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OPERATORS APPROXIMATING PARTIAL DERIVATIVES

AT VERTICES OF TRIANGULATIONS BY AVERAGING

Josef Dalík, Brno

(Received October 15, 2009)

Abstract. Let Th be a triangulation of a bounded polygonal domain Ω ⊂ R2 , Lh the space
of the functions from C(Ω) linear on the triangles from Th and Πh the interpolation operator
from C(Ω) to Lh. For a unit vector z and an inner vertex a of Th, we describe the set of
vectors of coefficients such that the related linear combinations of the constant derivatives
∂Πh(u)/∂z on the triangles surrounding a are equal to ∂u/∂z(a) for all polynomials u of
the total degree less than or equal to two. Then we prove that, generally, the values of
the so-called recovery operators approximating the gradient ∇u(a) cannot be expressed as
linear combinations of the constant gradients ∇Πh(u) on the triangles surrounding a.
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MSC 2010 : 65D25

1. Introduction

Let us assume that the values of a function u defined on a domain Ω ⊂ R
2 are

known at the vertices of a triangulation Th of Ω only and approximate this function

by the interpolant Πh(u) ∈ Lh at the vertices of Th. The paper is devoted to the

following classical problem treated in Zienkiewicz, Cheung [8], Vacek [6] and in many

other papers: Let z be a unit vector and u a function whose derivative ∂u/∂z exists

on Ω. Find a vector f of coefficients such that the weighted averaging

Ah[Πh(u)](z, a, f) = f1∂Πh(u)|T1
/∂z + . . . + fn∂Πh(u)|Tn

/∂z

of the constant derivatives on the triangles T1, . . . , Tn from Th meeting a approxi-

mates ∂u/∂z(a) with an error of the size O(h2) for all u smooth enough. Originally,

the problem was formulated with the aim to find a second-order approximation of
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the small strain tensor in the postprocessing of the elasticity problem. Today, the

interest concentrates upon the linear extensions of the second-order approximations

(1) Ah[Πh(u)](a) = (Ah[Πh(u)]([1, 0], a, fx),Ah[Πh(u)]([0, 1], a, fy))

of the gradients ∇u(a) from the vertices to the triangles of Th. Especially, operators

Gh : Lh −→ Lh × Lh with the properties

(R1) (Consistency)

Gh[Πh(u)] = ∇u for all quadratic polynomials u,

(R2) (Localization) for every triangle T ∈ Th and for every u ∈ Lh, the values of

Gh[u] on T depend on the values of u in the triangles from a local neighbourhood

Ωh(T ) of T only,

(R3) (Linearity and boundedness) the operator Gh is linear and there exists a

constant C independent of h such that

‖Gh[u]‖0,∞,T 6 C|u|1,∞,Ωh(T ) ∀T ∈ Th, u ∈ Lh,

called recovery operators in Ainsworth, Craig [1], provide a general tool for the con-

struction of a posteriori error estimators of solutions of the boundary value problems

for second-order partial diferential equations in the plane. Constructions and appli-

cations of these estimators are summarized in Ainsworth, Oden [2]. The Zienkiewicz,

Zhu operator from [9] and the Zhang, Naga operator from [7] are based on approxi-

mations by the least squares method. The former has been applied very successfully.

It is a recovery operator on triangulations closely related to the homogeneous tri-

angulations only. The accuracy of the latter is of second order. It is comparable

with the accuracy of the averaging operator of the form (1) presented and proved to

be a recovery operator on an extensive class of triangulations in Dalík [3]. Another

second-order averaging operator has been presented in Hlaváček, Křížek, Pištora [5].

We study the property of consistency. First, we describe the vectors f such that

Ah[Πh(u)](z, a, f) = ∂u/∂z(a) for all quadratic polynomials u

for a unit vector z and an inner vertex a of a triangulation Th. Secondly, we

show that any ring r = (b1, . . . , b5) around an inner vertex a such that the value

Gh[Πh(u)](a) of a consistent operator is a linear combination of the constant gradi-

ents ∇Πh(u)|T1
, . . . ,∇Πh(u)|T5

has to satisfy certain symmetry conditions.
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2. Lagrange six-tuples of vertices of triagulations

Let (x1, x2) be the cartesian coordinates of a point x (in R2). For different points

a, b we denote by ab the straight line passing through a, b and by d(x, ab) the distance

of the point x from ab. Let us set

D(a, b, c) =

∣

∣

∣

∣

a1 − c1 a2 − c2

b1 − c1 b2 − c2

∣

∣

∣

∣

for arbitrary points a, b, c,

reserving the symbol ΠT (u) for the linear interpolant of the function u at the vertices

of a triangle T and P2 for the space of (real) polynomials

P (x) = α1 + α2x1 + α3x2 + α4(x1)
2 + α5x1x2 + α6(x2)

2

with (real) coefficients α1, . . . , α6. The points c1, . . . , c6 are called a Lagrange six-

tuple when for arbitrary real p1, . . . , p6 there exists a unique P ∈ P2 such that

P (ci) = pi for i = 1, . . . , 6.

It is easy to see that for arbitrary points c1, . . . , c6, the polynomial

l1(x) = l(x, c2, . . . , c6) = D(x, c5, c6)D(x, c2, c3)D(c4, c5, c3)D(c4, c6, c2)

+ D(x, c3, c5)D(x, c6, c2)D(c4, c5, c6)D(c4, c2, c3)

belongs to P2 and l1(c
j) = 0 for j = 2, . . . , 6. Adopting the convention that “+” and

“−” on the set {1, . . . , k} of indices mean addition and subtraction modulo k, we set

li(x) = l(x, ci+1, . . . , ci+5) for i = 2, . . . , 6.

Then, due to [4], c1, . . . , c6 is a Lagrange six-tuple whenever l1(c
1) 6= 0 and we have

li(c
i) = (−1)i−1l1(c

1) ∀i, li(c
j) = 0 ∀j 6= i.

Let Ω be a bounded polygonal domain in R2. A non-empty finite set T of triangles

is called a triangulation of Ω when Ω =
⋃

T∈T

T and the intersection of any two different

triangles T1, T2 from T is either a common side of T1, T2 or a common vertex of T1,

T2 or an empty set. We denote by h the length of the longest side of the triangles

from T and write Th instead of T . A vertex of a triangle from Th situated in Ω is

called an inner vertex (of Th).
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Definition 1. An ordered n-tuple r = (b1, . . . , bn) of vertices of a triangulation

Th is called a ring around an inner vertex a whenever the related triangles T1 =

abnb1, . . . , Tn = abn−1bn are equally oriented and belong to Th. We set δi =
−→
abi for

i = 1, . . . , n.

If z is a unit vector and r = (b1, . . . , bn) a ring around an inner vertex a then we

denote by Fz(r) the set of vectors f such that

(2) f1
∂Π1(u)

∂z
+ . . . + fn

∂Πn(u)

∂z
=

∂u

∂z
(a) ∀u ∈ P2

for the constant derivatives of the interpolants Πi(u) = ΠTi
(u).

We describe the sets Fz(r) under the assumption that for every ring r =

(b1, . . . , bn) there exist indices 1 = i1 < i2 < . . . < i5 6 n such that c1 = bi1 , . . . , c5 =

bi5 , c6 = a is a Lagrange six-tuple.

Due to the notation introduced above, the functions Li(x) = li(x)/li(c
i), i =

1, . . . , 6, form a Lagrange basis in P2 for every Lagrange six-tuple c1, . . . , c5, c6 = a.

Then we call

L(x) =
6

∑

i=1

u(ci)Li(x)

the (quadratic) Lagrange interpolation polynomial of a function u ∈ C(Ω) at the

nodes c1, . . . , c6. An extensive class of triangulations such that every ring (b1, . . . , bn)

with n > 5 satisfies the above assumption has been studied in [3].

3. Description of the sets Fz(r)

For a unit vector z = [z1, z2]
⊤ and a ring (b1, . . . , bn) around an inner vertex a we

set z⊥ = [−z2, z1]
⊤ and ϕi = 〈δi, z〉, ζi = 〈δi, z⊥〉 for i = 1, . . . , n. Of course, (ϕi, ζi)

are the coordinates of the point bi in the Cartesian coordinate system with origin a

and axes ϕ, ζ in the directions of vectors z, z⊥. The identity

(3) ∂D(x, a, b)/∂z = z1(a2 − b2) − z2(a1 − b1) = 〈
−→
ba, z⊥〉

is valid for all points a 6= b and all unit vectors z, obviously.

We find a formula for the constant z-derivative of the interpolantΠi(u) and express

the vectors from Fz(r) as solutions of certain systems of linear equations.
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Lemma 1. For a unit vector z, a triangle T = abc and a function u ∈ C(T ),

∂ΠT (u)/∂z =
1

D(a, b, c)
〈u(a)

−→
cb + u(b)−→ac + u(c)

−→
ba, z⊥〉.

P r o o f. Using (3), we obtain Lemma 1 by the identity

ΠT (u)(x) =
u(a)D(x, b, c) + u(b)D(x, c, a) + u(c)D(x, a, b)

D(a, b, c)
.

�

In Theorem 1, we find a matrix form of the condition (2).

Definition 2. Let z be a unit vector, (b1, . . . , bn) a ring around an inner vertex

a of Th and L1, . . . , L6 the Lagrange basis in P2 at the nodes c1, . . . , c6. Then we set

Lji = Lj(b
i) for j = 1, . . . , 6, i = 1, . . . , n,

L =











L1n L11 . . . L1,n−1

L2n L21 . . . L2,n−1

...
...
. . .

...

L5n L51 . . . L5,n−1











, E =















ζ1 0 . . . 0 −ζn−1

−ζn ζ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ζn−1 0

0 0 . . . −ζn−2 ζn















,

d1 = [∂L1/∂z, . . . , ∂L5/∂z]⊤(a) and relate the vector f̃ = [f̃1, . . . , f̃n]⊤ to a given

f = [f1, . . . , fn]⊤ by putting f̃i = fi/Di and Di = D(a, bi−1, bi) for i = 1, . . . , n.

Theorem 1. Let z be a unit vector, r = (b1, . . . , bn) a ring around an inner vertex

a and L1, . . . , L6 the Lagrange basis at the nodes c1, . . . , c6 = a. Then f ∈ Fz(r) if

and only if

(4) LEf̃ = d1.

P r o o f. Because of linearity, (2) is valid for all P ∈ P2 if and only if (2) is valid

for P = L1, . . . , L6. By means of Lemma 1, we obtain

1

Di

[ζi(Lj,i−1 − Lj(a)) − ζi−1(Lji − Lj(a))] = ∂Πi(Lj)/∂z

for i = 1, . . . , n, j = 1, . . . , 6. This and (2), applied to P = Lj , give

(5)
n

∑

i=1

f̃i [ζi(Lj,i−1 − Lj(a)) − ζi−1(Lji − Lj(a))] = ∂Lj/∂z(a)

for j = 1, . . . , 6. Since L1 + . . . + L6 = 1 and L1(a) = . . . = L5(a) = 0, we can see

that the equation (5) for j = 6 is a linear combination of the other equations. If

we omit this equation from (5) and substitute zeros for L1(a), . . . , L5(a), we get the

system (4). �
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We find the set of solutions f of the system (4) in two steps. In the first step, see

Lemma 2, we characterize the set

W = Wz(r) = {w ∈ R
n |Lw = d1}.

Definition 3. For a ring (b1, . . . , bn) around an inner vertex a, let us set ̺ =

{i1 + 1, . . . , i5 + 1} and ̺c = {1, . . . , n} − ̺.

Lemma 2. If z is a unit vector and r = (b1, . . . , bn) a ring around an inner vertex

a then the following statements (a), (b) are valid:

(a) w ∈ Wz(r) if and only if
〈

[P (bn), P (b1), . . . , P (bn−1)], w
〉

= ∂P/∂z(a) for all

P ∈ P2 such that P (a) = 0.

(b) w ∈ Wz(r) if and only if wi is arbitrary for all i ∈ ̺c and

wij+1 = ∂Lj/∂z(a) −
∑

i∈̺c

wiLj,i−1 for j = 1, . . . , 5.

P r o o f. (a) We have w ∈ W ⇐⇒ Lw = d1

⇐⇒
〈

[P (bn), P (b1), . . . , P (bn−1)], w
〉

= ∂P/∂z(a) ∀P ∈ {L1, . . . , L5}

⇐⇒
〈

[P (bn), P (b1), . . . , P (bn−1)], w
〉

= ∂P/∂z(a) ∀P ∈ P2, P (a) = 0.

(b) The statement is a consequence of the fact that for j = 1, . . . , 5, the column

ij +1 of matrix L has the form [L1(c
j), . . . , L5(c

j)]⊤ with entry 1 in the j-th position

and 0 in the other positions. �

In the second step, we describe the vectors f̃ = [f̃1, . . . , f̃n]⊤ satisfying

(6) Ef̃ = w

for some w ∈ Wz(r). We point out that, due to our convention, the additions in

j + 1, j + 2, . . . are operations modulo n in {1, . . . , n}.

Definition 4. Let z be a unit vector and r = (b1, . . . , bn) a ring around an

inner vertex. Then we put σj,k = σj,k(w) =
k
∑

i=j+1

wiζi−1 for all w ∈ Wz(r) and

j, k ∈ {1, . . . , n}.
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Lemma 3. Let z be a unit vector and r = (b1, . . . , bn) a ring around an inner

vertex a. Then σk,k(w) = 0 for all w ∈ Wz(r) and for k = 1, . . . , n.

P r o o f. If w ∈ Wz(r) and k ∈ {1, . . . , n} then

σk,k(w) = w1ζn + w2ζ1 + . . . + wnζn−1 =
〈

[P (bn), P (b1), . . . , P (bn−1)], w
〉

for P (x) = 〈−→ax, z⊥〉 = z1(x2 − a2) − z2(x1 − a1). Now, due to Lemma 2 (a), we

obtain σk,k(w) = ∂P/∂z(a) = −z2z1 + z1z2 = 0. �

The properties of the set Fz(r), related to a ring r = (b1, . . . , bn), depend on the

number of zeros among the coordinates ζ1, . . . , ζn of b
1, . . . , bn. We choose the indices

1, . . . , n so that one of the following cases (Z0)–(Z2) occurs:

(Z0) ζi 6= 0 for all i,

(Z1) ζi = 0 if and only if i = 1,

(Z2) there exists p ∈ {3, . . . , p − 1} such that ζi = 0 if and only if i ∈ {1, p}.

Theorem 2. If z is a unit vector and r = (b1, . . . , bn) a ring around an inner

vertex a then f ∈ Fz(r) if and only there is w ∈ Wz(r) such that

a) f̃1 is arbitrary and f̃i = [ζnζ1f̃1 + σ1,i(w)]/(ζi−1ζi) for i = 2, . . . , n in the case

(Z0),

b) −ζnf̃1 + ζ2f̃2 = w2 and f̃i = σ2,i(w)/(ζi−1ζi) for i = 3, . . . , n in (Z1),

c) −ζnf̃1 + ζ2f̃2 = w2, −ζp−1f̃p + ζp+1f̃p+1 = wp+1, f̃i = σ2,i(w)/(ζi−1ζi) for

i = 3, . . . , p − 1, f̃i = σp+1,i(w)/(ζi−1ζi) for i = p + 2, . . . , n and the mutu-

ally equivalent conditions σ2,p(w) = 0, σp+1,1(w) = 0 are satisfied under the

condition (Z2).

P r o o f. f ∈ Fz(r) if and only if f̃ satisfies (6) for some w ∈ Wz(r). In the case

(Z0), the first equation of (6) gives f̃n = (ζnζ1f̃1 − σn,1)/(ζn−1ζn) and the following

equations lead to f̃i = (ζnζ1f̃1 + σ1,i)/(ζi−1ζi) for i = 2, . . . , n. As σ1,n = −σn,1 due

to Lemma 3, the first formula for f̃n is just the case i = n of the second formula.

Hence a) is valid.

In the case (Z1), ζ1 = 0 means that in (6) the unknowns f̃1, f̃2 appear in the single

equation −ζnf̃1 + ζ2f̃2 = w2 and the system of the other n − 1 equations for n − 2

unknowns is of the form















ζ3

−ζ2 ζ4

. . .
. . .

−ζn−2 ζn

−ζn−1





























f̃3

f̃4
...

f̃n−1

f̃n















=















w3

w4
...

wn

w1















.
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After elimination, the first n− 2 equations give the values f̃3, . . . , f̃n from b). Then

f̃n = σ2,n(w)/(ζn−1ζn), so that the last equation −ζn−1f̃n = w1 is equivalent to

σ2,1 = 0. But 0 = σ2,2 = σ2,1 + w2ζ1 = σ2,1 by Lemma 3 and ζ1 = 0.

The statement c) can be proved by analogous considerations. �

4. The consistent operators

In this section we show that for every unit vector z there exist rings r = (b1, . . . , b5)

around inner vertices a such that the value of any consistent operator Gh[Πh(u)] at

vertex a cannot be expressed in form of a linear combination of the constant gradients

∇Πh(u)|T1
, . . . ,∇Πh(u)|Tn

on the triangles from Th meeting vertex a.

Let us assume that there exists a vector f = [f1, . . . , fn]⊤ such that

(7) Gh[Πh(u)](a) = f1∇Π1(u) + . . . + fn∇Πn(u) ∀u ∈ P2.

Due to consistency, (7) means that f ∈ Fz(r)∩Fz⊥ (r) for z = [1, 0]. In the following

example we find neighbourhoods with the property Fz(r) ∩ Fz⊥(r) = ∅.

E x am p l e 1. For a ring r = (b1, . . . , b5) around an inner vertex a we find

conditions necessary for the existence of a vector f in Fz(r) ∩ Fz⊥(r). Lemma 2

b) tells us that Wz(r) and Wz⊥(r) are one-element sets with the elements w1 =

[∂L5/∂x1(a), . . . , ∂L4/∂x1(a)]
⊤
and w2 = [∂L5/∂x2(a), . . . , ∂L4/∂x2(a)]

⊤
, respec-

tively. Then, due to Theorem 2 a), Fz(r) is the set of vectors f such that f1 is

arbitrary and

(8) f̃i =

(

ζ5ζ1f̃1 +

i−1
∑

k=1

∂Lk

∂x1
(a)ζk

)

/

(ζi−1ζi) for i = 2, . . . , 5,

and Fz⊥(r) is the set of vectors g such that g1 is arbitrary and

(9) g̃i =

(

ϕ5ϕ1g̃1 −
i−1
∑

k=1

∂Lk

∂x2
(a)ϕk

)

/

(ϕi−1ϕi) for i = 2, . . . , 5.

It is easy to see that the formulas

(10) f̃i =
(

f̃i−1ζi−2 +
∂Li−1

∂x1
(a)

)/

ζi for i = 2, . . . , 5

and

(11) g̃i =
(

g̃i−1ϕi−2 −
∂Li−1

∂x2
(a)

)/

ϕi for i = 2, . . . , 5
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are equivalent to (8) and (9), respectively. For i = 2, . . . , 5, the identities f̃i−1 = g̃i−1

and f̃i = g̃i can be shown to be equivalent to

f̃i−1 =

〈

∇Li−1(a), δi
〉

D(bi−2, bi, a)
= g̃i−1 and f̃i =

〈

∇Li−1(a), δi−2
〉

D(bi−2, bi, a)
= g̃i.

These identities lead to

(12)

〈

∇Li(a), δi+1
〉

D(bi−1, bi+1, a)
=

〈

∇Li−1(a), δi−2
〉

D(bi−2, bi, a)

for i = 2, 3, 4. If we use the explicit form of the polynomials L1, . . . , L6 from Section 2

then we can simplify the equalities (12) to the form

d(a, b3b4)

d(b2, b3b4)
=

d(a, b4b5)

d(b1, b4b5)
,

d(a, b4b5)

d(b3, b4b5)
=

d(a, b5b1)

d(b2, b5b1)
,

d(a, b5b1)

d(b4, b5b1)
=

d(a, b1b2)

d(b3, b1b2)
.

Fig. 1 illustrates that the ring (b1, . . . , b5) around the vertex a satisfies the first of

these identities but, obviously, the second identity is invalid.

a

b
1

b
2

b
3

b
4

b
5

Figure 1
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