(4+20) 1)
0 0

l 3/(14-2p) /1 P 0%U \?
+39 0 | (1+8) (8t8x> da

1
4 08303/(1+2”)( )/ (1+ S)p—Q dz

2 2
// /(420) (1Y(1 4 S)P (;Tgx) dzdr

+Cg/ / e/ ) (1) (1 + S)P~2 da dr

2 2
// /(420) (1Y(1 4 S)P (;Tgx) dadr
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t ol
+C10/ / oY) (1) (1 4 S)P dadr
0 Jo

t 1 2
0°U \2
(p+2)/(1+2p) dz d
+C“/O v (7)/0 (aTax) var

t 1, 92
0°U \2
(p+2)/(1+2p) dzd
+012/0 v (7)/0 (aTax) var

t L, 921 \2
(p+2)/(1+2p)
+C12/0 2 (7’)/0 (8Tax) dx dr.

Consequently, taking into account again Lemma 2.2 and estimates (2.20), (2.31),
(2.32) we have

1 2 2
€ (p+3)/(1+2p) / U
4% ®) 0 <8t5‘x) dz

t
< 5P/ (142p) (t) + C14/ s01)/(1+2p) (1) dr + C4
0

< Ot/ (1+2p) (t).

Or, finally,

1 2 2
/ (5‘ U) dz < Cgo_Q/(H'Qp)(t).
0

From this, using the relation

oU (z,t) LouU(y,t) L 92U (€ )

2. = Z 2\
(2:33) ot /0 ot Wt /0 /y eor. W
and Lemma 2.4, we obtain

oU (x,t _
(2.34) | ét >‘ < Cp~ V02 gy,
Analogously,

oV (x,t _
(2.35) ‘ ét )‘ < Com VU (1),

Now taking into account (2.30), estimates (2.34) and (2.35) imply the validity of
Theorem 2.2. O
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3. THE PROBLEM WITH ZERO BOUNDARY CONDITIONS

Now let us consider the following initial-boundary value problem under the homo-
geneous Dirichlet boundary conditions:

@) Fogpleg] Fopleg] wvee
(3.2) ( t)=U(1,t) =V(0,1) =V(L,t) =0, t=>0,
(3.3) U(2,0) = Up(a), V(2,0) = Vo(x), € [0,1]

where again

(3.4) S(a,t) = /0 t {(%)2 + (%‘2)2} dr,

a(S) =1+ 95)P, 0<p<1; Uy=Uy(z) and V) = Vy(z) are given functions.
It is easy to verify the following statement.

Lemma 3.1. For the solution of problem (3.1)—(3.4) the following estimate is

true:
U+ IVl < Cexp(—t).

Note that Lemma 3.1 gives exponential stabilization of the solution of prob-
lem (3.1)—(3.4) in the norm of the space L2(0,1). The stabilization is also achieved
in the norm of the space H'(0,1). In particular, in [15] the following result is proved.

Theorem 3.1. Ifa(S) = (1+S)?,0<p <1, Uy, Vo € H?(0,1) N H(0,1), then
for the solution of problem (3.1)—(3.4) the following estimate is true as t — oo:

|51+ 15+ U5 1+ [ < oo(-5)

Theorem 3.1 helps us to deduce that Lemma 2.2 holds also for the solution of prob-
lem (3.1)—(3.4). Therefore using this lemma, relation (2.9), and again Theorem 3.1

we obtain

0 Lo

After integrating this inequality and taking into account definition (2.9), we arrive

2
(g—‘;) ] dz < C?P/(+2P) (1) exp(—t).

at
1<p(t)<C.
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From this, keeping in mind Lemma 2.2, we get
(3.5) 1<1+8(x,t) <C.

Identities (2.13) together with (3.5) and Theorem 3.1 give

o1 (z,t) + o3 (z,t) < 2/01(1 + 9)%F [(2—5)2 + (?)_Z)Q} dz

4 /01 {(%—[;’)2 + (%—‘;)2] dz < Cexp(—t).

Finally, if we recall the definition of o1 and o9, the validity of the following state-
ment will be obvious.

Theorem 3.2. If the conditions of Theorem 3.1 are satisfied, then for the solution
of problem (3.1)—(3.4) the following estimates take place as t — oo:

Tt =olen(-3)). Tt =o(en(-3))

uniformly in z on [0, 1].

Now let us prove the second main result of this section.

Theorem 3.3. Ifa(S) = (1+S)?,0<p< 1, Uy, Vo € H3(0,1) N H(0,1), then
for the solution of problem (3.1)—(3.4) the following estimates hold as t — oo:

WD ofon(-1)). LD~ ofen(-4)

uniformly in z on [0, 1].

Proof. Note that (2.21) is valid for problem (3.1)—(3.4) as well. Let us multi-
ply (2.21) scalarly by exp(2t) and integrate it on (0,¢). Using integration by parts,
estimate (3.5) and Theorems 3.1, 3.2, we get

/Ot eXp(2T)di7_ /01 (2—2)2 dzdr + /Ot exp(27) /01(1 + S)p(aajg_)Q dzdr
< 2p? /Ot exp(27) /01(1 + S)p*2(g_g)2 {(2_5)4 + (%)4] dzdr,
/Ot exp(27) /01 (883;25;- )2 dzdr
<o [/ () oo+ [(GV o)

t 1 U2 t
—|—2/ ex 27’/ — dxdT—i—C/ exp(—7)dr,
o) | (57) [ exp(-7)
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or

(3.6) /O t exp(27) /0 1( gng) dzdr < Cexp(t).

Similarly,

t 1 a2v 2
(3.7) /0 exp(27) /0 ( (%67) dz dr < Cexp(t).

Multiplying (2.5) scalarly by exp(2t)(0?U/0t?), using integration by parts and
boundary conditions (3.2), we get

0*U 1! 0 (0*U \2
exp(Zt)/ (8752) dz + 2/0 exp(2t)(1+ 5)? 875(81&891:) dz

- _p/lexp(Zt)(l—i—S)p 1(?}3)3;((’%8;5)(1%

—P/lexp(Qt)(l—i—S)p WU (V0 (DL

Let us integrate this equality from 0 to ¢. Using integration by parts, we obtain
exp(2t) /1 o OPU 2
2 J; (1+5) (8t8:c) dz
1 (1 0%U \? Lot 9%U \2
- i P
/ (8t5‘x) da: —l—// exp(27)(1 + S) (878x) dxdr
ou OV N2 7 9%U \2
p—1 Z
// exp(2r)(1 +5) [(83:) +(8m)}(87’8m) drdr
U3 02U L oUN3 92U
_ p—1 ) =
pexp(Qt)/ (1+5) ( ) otz dz +p/0 (83:) otox dx‘tzo

3 2
+2p// exp(27)(1 + S)P~ 1(25)%dmd7

(p_l)/o/ exp(27)(1 4+ S)P~2
(LY (G2 (20| Y arar

+3p// exp(27)(1 + S)P~ 1(?)(;) (;:gx)zdxdT

oU 10V \2 02U
_ p—1
peXp(Zt)/O (1+5) o ( Ox ) ator
LoU 1oV 2 92U
+p/0 %(%) otox dz t=0
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oU 0V \2 02U
p—1
+2p// exp(27)(1 + S) 8x(8x> —aTaxda:dT

p—1 // exp(27)(1 + S)P~ 2{(({;(;) +<g—‘;)2}g—g
VN2 92U
( V) Or0x

+P// exp(27)(1 + S)P~ 1(?;;) (;:gx)zdxdT

ou ov 9*U 9*V
p—1
—|—2p// exp(27)(1 + 5) 9% 92 D7 0m 97 0a dxdr.

dx dr

Now using Theorem 3.2, Schwarz’s inequality, and a priori estimates (3.5)—(3.7),
we deduce

exp(2t) /1 02U \2
2 Jo (8t8x) dz
¢ 1, 02U 2
< Oy + Cyexp(t) + Cs / exp(27) exp(—7) / ( 8783:) dadr
0 0

exp(2t) /1 0*U \2 B
+ 5 ; (8t8x> dz + Cy exp(—t)

+/Otexp(27')/ (8825) dedr + Cs /Otexp(—T)dT
+ /0 t exp(27) /0 ( ;:g;e) da dr + Cg /0 t exp(—37) dr
+C7/Otexp(27)exp(—7)/ (C(?an) dzdr +eXp8(2t) /:(g:;;fdx
+ Csexp(—t) + /0 t exp(27) /0 (83:5-%)2 dedr + Cy /0 t exp(—7) dr
+ /Ot exp(27) /01 (;:gr)Q dzdr + Cio /Ot exp(—37)dr
+On /0 " exp(2r) exp(—7) / ( gj@x) dz dr
t 1 2
+Ch /0 exp(7) / ( ;)Taa:) de dr
t 2
+012/0 eXp(T)/ (ST&C) dadr

exp(2t) /1 9*U
<
<=5 [ () o+ ol
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ie.,

L 0%U N2
(3.8) /0 <%) dz < Cexp(—t).
Analogously,

1 82‘/ 2
(3.9) /0 <%) dz < Cexp(—t).

Finally, using Theorem 3.1, estimates (3.8), (3.9), and relation (2.33), we get the
validity of the Theorem 3.3. O

Remarks.

(1) The existence of globally defined solutions of the problems (2.1)—(2.4) and (3.1)—
(3.4) can be obtained by a routine procedure. One first establishes the existence
of local solutions on a maximal time interval and then uses the derived a pri-
ori estimates to show that the solutions cannot escape in finite time (see, for
example, [23], [28]). In particular, the following theorems hold:

Theorem 3.4. Ifa(S) = (1+5)?,0<p< 1, Uy, Vo € H3(0,1), Up(0) = V(0) =
0, Uo(1) = 91, Vo(1) = 92, ¥? + 93 # 0, then there is a unique solution (U, V)
to (2.1)—(2.4) such that U,V € H?*(Q).

Theorem 3.5. Ifa(S) = (1+9)?,0<p <1, Uy, Vo € H3(0,1), Up(0) = Vp(0) =
Uo(1) = Vo(1) = 0, then there is a unique solution (U, V) to (3.1)—~(3.4) such that
U,V € HA(Q) N La((0, 00); HL(0,1).

(2) Mathematical results given in the second and third sections show the differ-
ence between stabilization characters of solutions with nonhomogeneous and
homogeneous boundary conditions.

References

[1] A.L. Amadori, K. H. Karlsen, C. La Chioma: Non-linear degenerate integro-partial
differential evolution equations related to geometric Lévy processes and applications
to backward stochastic differential equations. Stochastics Stochastics Rep. 76 (2004),
147-177.

[2] J. M. Chadam, H. M. Yin: An iteration procedure for a class of integrodifferential equa-
tions of parabolic type. J. Integral Equations Appl. 2 (1990), 31-47.

[3] B.D. Coleman, M. E. Gurtin: On the stability against shear waves of steady flows of
non-linear viscoelastic fluids. J. Fluid Mech. 3% (1968), 165-181.

[4] C.M. Dafermos: An abstract Volterra equation with application to linear viscoelasticity.
J. Differ. Equations 7 (1970), 554-569.

491



[5]
[6]
[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]
[20]

21]

22]

[23]

492

C. Dafermos: Stabilizing effects of dissipation. Proc. Int. Conf. Equadiff 82, Wiirz-
burg 1982. Lect. Notes Math. Vol. 1017. 1983, pp. 140-147.

C. M. Dafermos, J. A. Nohel: A nonlinear hyperbolic Volterra equation in viscoelasticity.
Contributions to analysis and geometry. Suppl. Am. J. Math. (1981), 87-116.

H. Engler: Global smooth solutions for a class of parabolic integrodifferential equations.
Trans. Am. Math. Soc. 348 (1996), 267-290.

H. Engler: On some parabolic integro-differential equations: Existence and asymptotics
of solutions. Proc. Int. Conf. Equadiff 82, Wiirzburg 1982. Lect. Notes Math. Vol. 1017.
1983, pp. 161-167.

D. G. Gordeziani, T.A. Jangveladze (Dzhangveladze), T.K. Korshiya: Existence and
uniqueness of the solution of certain nonlinear parabolic problems. Differ. Equations 19
(1983), 887-895.

G. Gripenberg: Global existence of solutions of Volterra integrodifferential equations of
parabolic type. J. Differ. Equations 102 (1993), 382-390.

G. Gripenberg, S.-O. Londen, O. Staffans: Volterra Integral and Functional Equations.
Encyclopedia of Mathematics and Its Applications, Vol. 34. Cambridge University Press,
Cambridge, 1990.

M. E. Gurtin, A. C. Pipkin: A general theory of heat conduction with finite wave speeds.
Arch. Ration. Mech. Anal. 31 (1968), 113-126.

T. A. Jangvelazde (Dzhangveladze): On the solvability of the first boundary value prob-
lem for a nonlinear integro-differential equation of parabolic type. Soobsch. Akad. Nauk
Gruz. SSR 11/ (1984), 261-264. (In Russian.)

T. A. Jangveladze (Dzhangveladze), Z. V. Kiguradze: Asymptotic behavior of the solu-
tion of a nonlinear integro-differential diffusion equation. Differ. Equ. 44 (2008), 538-550.
T. A. Jangveladze (Dzhangveladze), Z.V. Kiguradze: Asymptotics of a solution of a
nonlinear system of diffusion of a magnetic field into a substance. Sib. Mat. Zh. 47
(2006), 1058-1070 (In Russian.); , English translation: Sib. Math. J. 47 (2006), 867-878.
T. A. Jangveladze (Dzhangveladze), Z. V. Kiguradze: Estimates of the stabilization rate
as t — oo of solutions of the nonlinear integro-differential diffusion system. Appl. Math.
Inform. Mech. 8 (2003), 1-19.

T. A. Jangveladze (Dzhangvelazde), Z. V. Kiguradze: On the stabilization of solutions of
an initial-boundary value problem for a nonlinear integro-differential equation. Differ.
Equ. 48 (2007), 854-861; , Translation from Differ. Uravn. 48 (2007), 833-840. (In
Russian.)

T. A. Jangveladze (Dzhangveladze), B. Ya. Lyubimov, T. K. Korshiya: Numerical solu-
tion of a class of non-isothermal diffusion problems of an electromagnetic field. Tr. Inst.
Prikl. Mat. Im. I. N. Vekua 18 (1986), 5-47. (In Russian.)

J. Kacur: Application of Rothe’s method to evolution integrodifferential equations.
J. Reine Angew. Math. 888 (1988), 73-105.

L.D. Landau, E. M. Lifshitz: Electrodynamics of Continuous Media. Pergamon Press,
Oxford-London-New York, 1960.

G. Laptev: Mathematical singularities of a problem on the penetration of a magnetic
field into a substance. Zh. Vychisl. Mat. Mat. Fiz. 28 (1988), 1332-1345 (In Russian.);
English translation: , U.S.S.R. Comput. Math. Math. Phys. 28 (1990), 35-45.

G. Laptev: Quasilinear parabolic equations which contains in coefficients Volterra’s op-
erator. Math. Sbornik 1386 (1988), 530-545 (In Russian.); , English translation: Sbornik
Math. 64 (1989), 527-542.

J.-L. Lions: Quelques méthodes de résolution des problemes aux limites non-linéaires.
Dunod/Gauthier-Villars, Paris, 1969. (In French.)



24]

[25]

[26]

27]

[28]

[29]

N.T. Long, A. P. N. Dinh: Nonlinear parabolic problem associated with the penetration
of a magnetic field into a substance. Math. Methods Appl. Sci. 16 (1993), 281-295.
N.T. Long, A.P. N. Dinh: Periodic solutions of a nonlinear parabolic equation associ-
ated with the penetration of a magnetic field into a substance. Comput. Math. Appl.
30 (1995), 63-78.

R. C. MacCamy: An integro-differential equation with application in heat flow. Q. Appl.
Math. 85 (1977), 1-19.

M. Renardy, W.J. Hrusa, J. A. Nohel: Mathematical Problems in Viscoelasticity. Pit-
man Monographs and Surveys in Pure and Applied Mathematics, Vol. 35. Longman
Scientific & Technical/John Wiley & Sons, Harlow/New York, 1987.

M. Vishik: Uber die Lésbarkeit von Randwertaufgaben fiir quasilineare parabolische
Gleichungen hoherer Ordnung (On solvability of the boundary value problems for higher
order quasilinear parabolic equations). Mat. Sb. N. Ser. 59 (1962), 289-325. (In Russian.)
H. M. Yin: The classical solutions for nonlinear parabolic integrodifferential equations.
J. Integral Equations Appl. 1 (1988), 249-263.

Authors’ address: T.A. Jangveladze, Z. V. Kiguradze (corresponding author), Ivane

Javakhishvili Thbilisi State University, University St. 2, 0186, Tbilisi, Georgia, and Ilia
Chavchavadze State University, Ilia Chavchavadze Av. 32, 0179, Thilisi, Georgia, e-mail:
tjangv@yahoo.com, zkigur@yahoo.com.

493



		webmaster@dml.cz
	2020-07-02T12:56:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




