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ELASTOPLASTIC REACTION OF A CONTAINER TO

WATER FREEZING
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Abstract. The paper deals with a model for water freezing in a deformable elastoplastic
container. The mathematical problem consists of a system of one parabolic equation for
temperature, one integrodifferential equation with a hysteresis operator for local volume
increment, and one differential inclusion for the water content. The problem is shown to
admit a unique global uniformly bounded weak solution.
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1. Introduction

Phase transition problems are quite popular in mathematical literature, cf. e.g. the

books [1], [2], [11]. Only few publications, however, take into account different mass

densities/specific volumes of the phases. In [3], the authors proposed to interpret

a phase transition process in terms of a balance equation for macroscopic motions,

and to include the possibility of voids. Well-posedness of an initial-boundary value

problem for the resulting PDE system is proved there, and the case of two different

densities for the substances undergoing phase transitions has been pursued in [4].

In [8] and [9], a model has been proposed to explain the occurrence of high stresses

due to the difference between the specific volumes of the solid and liquid phases,

assuming that the speed of sound and the specific heat are the same in the solid

and in the liquid. The results there include the existence and uniqueness of global

solutions, as well as their convergence to equilibria in the cases that the container is

elastic or rigid, with or without gravity. In reality, the specific heat in water is about
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the double, while the speed of sound in water is less than one half of the one in ice.

This leads to new mathematical and modeling difficulties that are discussed in [10].

Here, the model of [8] is extended to the case of elastoplastic boundary. This results

in the occurrence of hysteresis operators in the mechanical equilibrium equation, as

well as in the heat source term due to plastic dissipation on the boundary. We prove

the existence, uniqueness and global boundedness of the solution. Due to strong

memory effects, the question of convergence to equilibria is much more challenging

here than in [8], [9], and we leave it open.

The remaining text has two parts. In Section 2, we briefly describe the model, and

in Section 3, we state and prove the main existence and uniqueness Theorem 3.1.

2. The model

As the reference state, we consider a bounded connected container Ω ⊂ R
3 with

Lipschitzian boundary, filled with water. For modeling details, see [8], [9]. Here,

we only recall that the state variables are the absolute temperature θ > 0, the

displacement u ∈ R
3, and the phase variable χ ∈ [0, 1]. The value χ = 0 means a

solid, χ = 1 means a liquid, χ ∈ (0, 1) is a mixture of the two. We define the strain

ε as an element of the space T3×3
sym of symmetric tensors by the formula

(2.1) ε =
1

2
(∇u + (∇u)T ).

Let δ ∈ T
3×3
sym denote the Kronecker tensor. We consider the specific free energy f in

the form

f = c0θ
(
1 − log

( θ

θc

))
+

λ

2̺0
((ε − ε̃(χ)) : δ)2 −

β

̺0
(θ − θc)ε : δ(2.2)

+ L0

(
χ
(
1 −

θ

θc

)
+ I(χ)

)
,

where I is the indicator function of the interval [0, 1], and

(2.3) ε̃(χ) =
α

3
(1 − χ)δ

is the strain component due to phase transition. The process is described in La-

grangian coordinates, hence the mass density ̺0 is constant. The coefficients α

(relative specific volume increment), c0 (specific heat capacity), λ (bulk elasticity

modulus), β (thermal expansion coefficient), L0 (latent heat) are assumed constant

and positive, and θc > 0 is the melting temperature at standard pressure.
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The stress tensor σ is decomposed into the sum σv +σe of the viscous component

σ
v and the elastic component σ

e. The state functions σ
v, σe, s (specific entropy),

and e (specific internal energy) are given by the formulas

σ
v = ν(εt : δ)δ,(2.4)

σ
e = ̺0

∂f

∂ε
= (λ(ε : δ − α(1 − χ)) − β(θ − θc)) δ,(2.5)

s = −
∂f

∂θ
= c0 log

( θ

θc

)
+
L0

θc
χ+

β

̺0
ε : δ,(2.6)

e = f + θs = c0θ +
λ

2̺0
(ε : δ − α(1 − χ))2 +

β

̺0
θcε : δ + L0(χ+ I(χ)),(2.7)

where ν > 0 is the volume viscosity coefficient. The scalar quantity

(2.8) p := −νεt : δ − λ(ε : δ − α(1 − χ)) + β(θ − θc)

is the pressure, and the stress has the form σ = −pδ. The process is governed by

the balance equations

div σ = 0 (mechanical equilibrium),(2.9)

̺0et + div q = σ : εt (energy balance),(2.10)

−γ0χt ∈ ∂χf (phase relaxation law),(2.11)

where ∂χ is the partial subdifferential with respect to χ, and q is the heat flux vector

that we assume in the form

(2.12) q = −κ∇θ

with a constant heat conductivity κ > 0. The equilibrium equation (2.9) can be

rewritten in the form ∇p = 0, hence

(2.13) p(x, t) = P (t)

with a function P of time only, which is to be determined. Recall that in the

reference state ε : δ = εt : δ = 0, χ = 1, and at the standard pressure Pstand,

the freezing temperature is θc. We thus see from (2.8) that P (t) is in fact the

deviation from the standard pressure. We assume also the external pressure in the

form Pext = Pstand + p0 with a constant deviation p0. The normal force acting on

the boundary is (P (t) − p0)n, where n denotes the unit outward normal vector.

The response of the boundary ∂Ω to pressure changes is assumed to be elastoplas-

tic according to the Prager hardening model represented in Figure 1. We use the

425



operator formalism introduced in [5], cf. also [1], [7], [11], and decompose the normal

displacement u · n into the sum u · n = ue + up of an elastic component ue and a

plastic component up. The pressure difference P0(t) = P (t)− p0 is also decomposed

into the sum P0(t) = ph(x, t) + pb(x, t) of a kinematic hardening component ph and

a backstress pb. We further assume that the heat transfer through the boundary is

proportional to the inner and outer temperature difference. The boundary conditions

on ∂Ω for u and θ then read

P0(t) = k(x)ue(x, t),(2.14)

ph(x, t) = b(x)up(x, t),(2.15)

|pb(x, t)| 6 r(x) a.e.,(2.16)

∂up

∂t
(pb(x, t) − y) > 0 a.e. ∀y ∈ [−r(x), r(x)],(2.17)

q · n = h(x)(θ − θΓ) − pb ∂u
p

∂t
,(2.18)

with given positive measurable functions k (elasticity of the boundary), b (hardening

coefficient), r (yield stress), h (heat transfer coefficient), and a constant θΓ > 0

(external temperature). The term pb∂up/∂t = r(x)|∂up/∂t| is the (nonnegative)

plastic dissipation rate as a boundary heat source in the energy balance.

P0, u
e

ph, up

pb, up

Figure 1. A rheological model for the boundary behavior

We rewrite (2.17) as

(2.19) b(x)
∂up(x, t)

∂t
(P0(t) − b(x)up(x, t) − y) > 0 a.e. ∀y ∈ [−r(x), r(x)],

which is precisely the variational inequality which defines the so-called play operator

(2.20) b(x)up(x, t) = ph(x, t) = pr(x)[P0](t)

with threshold r(x), provided we choose the initial condition

(2.21) b(x)up(x, 0) = min{P0(0) + r(x),max{0, P0(0) − r(x)}}

corresponding to the initially undeformed state, see Figure 2.
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0 P0r(x)
−r(x)

ph

Figure 2. A diagram of the play operator P0 7→ ph = pr(x)[P0] with threshold r(x)

This enables us to find an explicit relation between u and P . From (2.14) and

(2.20) it follows that

(2.22) u · n =
1

k(x)
P0(t) +

1

b(x)
pr(x)[P0](t).

Assuming that 1/k and 1/b belong to L1(∂Ω), we set

(2.23)
1

KΓ
=

∫

∂Ω

1

k(x)
dS(x),

and obtain by Gauss’ Theorem that

UΩ(t) :=

∫

Ω

div u(x, t) dx = F [P0](t) :=
1

KΓ
P0(t)(2.24)

+

∫

∂Ω

1

b(x)
pr(x)[P0](t) dS(x).

Under the small strain hypothesis, the function div u describes the local relative

volume increment. Hence, Eq. (2.24) establishes a hysteresis relation between the

relative pressure P0(t) and the total relative volume increment UΩ(t). The map-

ping F defined in (2.24) is a Prandtl-Ishlinskii operator. If the function r(x) is

nonconstant, plastic yielding occurs at different pressures at different points of the

boundary, which produces a global multiyield character of the model resulting in a

smooth hysteresis diagram as in Figure 3.

Some analytical properties of Prandtl-Ishlinskii operators are listed below in Sub-

section 3.1. Here, we just point out that both F and its inverse F−1 are Lip-

schitz continuous in the space C[0, T ] of continuous functions as well as in the space

W 1,1(0, T ) of absolutely continuous functions from [0, T ] to R. The hysteresis loops

of F are oriented counterclockwise, the loops of F−1 are oriented clockwise. Figure 3

illustrates the situation when the pressure difference P0 increases from zero to some

maximal value and then decreases to zero again (the thick part of the diagram). We
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see that a remanent deformation U∗ persists even if the inner and outer pressure are

in equilibrium.

0 UΩU∗

P0

Figure 3. A diagram of the inverse Prandtl-Ishlinskii operator F−1

We have ε : δ = div u, and thus the mechanical equilibrium equation (2.13), due

to (2.8) and (2.24), reads

(2.25) ν div ut + λ(div u− α(1 − χ)) − β(θ − θc) = −p0 −F−1[UΩ].

As a consequence of (2.2), the energy balance and the phase relaxation equation in

(2.10)–(2.11) have the form

̺0c0θt − κ∆θ = ν(div ut)
2 − βθ div ut −

(
αλ(div u− α(1 − χ)) + ̺0L0

)
χt,(2.26)

−̺0γ0χt ∈ αλ(div u − α(1 − χ)) + ̺0L0

(
1 −

θ

θc
+ ∂I(χ)

)
,(2.27)

where ∂ denotes the subdifferential. For simplicity, we now set

(2.28) c := ̺0c0, γ := ̺0γ0, L := ̺0L0.

For the unknown absolute temperature θ, local relative volume increment U = div u,

and liquid fraction χ, we have the evolution system (note that mathematically, ∂I(χ)

is the same as L∂I(χ))

cθt − κ∆θ = νU2
t − βθUt −

(
αλ(U − α(1 − χ)) + L

)
χt,(2.29)

νUt + λU = αλ(1 − χ) + β(θ − θc) − p0 −F−1[UΩ],(2.30)

−γχt ∈ αλ(U − α(1 − χ)) + L
(
1 −

θ

θc

)
+ ∂I(χ),(2.31)

with the boundary condition (2.18), (2.12), that is,

(2.32) κ∇θ · n + h(x)(θ − θΓ) =
r(x)

b(x)

∣∣pr(x)[P0]t
∣∣.
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In terms of the new variables, the energy e and the entropy s can be written as

e = c0θ +
λ

2̺0
(U − α(1 − χ))2 +

β

̺0
θcU + L0(χ+ I(χ)),(2.33)

s = c0 log
( θ

θc

)
+
L0

θc
χ+

β

̺0
U.(2.34)

The boundary energy term has the form

(2.35) EΓ(t) =
1

2KΓ
P 2

0 (t) +
1

2

∫

∂Ω

1

b(x)
p
2
r(x)[P0](t) dS(x) + p0F [P0](t) + CΓ

with P0 = F−1[UΩ], and with a constant CΓ which ensures that EΓ(t) > 0. We may

take for example

(2.36) CΓ =
p2
0

2

(
1

KΓ
+

∫

∂Ω

1

b(x)
dS(x)

)
.

The energy and entropy balance equations then read

d

dt

( ∫

Ω

̺0e(x, t) dx+ EΓ(t)

)
=

∫

∂Ω

h(x)(θΓ − θ) dS(x),(2.37)

̺0st + div
q

θ
=
κ|∇θ|2

θ2
+
γ

θ
χ2

t +
ν

θ
U2

t > 0,(2.38)

d

dt

∫

Ω

̺0s(x, t) dx =

∫

Ω

(κ|∇θ|2

θ2
+
γ

θ
χ2

t +
ν

θ
U2

t

)
dx(2.39)

+

∫

∂Ω

(h(x)
θ

(θΓ − θ) +
r(x)

θb(x)

∣∣pr(x)[P0]t
∣∣(t)

)
dS(x).

The entropy balance (2.38) says that the entropy production on the right hand side

is nonnegative in agreement with the second principle of thermodynamics. Also the

plastic dissipation produces a positive contribution to the entropy in (2.39). The

system is not closed, and the energy supply through the boundary is given by the

right hand side of (2.37).

3. Existence and uniqueness of solutions

We prescribe the initial conditions

θ(x, 0) = θ0(x),(3.1)

U(x, 0) = U0(x),(3.2)

χ(x, 0) = χ0(x)(3.3)
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for x ∈ Ω, and construct the solution of (2.30)–(2.31) by a fixed point argument.

The method of proof is independent of the actual values of the material constants,

and we choose for simplicity

(3.4) L = 2, c = θc = α = β = γ = κ = λ = ν = 1.

System (2.29)–(2.31) with boundary condition (2.18) then reads
∫

Ω

θtw(x) dx+

∫

Ω

∇θ · ∇w(x) dx = −

∫

∂Ω

h(x)(θ − θΓ)w(x) dS(x)(3.5)

+

∫

Ω

(U2
t − θUt − (U + χ+ 1)χt)w(x) dx

+

∫

∂Ω

r(x)

b(x)

∣∣pr(x)[P0]t
∣∣(t)w(x) dS(x),

Ut + U + χ+ F−1[UΩ] = θ − p0,(3.6)

χt + U + χ+ ∂I(χ) ∋ 2θ − 1,(3.7)

where (3.5) is to be satisfied for all test functions w ∈W 1,2(Ω) and a.e. t > 0, while

(3.6)–(3.7) are supposed to hold a.e. in Ω∞ := Ω × (0,∞).

The main existence and uniqueness result reads as follows.

Theorem 3.1. Let 0 < θ∗ 6 θΓ 6 θ∗, B∗ > 0, and p0 ∈ R be given constants, let

b, r, h be positive functions in L∞(∂Ω) such that

(3.8) r(x) 6 B∗b(x)h(x) a.e.,

and let the data satisfy the conditions

θ0 ∈ L∞(Ω), θ∗ 6 θ0(x) 6 θ∗ a.e.,

U0, χ0 ∈ L∞(Ω), 0 6 χ0(x) 6 1 a.e.

Then there exists a unique solution (θ, U, χ) to (3.5)–(3.7), (3.1)–(3.3) such that

θ > 0 a.e., χ ∈ [0, 1] a.e., U,Ut, χt, θ, 1/θ ∈ L∞(Ω∞), θt ∈ L2
loc(0,∞; (W 1,2(Ω))′),

∇θ, Ut, χt ∈ L2(Ω∞).

R em a r k 3.2. Condition (3.8) is certainly not optimal. A possible relation be-

tween mechanical and thermal characteristics of ∂Ω deserves further investigation.

The proof of Theorem 3.1 will be carried out in the following subsections. Notice

first that the term U2
t − θUt − (U + χ+ 1)χt on the right hand side of (3.5) can be

rewritten alternatively, using (3.7) and (3.6), as

U2
t − θUt − (U + χ+ 1)χt = U2

t − θUt + χ2
t − 2θχt(3.9)

= −(χ+ U + p0 + F−1[UΩ])Ut − (U + χ+ 1)χt.
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We now fix a constant R > 0, a function θ̂ to be specified below, and construct the

solution for the truncated system
∫

Ω

(θtw(x) + ∇θ · ∇w(x)) dx =

∫

Ω

(U2
t + χ2

t −QR(θ̂)(Ut + 2χt))w(x) dx(3.10)

+

∫

∂Ω

(r(x)
b(x)

∣∣pr(x)[P0]t
∣∣(t) − h(x)(θ − θΓ)

)
w(x) dS(x) ∀w ∈ W 1,2(Ω),

Ut + U + χ+ F−1[UΩ] = QR(θ̂) − p0,(3.11)

χt + U + χ+ ∂I(χ) ∋ 2QR(θ̂) − 1(3.12)

first in a bounded domain ΩT := Ω × (0, T ) for any given T > 0, where QR is the

cutoff function QR(z) = min{z+, R}. Then we define a norm in a suitable space of

admissible functions θ̂ such that the mapping θ̂ 7→ θ is a contraction. Eventually, we

derive upper and lower bounds for θ independent of R and T , so that the fixed point

θ = θ̂ of (3.10)–(3.12) is also a global solution of (3.5)–(3.7) if R is sufficiently large.

3.1. Prandtl-Ishlinskii operators. We give here a survey of known properties

of Prandtl-Ishlinskii operators that are needed in the sequel. The proofs can be

found in [7, Chapter II]. We restrict ourselves to the case (2.24), that is,

(3.13) UΩ(t) = F [P0](t) :=
1

KΓ
P0(t) +

∫

∂Ω

1

b(x)
pr(x)[P0](t) dS(x).

For monotone input functions P0, the operator F can be represented by a superpo-

sition (Nemytskii) operator. In particular, there exists a function ϕF (the so-called

initial loading curve) given by the formula

(3.14) ϕF (z) =
z

KΓ
+

∫

∂Ω

1

b(x)
(z − r(x))+ dS(x) for z > 0

such that for every t > 0 the following implications hold:

(∀τ ∈ [0, t] : P0(t) > max{0, P0(τ)}) =⇒ F [P0](t) = ϕF (P0(t)),(3.15)

(∀τ ∈ [0, t] : P0(t) 6 min{0, P0(τ)}) =⇒ F [P0](t) = −ϕF (−P0(t)),(3.16)

and similarly

(∀τ ∈ [0, t] : UΩ(t) > max{0, UΩ(τ)}) =⇒ F−1[UΩ](t) = ϕF−1(UΩ(t)),(3.17)

(∀τ ∈ [0, t] : UΩ(t) 6 min{0, UΩ(τ)}) =⇒ F−1[UΩ](t) = −ϕF−1(−UΩ(t)),(3.18)

where ϕF−1 = ϕ−1
F
. We have

(3.19) ϕ′
F (z) =

1

KΓ
+

∫

∂Ω

1

b(x)
H(z − r(x)) dS(x),
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where H is the Heaviside function, hence ϕF is increasing and convex, ϕF−1 is

increasing and concave, ϕF−1(0) = ϕF (0) = 0, and (ϕF−1)′(0) = 1/ϕ′
F(0) = KΓ.

Proposition 3.3. Let the hypotheses of Theorem 3.1 hold. Then for all U1
Ω, U

2
Ω ∈

W 1,1(0, T ) such that U1
Ω(0) = U2

Ω(0) and for (almost) all t ∈ (0, T ) we have, denoting

P i
0 = F−1[U i

Ω], i = 1, 2, the following inequalities:

|F−1[U1
Ω](t) −F−1[U2

Ω](t)| 6 2KΓ max
τ∈[0,t]

|U1
Ω(τ) − U2

Ω(τ)|,(3.20)

(F−1[U1
Ω](t) −F−1[U2

Ω](t))(U̇1
Ω(t) − U̇2

Ω(t))(3.21)

>
1

2

d

dt

(
1

KΓ
(P 1

0 − P 2
0 )2(t)

+

∫

∂Ω

1

b(x)
(pr(x)[P

1
0 ](t) − pr(x)[P

1
0 ](t))2 dS(x)

)
,

|pr(x)[P
i
0 ]t(t)| 6 |Ṗ i

0 | 6 KΓ|U̇
i
Ω|, i = 1, 2,(3.22)

∫ t

0

|pr(x)[P
1
0 ]t(τ) − pr(x)[P

2
0 ]t(τ)| dτ(3.23)

6

∫ t

0

|Ṗ 1
0 − Ṗ 2

0 |(τ) dτ 6 2KΓ

∫ t

0

|U̇1
Ω − U̇2

Ω|(τ) dτ.

3.2. Gradient flow. Integrating (3.11) over Ω yields

(3.24) U̇Ω + UΩ + |Ω|F−1[UΩ] =

∫

Ω

(QR(θ̂) − p0 − χ) dx.

System (3.11)–(3.12) is a gradient flow in L2(Ω) × L2(Ω) of the form

(3.25) v̇(t) + ∂ψ(v(t)) ∋ f(v, t), v(0) = v0,

with a convex functional ψ, where

v =

(
U

χ

)
,(3.26)

ψ(v) =

∫

Ω

(1

2
(U + χ)2 + I(χ)

)
dx,(3.27)

f(v, t) =

(
QR(θ̂) − p0 −F−1[UΩ]

2QR(θ̂) − 1

)
.(3.28)

The initial condition v0 is given by (3.2), (3.3). We will prove the following result.
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Proposition 3.4. Let the hypotheses of Theorem 3.1 hold, and let a function θ̂ ∈

L2
loc(0,∞;L1(Ω)) be given. Then there exist a unique solution (U, χ) ∈ (L∞(Ω∞))2

to (3.24)–(3.28), and a constant C0 independent of x, t and R, such that

(3.29) |U(x, t)| + |Ut(x, t)| + |χt(x, t)| 6 C0(1 +R)

a.e. in Ω∞. Furthermore, there exists an increasing function µ : (0,∞) → (0,∞) such

that whenever θ̂1, θ̂2 ∈ L2
loc(0,∞;L1(Ω)) are given functions and (U1, χ1), (U2, χ2)

are the corresponding solutions to (3.24)–(3.28), then the differences θ̂d = θ̂1 − θ̂2,

Ud = U1 − U2, χd = χ1 − χ2 satisfy for every t > 0 and a.e. x ∈ Ω the inequality

(3.30)

∫ t

0

(|(Ud)t|+ |(χd)t|)(x, τ) dτ 6 9

∫ t

0

|θ̂d(x, τ)| dτ + µ(t)

( ∫ t

0

|θ̂d(τ)|
2
1 dτ

)1/2

.

where the symbol | · |p for p ∈ [1,∞] stands for the norm in Lp(Ω).

In what follows, we denote by C1, C2, . . . any constants independent of x, t and R.

P r o o f. The right-hand side f of (3.25) is Lipschitz continuous in v, and we eas-

ily obtain the existence and uniqueness of solutions to (3.25)–(3.28) by a contraction

argument.

Eq. (3.24) is an ODE with a Lipschitz continuous nonlinearity, and given initial

condition, hence for every given χ and θ̂, it admits a unique Lipschitz continuous

solution UΩ. It is easy to see that both UΩ and U̇Ω remain globally bounded: Let

UΩ attain at some point t > 0 the maximum of its absolute value, that is, UΩ(t) =

max
τ∈[0,t]

|UΩ(τ)|. Then U̇Ω(t) > 0, and (3.17) and (3.24) imply

UΩ(t) + ϕF−1(UΩ(t)) 6 C1(1 +R).

The argument is similar if UΩ(t) = − max
τ∈[0,t]

|UΩ(τ)|, and we conclude that

(3.31) |U̇Ω(t)| + |UΩ(t)| 6 C2(1 +R).

Equation (3.11) now has a right hand side bounded by a multiple of 1 + R, hence

|Ut| + |U | 6 C3(1 + R) a.e. To get the same bound for |χt|, it suffices to multiply

(3.12) by χt. This completes the proof of (3.29).

Consider now two different inputs. As above, we denote the differences {}1 − {}2

by {}d for all symbols {}. Testing the difference of Eqs. (3.24) by U̇Ωd and using

(3.21), we obtain after integration

(3.32)

∫ t

0

|U̇Ωd(τ)|
2 dτ + |UΩd(t)|

2 6

∫ t

0

(|θ̂d|1 + |χd|1)
2(τ) dτ ∀t > 0.
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To prove (3.30), we rewrite (3.25) as two scalar gradient flows

Ut + ∂ψ1(U) = a,(3.33)

χt + ∂ψ2(χ) ∋ b,(3.34)

where ψ1(U) = 1
2U

2, ψ2 = 1
2χ

2 + I(χ), a = QR(θ̂) − χ − p0 − F−1[UΩ], b =

2QR(θ̂) − 1 − U .

By [6, Theorem 1.12], we have for all t > 0 and a.e. x ∈ Ω that

(3.35)

∫ t

0

(|(Ud)t| + |(χd)t|)(x, τ) dτ 6 2

∫ t

0

(|ad| + |bd|)(x, τ) dτ.

We multiply the difference of (3.33) by sign(Ud), the difference of (3.34) by sign(χd),

and sum them up. Using the monotonicity of ∂I and the elementary inequality

(p+ q)(sign(p) + sign(q)) > 0, we obtain that

(3.36) |Ud|t + |χd|t 6 3|θ̂d| + |F−1
d | a.e.,

where F−1
d := F−1[U1

Ω] −F−1[U2
Ω]. By (3.32) and Proposition 3.3, we thus have

(3.37) |Ud|t + |χd|t 6 3|θ̂d| + 2KΓ

( ∫ t

0

(|θ̂d|1 + |χd|1)
2(τ) dτ

)1/2

a.e.

Integrating (3.37) over Ω and using Gronwall’s inequality we find an increasing func-

tion µ1(t) such that

(3.38)
(
|F−1

d (t)| + |Ud|1(t) + |χd|1(t)
)2

6 µ1(t)

∫ t

0

|θ̂d(τ)|
2
1 dτ ∀t > 0.

Integrating (3.36) with respect to t yields

(3.39) (|Ud| + |χd|) (x, t) 6 3

∫ t

0

|θ̂d(x, τ)| dτ +

(
µ1(t)

∫ t

0

|θ̂d(τ)|
2
1 dτ

)1/2

.

From (3.35) we now immediately get the desired inequality

(3.40)

∫ t

0

(|(Ud)t|+|(χd)t|)(x, τ) dτ 6 9

∫ t

0

|θ̂d(x, τ)| dτ+3

(
µ1(t)

∫ t

0

|θ̂d(τ)|
2
1 dτ

)1/2

for a.e. x ∈ Ω and all t > 0, with µ(t) = 3
√
µ1(t). This completes the proof. �
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3.3. Fixed point argument. Let now a final time T > 0 be fixed. For every

given θ̂, Eq. (3.10) is a linear heat equation with a given right hand side and boundary

and initial conditions, hence it admits a unique solution θ with the regularity

(3.41) θ ∈ C([0, T ];L2(Ω)), θt ∈ L2((0, T ; (W 1,2(Ω))′), ∇θ ∈ L2(0, T ;L2(Ω)).

By Proposition 3.3 we have |pr(x)[P0]t|(t) 6 KΓ|U̇Ω(t)| a.e. Testing (3.10) by w = θ,

we may use Proposition 3.4 to find a constant M(T,R) depending on T and R such

that

(3.42) sup ess
t∈(0,T )

∫

Ω

θ2(x, t) dx+

∫ T

0

(∫

Ω

|∇θ|2 dx+

∫

∂Ω

h(x)θ2 dS(x)

)
dt 6 M(T,R).

We can define the mapping that associates with θ̂ the solution θ of (3.10)–(3.12) with

initial conditions (3.1)–(3.3). We now show that it is a contraction on the set

(3.43) ΞT,R := {θ ∈ L2(ΩT ) : conditions (3.1) and (3.41)–(3.42) hold}.

Let θ̂1, θ̂2 be two functions in ΞT,R, and let (θ1, U1, χ1), (θ2, U2, χ2) be the corre-

sponding solutions to (3.10)–(3.12) with the same initial conditions θ0, U0, χ0. We

see from (3.42) that θ1, θ2 belong to ΞT,R. We test the difference of Eqs. (3.10) for

θ1 and θ2 by w = sign(θd) obtaining

d

dt

∫

Ω

|θd(x, t)| dx+

∫

∂Ω

h(x)|θd(x, t)| dS(x)(3.44)

6 C4(1 +R)

∫

Ω

(|(Ud)t| + |(χd)t| + |θ̂d|)(x, t) dx

+

∫

∂Ω

r(x)

b(x)
|pd(x, t)| dS(x) a.e.,

where we set pd(x, t) := |pr(x)[P
1
0 ]t| − |pr(x)[P

2
0 ]t|(t). By Proposition 3.3 we have for

a.e. x ∈ ∂Ω that

∫ t

0

|pd(x, τ)| dτ 6 2KΓ

∫ t

0

|U̇Ωd(τ) dτ 6 2KΓ

∫ t

0

∫

Ω

|(Ud)t|(x, τ) dxdτ.

Integrating (3.44) with respect to t and using Proposition 3.4 we find an increasing

function µR(t) depending also on R such that

(3.45) |θd|1(t) 6 µR(t)

( ∫ t

0

|θ̂d|
2
1(τ) dτ

)1/2

a.e.
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Set Θ2(t) =
∫ t

0
|θd|

2
1(τ) dτ , Θ̂2(t) =

∫ t

0
|θ̂d|

2
1(τ) dτ , µ̂R(t) =

∫ t

0
µ2

R(τ) dτ . Let us

introduce in L∞(0, T ) the norm

‖w‖C := sup
τ∈[0,T ]

e−µ̂R(t)|w(τ)|.

Then ‖Θ‖2
C 6 1

2‖Θ̂‖2
C , hence the mapping θ̂ 7→ θ is a contraction in L2(0, T ;L1(Ω))

with respect to the norm induced by ‖ · ‖C . The set ΞT,R is a closed subset of

L2(0, T ;L1(Ω)). This implies the existence of a fixed point θ ∈ ΞT,R, which is indeed

a solution to (3.10)–(3.12). Since T has been chosen arbitrarily, the solution is global

in Ω∞.

3.4. Estimates. A positive lower bound for θ follows from the maximum princi-

ple. Let us introduce an auxiliary function θ♭(t) = θ∗/(1 + 2θ∗t). On the right hand

side of (3.10) with θ = θ̂ we have U2
t + χ2

t −QR(θ)(Ut + 2χt) > −2(θ+)2. For every

nonnegative test function w and a.e. t ∈ (0, T ) we thus obtain

∫

Ω

θtw(x) dx+

∫

Ω

∇θ · ∇w(x) dx+

∫

∂Ω

h(x)(θ − θΓ)w(x) dS(x)(3.46)

> −2

∫

Ω

(θ+)2w(x) dx,

∫

Ω

θ♭
tw(x) dx+

∫

Ω

∇θ♭ · ∇w(x) dx+

∫

∂Ω

h(x)(θ♭ − θΓ)w(x) dS(x)(3.47)

6 −2

∫

Ω

(θ♭)2w(x) dx.

We subtract (3.46) from (3.47) and test by w = (θ♭−θ)+, which yields θ(x, t) > θ♭(t)

a.e. In particular, the temperature remains positive for all times t > 0.

The energy eR and the entropy sR corresponding to the fixed point θ = θ̂ of

(3.10)–(3.12) have the form

̺0eR = θ +
1

2
(U + χ− 1)2 + U + 2(χ+ I(χ)),(3.48)

̺0sR = lR(θ) + 2χ+ U,(3.49)

where lR(θ) =
∫ θ

1 (1/QR(θ′) dθ′, that is, lR(θ) = log θ for θ < R, lR(θ) = logR +

(1/R)(θ −R) for θ > R.

Let EΓ be given by (2.35). We compute from (3.48)–(3.49) the initial values

e0, E0
Γ, and s

0 for specific energy, boundary energy, and entropy, respectively. Let

E0 =
∫
Ω
̺0e

0 dx, S0 =
∫
Ω
̺0s

0 dx denote the total initial energy and the entropy,
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respectively. From the energy end entropy balance equations (2.37), (2.39) we derive

the following crucial balance equation for the “extended” energy ̺0(eR − θΓsR):

∫

Ω

(
θ +

1

2
(U + χ− 1))2 + U + 2χ

)
(x, t) dx+ EΓ(t)(3.50)

+ θΓ

∫ t

0

∫

Ω

( |∇QR(θ)|2

Q2
R(θ)

+
χ2

t

QR(θ)
+

U2
t

QR(θ)

)
(x, τ) dxdτ

+

∫ t

0

∫

∂Ω

h(x)

QR(θ)
(θΓ − θ)(QR(θΓ) −QR(θ))(x, τ) dS(x) dτ

+

∫ t

0

∫

∂Ω

θΓr(x)

QR(θ)b(x)

∣∣pr(x)[P0]t
∣∣(t) dS(x) dτ

= E0 + E0
Γ − θΓS

0 + θΓ

∫

Ω

(lR(θ) + 2χ+ U) (x, t) dx.

It is easy to see that there exists C5 > 0 independent of R such that θΓlR(θ) 6

θ/2 + C5 if R is sufficiently large. Indeed, assuming e.g. that

R > 2θΓ(1 + logR),

we have θΓlR(θ) − θ/2 6 0 if θ > R, and θΓlR(θ) − θ/2 6 θΓ(log(2θΓ) − 1) if θ < R.

We conclude that there exists a constant C6 > 0 independent of t and R such that

for all t > 0 we have

(3.51)

∫

Ω

(
θ + U2

)
(x, t) dx+

∫ t

0

∫

Ω

( |∇θ|2

θ2
+
χ2

t

θ
+
U2

t

θ

)
(x, τ) dxdτ 6 C6.

In particular, the right hand side of (3.24) with θ̂ = θ is uniformly bounded inde-

pendently of R, and the argument of the proof of Proposition 3.4 entails that

(3.52) |U̇Ω(t)| + |UΩ(t)| + |Ṗ0| + |P0| + |pr(x)[P0]t| 6 C7 a.e.

For every nonnegative test function w and a.e. t ∈ (0, T ), the fixed point θ of (3.10)–

(3.12) satisfies the inequality

∫

Ω

θtw(x) dx+

∫

Ω

∇θ · ∇w(x) dx(3.53)

+

∫

∂Ω

h(x)(θ − θΓ − C7B
∗)w(x) dS(x) 6 C8(1 +R)2

∫

Ω

w(x) dx

with a suitable constant C8 > 0. Let us define another auxiliary function

θ♯(t) = θ∗ + C7B
∗ + C8(1 +R)2t.
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For every nonnegative test function w and a.e. t ∈ (0, T ) we then have

∫

Ω

θ♯
tw(x) dx+

∫

Ω

∇θ♯ · ∇w(x) dx(3.54)

+

∫

∂Ω

h(x)(θ♯ − θΓ − C7B
∗)w(x) dS(x) > C8(1 +R)2

∫

Ω

w(x) dx.

We now subtract (3.54) from (3.53) and test by w = (θ − θ♯)+, which yields the

pointwise bound θ(x, t) 6 θ♯(t). We thus have the inequalities

(3.55) θ♭(t) 6 θ(x, t) 6 θ♯(t) a.e.

3.5. Uniform global bounds. The unique solution fixed point (θ, U, χ) to the

system (3.10)–(3.12), (3.1)–(3.3) exists globally in the whole domain Ω∞. We now

show that θ remains globally bounded independently of t and R if R is sufficiently

large. Take first for instance any R > 2θ∗ + C7B
∗. By (3.55), we know that θ

remains smaller than R in a nondegenerate interval (0, T ) with T > θ∗/(C8(1+R)2).

Let (0, T0) be the maximal interval in which θ is bounded by R. Then, in (0, T0),

the solution constructed in Subsection 3.3 is also a solution of the original problem

(3.5)–(3.7). Moreover, due to estimate (3.51), we know that θ admits a bound

in L∞(0, T0;L
1(Ω)) independent of R. In order to prove that T0 = +∞ if R is

sufficiently large, we refer to the following statement, which is proved in detail in [8]

by a variant of the Moser iteration technique.

Proposition 3.5. Let Ω ⊂ R
N be a bounded domain with Lipschitzian boundary.

Given nonnegative functions h ∈ L1(∂Ω) and r ∈ L∞(0,∞;Lq(Ω)) with a fixed q >

N/2, an initial condition v0 ∈ L∞(Ω), and a boundary datum vΓ ∈ L∞(∂Ω×(0,∞)),

consider the problem

vt − ∆v + v = r(x, t)H[v] a.e. in Ω∞,(3.56)

∇v · n = −h(x) (f(x, t, v(x, t)) − vΓ(x, t)) a.e. on ∂Ω × (0,∞),(3.57)

v(x, 0) = v0 a.e. in Ω,(3.58)

under the assumption that there exist positive constants H0, Cf , V, VΓ, E0 such that

the following assertions hold:

(i) The mapping H : L∞
loc(Ω∞) → L∞

loc(Ω∞) satisfies for every v ∈ L∞
loc(Ω∞) and

a.e. (x, t) ∈ Ω∞ the inequality

v(x, t)H[v](x, t) 6 H0|v(x, t)|

(
1 + |v(x, t)| +

∫ t

0

ξ(t− τ)|v(x, τ)| dτ

)
,
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where ξ ∈W 1,1(0,∞) is a given nonnegative function such that

(3.59) ξ̇(t) 6 −ξ(0)ξ(t) a.e.

(ii) f is a Carathéodory function on Ω × (0,∞) × R such that f(x, t, v)v > Cfv
2

a.e. for all v ∈ R.

(iii) |v0(x)| 6 V a.e. in Ω.

(iv) |vΓ(x, t)| 6 VΓ a.e. on ∂Ω × (0,∞).

(v) System (3.56)–(3.58) admits a solution v ∈ W 1,2
loc (0,∞; (W 1,2)′(Ω)) ∩L2

loc(0,∞;

W 1,2(Ω)) ∩ L∞
loc(Ω∞) satisfying the estimate

∫

Ω

|v(x, t)| dx 6 E0 a.e. in (0,∞).

Then there exists a positive constant C∗ depending only on |h|L1(∂Ω), Cf , H0, ξ(0),

and r∗ := |r|L∞(0,∞;Lq(Ω)), such that

(3.60) |v(t)|L∞(Ω) 6 C∗ max {1, V, VΓ, E0} for a.e. t > 0.

R em a r k 3.6. As a consequence of (3.59), we have ξ(t) 6 ξ(0)e−ξ(0)t for all

t > 0, hence
∫ ∞

0 ξ(t) dt 6 1. As a typical function satisfying (3.59), let us mention

for example

(3.61) ξ(t) =
m1
n∑

k=1

rk

n∑

k=1

rke−mkt

with any 0 < m1 6 . . . 6 mn and rk > 0, k = 1, . . . , n.

We now complete the proof of Theorem 3.1 by showing that T0 introduced at the

beginning of this subsection is +∞ if R is sufficiently large. By (3.51)–(3.52), we

obtain directly from (3.6)–(3.7) that

(3.62) |U(x, t)|+ |Ut(x, t)|+ |χt(x, t)| 6 C10

(
1+θ(x, t)+

∫ t

0

eτ−tθ(x, τ) dτ

)
a.e.

As in (3.9), we rewrite the right hand side of Eq. (3.5) as

−(χ+ U + p0 + F−1[UΩ])Ut − (U + χ+ 1)χt.

By (3.51), the function U is in L∞(0,∞;L2(Ω)) and the bound does not depend

on R. Eq. (3.5), with θ added to both the left and the right hand side, thus satisfies
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the hypotheses of Proposition 3.5 for N = 3 and q = 2. This enables us to conclude

that θ(x, t) is uniformly bounded from above by a constant, independently of R, so

that θ never reaches the value R if R is sufficiently large, which we wanted to prove.

By (3.62), also U , Ut, and χt are uniformly bounded by a constant.

We proceed similarly to prove a uniform positive lower bound for θ. We denote

R0 := sup θ, and in the equation

∫

Ω

θtw(x) dx+

∫

Ω

∇θ · ∇w(x) dx =

∫

Ω

(
U2

t + χ2
t − θ(Ut + 2χt)

)
w(x) dx(3.63)

+

∫

∂Ω

(r(x)
b(x)

∣∣pr(x)[P0]t
∣∣(t) − h(x)(θ − θΓ)

)
w(x) dS(x) ∀w ∈W 1,2(Ω)

set w = −w̃/θ with an arbitrary w̃ ∈ W 1,2(Ω). For a new (nonnegative) variable

v(x, t) := logR0 − log θ(x, t) we obtain the equation

∫

Ω

vtw̃(x) dx+

∫

Ω

∇v · ∇w̃(x) dx+

∫

∂Ω

h(x)
(B(x, t)

θ
− 1

)
w̃(x) dS(x)(3.64)

=

∫

Ω

(
−
U2

t + χ2
t

θ
−

|∇θ|2

θ2
+ Ut + 2χt

)
w̃(x) dx

with B(x, t) = θΓ + r(x)/(b(x)h(x))|pr(x)[P0]t|(t). For

H[v] := sign(v)
(
−
U2

t + χ2
t

θ
−

|∇θ|2

θ2
+ Ut + 2χt

)

we check that the hypotheses of Proposition 3.5 are satisfied with the choice

f(x, t, v) = (B(x, t)/R0)(e
v − 1), vΓ = 1 − B(x, t)/R0, r ≡ 1, and vH[v] 6 3C7|v|.

Hence, v is bounded above by some v∗, which entails θ > R0e
−v∗

. This, together

with (3.51), concludes the proof of Theorem 3.1.

References

[1] M.Brokate, J. Sprekels: Hysteresis and Phase Transitions. Appl. Math. Sci. 121, Sprin-
ger, New York, 1996.

[2] M.Frémond: Non-Smooth Thermo-Mechanics. Springer, Berlin, 2002.
[3] M.Frémond, E. Rocca: Well-posedness of a phase transition model with the possibility
of voids. Math. Models Methods Appl. Sci. 16 (2006), 559–586.

[4] M.Frémond, E. Rocca: Solid-liquid phase changes with different densities. Q. Appl.
Math. 66 (2008), 609–632.

[5] M.A.Krasnosel’skii, A. V. Pokrovskii: Systems with Hysteresis. Springer, Berlin, 1989.
[6] P. Krejčí: Hysteresis operators—a new approach to evolution differential inequalities.
Comment. Math. Univ. Carolinae 33 (1989), 525–536.

[7] P.Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto Int.
Series. Math. Sci. Appl., Vol. 8, Gakkotosho, Tokyo, 1996.

440



[8] P.Krejčí, E.Rocca, J. Sprekels: A bottle in a freezer. SIAM J. Math. Anal. 41 (2009),
1851–1873.

[9] P.Krejčí, E.Rocca, J. Sprekels: Phase separation in a gravity field. To appear in
DCDS-S.

[10] P.Krejčí, E.Rocca, J. Sprekels: Liquid-solid phase transitions in a deformable con-
tainer. Continuous Media with Microstructure (B. Albers, ed.). Springer, Berlin, 2010,
pp. 281–296.

[11] A.Visintin: Models of Phase Transitions. Progress in Nonlinear Differential Equations
and their Applications 28, Birkhäuser, Boston, 1996.

Author’s address: Pavel Krejčí, Institute of Mathematics, Academy of Sciences of the
Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic, e-mail: krejci@math.cas.cz.

441


		webmaster@dml.cz
	2020-07-01T17:39:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




