
Commentationes Mathematicae Universitatis Carolinae

Robert Černý
Sharp generalized Trudinger inequalities via truncation for embedding into
multiple exponential spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 51 (2010), No. 4, 577--593

Persistent URL: http://dml.cz/dmlcz/140839

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/140839
http://project.dml.cz


Comment.Math.Univ.Carolin. 51,4 (2010) 577–593 577

Sharp generalized Trudinger inequalities via truncation

for embedding into multiple exponential spaces

Robert Černý

Abstract. We prove that the generalized Trudinger inequality for Orlicz-Sobolev
spaces embedded into multiple exponential spaces implies a version of an in-
equality due to Brézis and Wainger.

Keywords: Orlicz spaces, Sobolev inequalities

Classification: 46E35, 46E30

1. Introduction

Let Ω ⊂ R
n, n ≥ 2, be a bounded domain. The classical Sobolev embedding

theorem asserts that W 1,p
0 (Ω) is continuously embedded into Lp∗

(Ω) if 1 ≤ p < n

and p∗ = pn
n−p

. Further W 1,p
0 (Ω), p > n, is embedded to L∞(Ω). Even though p∗

tends to infinity as p→ n−, there are unbounded functions in W 1,n
0 (Ω).

A famous result by Trudinger [25] (see also [12], [22], [24] and [26]) states that

the space W 1,n
0 (Ω) is continuously embedded in the Orlicz space expL

n
n−1 (Ω) (see

Preliminaries for the definition of Orlicz spaces), i.e. there exist C1 = C1(n) and
C2 = C2(n) such that

(1.1)

∫

Ω

exp
(( |u(x)|

C1‖∇u‖Ln(Ω)

)
n

n−1
)

dx ≤ C2Ln(Ω)

for every non-trivial function u ∈W 1,n
0 (Ω).

It is known (see [13], [7] and [3]) that expL
n

n−1 (Ω) is the smallest Orlicz space
with this property. However, even sharper inequalities exist in other scales. By
a result of Brézis and Wainger [1] and independently Hansson [11] (see also [19]
for a simple proof) we know that

(1.2)

∫ Ln(Ω)

0

(u∗(t))n

logn( eLn(Ω)
t

)

dt

t
≤ C‖∇u‖n

Ln(Ω)

for every u ∈ W 1,n
0 (Ω). This inequality can be also derived from capacitary

estimates by Maz’ya [17]. The results in [8] and [4] tell us that this inequality
gives us the smallest rearrangement invariant Banach function space Y (Ω) such
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that W 1,n
0 (Ω) is continuously embedded into Y (Ω). From [1, Proof of Theorem

3(b)] one can easily see that equality (1.2) is stronger than (1.1).
Next we would like to have a version of (1.2) which is suitable for Orlicz-

Sobolev spaces embedded into multiple exponential Orlicz spaces. Recall that for
s > 0, a measure µ on Ω, f : Ω 7→ R µ-measurable and for ψ : [0,Ln(Ω)] 7→
[0,∞) non-decreasing and continuous on [0,Ln(Ω)], differentiable on (0,Ln(Ω))
and satisfying ψ(0) = 0, we have the following well-known identity

(1.3)

∫ Ln(Ω)

0

(f∗
µ(t))sψ′(t) dt =

∫ ∞

0

ψ
(

µ({x ∈ Ω : |f(x)| > r})
)

srs−1 dr

(f∗
µ denotes the non-increasing rearrangement of f with respect to the measure µ).

Using (1.3) and some easy estimates we obtain that (1.2) is equivalent to

(1.4)

∫ ∞

0

tn−1

logn−1
(

eLn(Ω)
Ln({x∈Ω:|u(x)|≥t})

) dt ≤ C‖∇u‖n
Ln(Ω)

with the convention that we integrate only over t ∈ (0,∞) such that Ln({|u| ≥

t}) > 0 (we define ψ(t) = log1−n( eLn(Ω)
t

) for t ∈ (0,Ln(Ω)] and ψ(0) = 0). We
use this convention throughout the paper.

When Ω is sufficiently nice, (1.1) turns to the following inequality for functions
that do not have a zero trace on the boundary: there are C1 = C1(n) and C2 =
C2(n) so that for every non-trivial u ∈W 1,n(Ω) we have

(1.5) inf
c∈R

∫

Ω

exp
(( |u(x) − c|

C1‖∇u‖Ln(Ω)

)
n

n−1
)

dx ≤ C2Ln(Ω)

and (1.4) turns to

(1.6) inf
c∈R

∫ ∞

0

tn−1

logn−1
(

eLn(Ω)
Ln({x∈Ω:|u(x)−c|≥t})

) dt ≤ C‖∇u‖n
Ln(Ω)

for every u ∈ W 1,n(Ω).
It is a surprising result by Koskela and Onninen [16] that if Ω is such that (1.5)

is valid for every u ∈ W 1,n(Ω), then (1.6) is also valid for every u ∈ W 1,n(Ω).
That is, with no additional requirement on Ω we have that the validity of the
embedding (1.5) implies the validity of the sharper embedding (1.6). It is also
proved in [16] that the Sobolev inequality for W 1,p(Ω) →֒ Lp∗

(Ω), 1 ≤ p < n,
improves the same way into an inequality by O’Neil [20] and Peetre [21].

In recent paper [15], Hencl proves a version of the result from [16] for Orlicz-
Sobolev spaces embedded into single and double exponential spaces.

The aim of this note is to show that the same phenomenon occurs in all Orlicz-
Sobolev spaces embedded into multiple exponential Orlicz spaces.

Let us give some information concerning the spaces we are interested in. The
space W0L

n logα L(Ω), α < n − 1, of the (first order) Sobolev type, modeled on
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the Zygmund space Ln logα L(Ω), is continuously embedded into the Orlicz space

with the Young function that behaves like exp(t
n

n−1−α ) for large t. These results
are due to Fusco, Lions, Sbordone [9] for α < 0 and Edmunds, Gurka, Opic [5]
in general. Moreover it is shown in [5] (see also [3] and [7]) that in the limiting
case α = n − 1 we have the embedding into a double exponential space, i.e. the
space W0L

n logn−1 L logα logL(Ω), α < n − 1, is continuously embedded into

the Orlicz space with the Young function that behaves like exp(exp(t
n

n−1−α )) for
large t. Further in the limiting case α = n− 1 we have the embedding into triple
exponential space and so on. The borderline case is always α = n − 1 and for
α > n−1 we have the embedding into L∞(Ω). It is well-known that the Zygmund
space Ln logα L(Ω) coincides with the Orlicz space LΦ(Ω), where

lim
t→∞

Φ(t)

tn logα(t)
= 1,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)

tn logn−1(t) logα(log(t))
= 1,

and so on. For a further discussion about the limiting cases α = n− 1 see [6].
To simplify our notation when working with the multiple exponential spaces,

let us write for ℓ ∈ N, ℓ ≥ 2

log[ℓ](t) = log(log[ℓ−1](t)) , where log[1](t) = log(t)

and

exp[ℓ](t) = exp(exp[ℓ−1](t)), where exp[1](t) = exp(t).

Next, let us recall the version of (1.1) for embedding into multiple exponential
spaces. Let Ω ⊂ R

n, n ≥ 2, be a bounded domain, let ℓ ∈ N, ℓ ≥ 2, let α < n− 1
and let Φ be a Young function satisfying

lim
t→∞

Φ(t)

tn
(

Πℓ−1
i=1 logn−1

[i] (t)
)

logα
[ℓ](t)

= 1.

Then it is shown in [5] and [9] (see also [3], [14] and [2]) that there are constants
C1 and C2 such that

∫

Ω

exp[ℓ]

(( |u(x)|

C1‖∇u‖LΦ(Ω)

)
n

n−1−α
)

dx ≤ C2

for every non-trivial u ∈W0L
Φ(Ω).

Following [16] and [15] we state our results in the generality which can be
applied in the context of analysis on metric measure spaces. In what follows X
is always a metric space equipped with a Borel measure µ and Ω is a measurable
subset of X .
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In the sequel we consider differentiable Young functions Φ such that

(1.7) lim
t→∞

Φ(t)

ts
(

Πℓ−1
i=1 logs−1

[i] (t)
)

logα
[ℓ](t)

= 1

with ℓ ∈ N, ℓ ≥ 2, s > 1 and α < s − 1. We further suppose that there are
C, δ > 0 satisfying

(1.8)
1

C
ts ≤ Φ(t) ≤ Cts for t ∈ [0, δ).

Theorem 1.1. Let Ω ⊂ X be a domain with µ(Ω) < ∞ and let u, g : Ω → R.

Fix ℓ ∈ N, ℓ ≥ 2, s ∈ (1,∞) and α ∈ R, α < s − 1. Set E = exp[ℓ](1). Suppose

that Φ is a Young function satisfying (1.7) and (1.8). Assume that the inequality

(1.9) inf
c∈R

∫

Ω

exp[ℓ]

(( |u(y) − c|

C1‖g‖LΦ(Ω)

)
s

s−1−α
)

dµ(y) ≤ C2

is stable under truncation. Then

(1.10) inf
c∈R

∫ ∞

0

ts−1

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({x∈Ω:|u(x)−c|≥t})

) dt <∞ .

The requirement that the inequality (1.9) is stable under truncation means that
for every d ∈ R, 0 < t1 < t2 <∞ and z ∈ {−1, 1} the pairs vt2

t1
, gt2

t1
= gχ{t1<v≤t2},

where v = z(u− d) and vt2
t1

= min{max{0, v − t1}, t2 − t1}, also satisfy (1.9):

inf
c∈R

∫

Ω

exp[ℓ]

(( |vt2
t1

(y) − c|

C1‖g
t2
t1
‖LΦ(Ω)

)
s

s−1−α
)

dµ(y) ≤ C2.

Notice that the function u clearly satisfies the truncation property if Ω ⊂ R
n,

s = n, µ = Ln and g = |∇u|. For further applications of the powerful truncation
technique which was first used in [18] we refer the reader to [17], [10] and references
given there.

The validity of (1.10) is known in the Euclidean setting if we deal only with
functions with zero traces (see [5], [8] and [4]). Again these spaces serve as the
best rearrangement invariant target space of the embedding of W0L

Φ(Ω). Our ap-
proach gives a new proof of these embeddings and we have additional information
if we deal with functions that do not have a zero trace on the boundary.

The paper is organized the following way. In the third section we study some
properties of the functions exp[j] and log[j], j ∈ N. The fourth section is devoted
to the proof of Theorem 1.1.
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2. Preliminaries

We denote by Ln the n-dimensional Lebesgue measure. For two functions
h, g : I 7→ R we write h ∼ g on I if there is a constant C > 1 such that
1
C
h(t) ≤ g(t) ≤ Ch(t) for every t ∈ I. When I = [0,∞) we simply write h ∼ g.
A function Φ : [0,∞) 7→ [0,∞) is a Young function if Φ(0) = 0, Φ is increasing,

convex and limt→∞
Φ(t)

t
= ∞. For a fixed measure µ, we denote by LΦ(Ω) the

Orlicz space corresponding to a Young function Φ on a set Ω with a measure µ.
This space is equipped with the Luxemburg norm

‖f‖LΦ(Ω) = inf
{

λ > 0 :

∫

Ω

Φ
( |f(x)|

λ

)

dµ(x) ≤ 1
}

.

For an introduction to Orlicz spaces see [23]. By WLΦ(Ω) we denote the set of
functions f such that f, |∇f | ∈ LΦ(Ω) and by W0L

Φ(Ω) we denote the closure of
C∞

0 (Ω) in WLΦ(Ω).
Let ℓ ∈ N, ℓ ≥ 2, s > 1 and α < s − 1. Suppose that the Young function Φ

satisfies (1.7) and (1.8). Let us define auxiliary functions ϕ1,Φ1 : [0,∞) 7→ [0,∞)
by

ϕ1(t) =
(

ℓ
∏

j=1

logs−1
[j] (E + t)

)

logα
[j](E + t), Φ1(t) = tsϕ1(t), t ≥ 0.

From conditions (1.7), (1.8) we see that for any fixed t0 > 0 we have

(2.1) Φ1(t) ≥
1

C
ts, Φ ∼ Φ1, ϕ1 ∼ 1 on [0, t0] and Φ1(t) ∼ ts on [0, t0].

We say that a function Φ satisfies the ∆2-condition if there is C∆ > 0 such
that Φ(2t) ≤ C∆Φ(t) for every t ≥ 0. If Φ satisfies the ∆2-condition then (see
[23, Proposition 6, p. 77])

(2.2)

∫

Ω

Φ
( |f(x)|

‖f‖LΦ(Ω)

)

dµ(x) = 1 provided ‖f‖LΦ(Ω) > 0.

Notice that our function Φ satisfies ∆2-condition thanks to (1.7) and (1.8). And
so do ϕ1 and Φ1.

Let Ψ : [0,∞) 7→ [0,∞) be an increasing convex function and let h : S → R

be a non-negative function. Then we can use the following version of Jensen’s
inequality:

(2.3)
1

µ(S)

∫

S

h(x) dx ≤ Ψ−1
( 1

µ(S)

∫

S

Ψ(h(x)) dx
)

.

We also use a simple lemma from [16].
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Lemma 2.1. Let ν be a finite measure on a set Y . If w : Y 7→ [0,∞) is a ν-

measurable function such that ν({y ∈ Y : w(y) = 0}) ≥ ν(Y )
2 , then, for every

t > 0 we have

ν({y ∈ Y : w(y) ≥ t}) ≤ 2 inf
c∈R

ν
({

y ∈ Y : |w(y) − c| ≥
t

2

})

.

By C we denote a generic positive constant that may depend on ℓ, s, α, C1, K,
‖g‖LΦ(Ω) and ‖f‖LΦ(Ω). This constant may vary from expression to expression as
usual.

3. Some properties of the functions exp[j] and log[j]

Lemma 3.1. Let a, b, d ≥ 1. Then for every j ∈ N, j ≤ ℓ we have

(3.1) log[j](E + ab) ≤ 2 log(E + b) log[j](E + a)

and

(3.2) log[j](E + ad) ≤ C log[j](E + a).

Proof: Let us prove (3.1). Using the fact that for x, y ≥ 1 we have x+ y ≤ 2xy
we obtain

log(E + ab) ≤ log(Eb + ab) = log(b) + log(E + a)

≤ log(E + b) + log(E + a) ≤ 2 log(E + b) log(E + a).

Similarly we use the inequality 2 log(E+ b) ≤ E+ b and above estimate to obtain

log[2](E + ab) ≤ log
(

2 log(E + b) log(E + a)
)

≤ log
(

(E + b) log(E + a)
)

= log(E + b) + log[2](E + a) ≤ 2 log(E + b) log[2](E + a)

and we continue by induction.
Now, let us prove (3.2). We have

log(E + ad) ≤ log((E + a)d) = d log(E + a)

and thus

log[2](E + ad) ≤ log(C log(E + a)) = log(C) + log[2](E + a) ≤ C log[2](E + a).

We continue by induction. �

Lemma 3.2. If t ≥ 0, then

tkℓ ≤

∏ℓ
i=1 ki!

∏ℓ−1
i=1 k

ki+1

i

exp[ℓ](t)

whenever ki ∈ N, i = 1, . . . , ℓ.
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Proof: We have exp(t) =
∑∞

k1=0
tk1

k1! ,

exp[2](t) =
∞
∑

k1=0

expk1(t)

k1!
=

∞
∑

k1=0

exp(k1t)

k1!
=

∞
∑

k1,k2=0

kk2
1 tk2

k1!k2!

and by induction

exp[ℓ](t) =

∞
∑

k1,...,kℓ=0

∏ℓ−1
i=1 k

ki+1

i
∏ℓ

i=1 ki!
tkℓ .

Each summand on the right hand side is estimated by exp[ℓ](t) and we are done.
�

Lemma 3.3. Suppose that ξ, ψ > 0 satisfy

ξ
1

kℓ ≤ C

∏ℓ
i=1 k

ki
kℓ

i

∏ℓ−1
i=1 k

ki+1
kℓ

i

ψ where ki ∈ N , ki ≤ kℓ , i = 1, . . . , ℓ .

Then

ξ
1

aℓ ≤ C

∏ℓ

i=1 a
ai
aℓ

i

∏ℓ−1
i=1 a

ai+1
aℓ

i

ψ for every ai ∈ [1,∞), ai ≤ aℓ , i = 1, . . . , ℓ .

Proof: First let us show that we have

(3.3) ξ
1
b ≤ C

∏ℓ
i=1 k

ki
b

i

∏ℓ−1
i=1 k

ki+1
b

i

ψ for every b ∈ [1,∞) , ki ≤ b+ 1 , i = 1, . . . , ℓ .

Let m ∈ N be the integer part of b. Then by assumption we have

(3.4)

ξ
1
b ≤ max(ξ

1
m+1 , ξ

1
m ) ≤ Cψmax

(

∏ℓ

i=1 k
ki
m

i

∏ℓ−1
i=1 k

ki+1
m

i

,

∏ℓ

i=1 k
ki

m+1

i

∏ℓ−1
i=1 k

ki+1
m+1

i

)

≤ Cψ

∏ℓ

i=1 k
ki
m

i

∏ℓ−1
i=1 k

ki+1
m+1

i

.

Next let us prove

(3.5) k
ki
m

i ≤ Ck
ki
b

i , i = 1, . . . , ℓ and k
ki+1

b

i ≤ Ck
ki+1
m+1

i , i = 1, . . . , ℓ− 1.

The first inequality in (3.5) follows from

k
ki
m

−
ki
b

i = k
ki(b−m)

bm

i ≤ k
ki
bm

i ≤ (b+ 1)
b+1
bm ≤ (3m)

3m

m2 = (3m)
3
m ≤ C.
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The second inequality in (3.5) is proved by

k
ki+1

b
−

ki+1
m+1

i = k
ki+1(m+1−b)

b(m+1)

i ≤ k
ki+1
bm

i ≤ (b+ 1)
b+1
bm ≤ (3m)

3m

m2 = (3m)
3
m ≤ C.

Now, (3.3) follows from (3.4) and (3.5).
Next, we are going to prove assertion of the lemma applying inequality (3.3)

with ki being the integer parts of ai, i = 1, . . . , ℓ. For i = 1, . . . , ℓ− 1 we observe
that

a
ai+1

b

i =
(ai

ki

)

ai+1
b

k
ai+1

b
−

ki+1
b

i k
ki+1

b

i ≤ 22k
1
b

i k
ki+1

b

i ≤ 22(2b)
1
b k

ki+1
b

i ≤ Ck
ki+1

b

i .

Therefore

(3.6)

∏ℓ

i=1 k
ki
b

i

∏ℓ−1
i=1 k

ki+1
b

i

≤ C

∏ℓ

i=1 a
ai
b

i

∏ℓ−1
i=1 a

ai+1
b

i

for every b ∈ [1,∞), ai ≤ b+1, i = 1, . . . , ℓ .

Now, we set aℓ = b and (3.3) together with (3.6) conclude the proof. �

Lemma 3.4. Let Ψ be a non-negative increasing function satisfying Ψ(t) ∼ tϕ1(t)
for t ≥ 0. Then there is CΨ > 0 such that the inverse function Ψ−1 satisfies

on [0,∞)

Ψ−1(t) ≤ CΨt
(

ℓ−1
∏

j=1

log1−s
[j] (E + t)

)

log−α
[ℓ] (E + t) = CΨ

t

ϕ1(t)
=: Ψ̃(t).

Proof: First, let us prove that there is t1 > 0 such that

(3.7) log[j](E + t
1
2 ) ≥

1

2
log[j](E + t) for t ≥ t1, j ∈ N , j ≤ ℓ .

For j = 1 it is obvious. For j = 2 we have

log[2](E + t
1
2 ) ≥ log

(1

2
log(E + t)

)

= log[2](E + t) − log(2) ≥
1

2
log[2](E + t)

provided t is large enough. And we continue by induction.
Further, we see that for α ≥ 0 there is t2 ≥ t1 such that for t ≥ t2 we have

from (3.7)

(3.8) logα
[ℓ](E + Ψ̃(t)) ≥ logα

[ℓ](E + t
1
2 ) ≥

1

2α
logα

[ℓ](E + t)

while for α < 0 we find t2 ≥ t1 so that for every t ≥ t2 we obtain

(3.9) logα
[ℓ](E + Ψ̃(t)) ≥ logα

[ℓ](E + t) >
1

2|α|
logα

[ℓ](E + t).
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Therefore by (3.7), (3.8) and (3.9) we have for t ≥ t2

Ψ(Ψ̃(t)) ≥
1

C
Ψ̃(t)ϕ1(Ψ̃(t))

=
CΨ

C
t
(

ℓ−1
∏

j=1

log1−s
[j] (E + t)

)

log−α
[ℓ] (E + t)

(

ℓ−1
∏

j=1

logs−1
[j] (E + Ψ̃(t))

)

× logα
[ℓ](E + Ψ̃(t))

≥
CΨ

C
t
(

ℓ−1
∏

j=1

log1−s
[j] (E + t)

)

log−α
[ℓ] (E + t)

×
1

2(s−1)(ℓ−1)

(

ℓ−1
∏

j=1

logs−1
[j] (E + t)

) 1

2|α|
logα

[ℓ](E + t)

≥
CΨ

C
t.

Thus Ψ−1(t) ≤ Ψ̃(t) on [t2,∞) provided CΨ is large enough. On the other hand
we have Ψ(t) ∼ t on every bounded interval by (2.1) and thus Ψ−1(t) ∼ t on every
bounded interval. As 1

ϕ1
is bounded away from zero on any bounded interval, we

have Ψ̃(t) ∼ t there and we are done. �

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Our proof is very similar to the proofs
from [15] (thanks to our auxiliary lemmata from the previous section).

Lemma 4.1. Suppose that the functions fk : Ω → R have pairwise disjoint

supports and that f =
∑∞

k=1 fk ∈ LΦ(Ω). We further assume that for every

k ∈ N such that ‖fk‖LΦ(Ω) > 0 we have

(4.1) (s+ 2) log
( 1

‖fk‖LΦ(Ω)

)

< log
( Eµ(Ω)

µ({fk 6= 0})

)

+ C.

Then

∞
∑

k=1

‖fk‖
s
LΦ(Ω) <∞ .

Proof: Denote λk = ‖fk‖LΦ(Ω). Without loss of generality we can suppose that
λk > 0 for every k ∈ N. We can further suppose that ‖f‖LΦ(Ω) = 1. Indeed,

otherwise we replace fk with fk

‖f‖
LΦ(Ω)

, k ∈ N, which are functions satisfying the
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following version of (4.1)

(s+ 2) log
( 1

‖ fk

‖f‖
LΦ(Ω)

‖LΦ(Ω)

)

= (s+ 2) log
( 1

‖fk‖LΦ(Ω)

)

+ (s+ 2) log(‖f‖LΦ(Ω))

≤ log
( Eµ(Ω)

µ({fk 6= 0})

)

+ C + (s+ 2)max(0, log(‖f‖LΦ(Ω)))

= log
( Eµ(Ω)

µ({ fk

‖f‖
LΦ(Ω)

6= 0})

)

+ C.

Hence we have λk ∈ (0, 1], for every k ∈ N. Notice that (4.1) implies

(4.2) (s+ 2) log
(

E +
1

λk

)

< log
( Eµ(Ω)

µ({fk 6= 0})

)

+ C.

Let k0 ∈ N be fixed (value of k0 is given bellow, we need (4.8) to be satisfied).
The function ϕ1 is increasing for t large and satisfies the ∆2-condition. Hence
by (3.2) from Lemma 3.1 and the inequality ab ≤ a2 + b2, a, b ∈ R, we have

ϕ1

( |fk|

λk

)

≤ C + ϕ1

(

|fk|
2 +

1

λ2
k

)

≤ C + Cϕ1

(

|fk|
2
)

+ Cϕ1

( 1

λ2
k

)

≤ C + Cϕ1(|fk|) + Cϕ1

( 1

λk

)

.

Therefore (2.1) and (2.2) give

(4.3)

∞
∑

k=1

λs
k =

k0
∑

k=1

λs
k +

∞
∑

k=k0+1

∫

Ω

λs
kΦ
( |fk|

λk

)

dµ

≤

k0
∑

k=1

‖f‖s
LΦ(Ω) + C

∞
∑

k=k0+1

∫

Ω

λs
kΦ1

( |fk|

λk

)

dµ

= C + C

∞
∑

k=k0+1

∫

Ω

|fk|
sϕ1

( |fk|

λk

)

dµ

≤ C + C
(

∞
∑

k=k0+1

∫

Ω

|fk|
s dµ+

∞
∑

k=k0+1

∫

Ω

|fk|
sϕ1(|fk|) dµ

+

∞
∑

k=k0+1

∫

Ω

|fk|
sϕ1

( 1

λk

)

dµ
)

= C + C(S1 + S2 + S3).
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Notice that we have by (2.1) and (2.2)

(4.4)
∞
∑

k=1

∫

Ω

Φ1(|fk|) dµ =

∫

Ω

Φ1(|f |) dµ ≤ C

∫

Ω

Φ(|f |) dµ = C

and

(4.5)

∞
∑

k=1

∫

Ω

|fk|
s dµ ≤ C

∞
∑

k=1

∫

Ω

Φ1(|fk|) dµ ≤ C.

From (4.5) we obtain

(4.6) S1 =

∞
∑

k=k0+1

∫

Ω

|fk|
s dµ ≤ C

and (4.4) implies

(4.7) S2 =

∞
∑

k=k0+1

∫

Ω

Φ1(|fk|) dµ ≤ C.

It remains to estimate S3. First, we claim that there is k0 ∈ N such that

(4.8) log
(

E +
1

λk

)

≤ C log
(

E +
1

µ({fk 6= 0})

∫

Ω

Φ(|fk|)dµ
)

for every k ≥ k0. Let us prove this claim. From (2.2), λk ≤ 1 and inequality (3.1)
from Lemma 3.1 we obtain

λs
k =

∫

Ω

λs
kΦ
( |fk|

λk

)

dµ ≤ C

∫

Ω

λs
kΦ1

( |fk|

λk

)

dµ = C

∫

Ω

|fk|
sϕ1

( |fk|

λk

)

dµ

=

∫

Ω

|fk|
s
(

ℓ−1
∏

j=1

logs−1
[j]

(

E +
|fk|

λk

))

logα
[ℓ]

(

E +
|fk|

λk

)

dµ

≤ C log(ℓ−1)(s−1)+|α|
(

E +
1

λk

)

∫

Ω

|fk|
s
(

ℓ−1
∏

j=1

logs−1
[j] (E + |fk|

)

logα
[ℓ](E + |fk|) dµ

≤ C
1

λk

∫

Ω

|fk|
s
(

ℓ−1
∏

j=1

logs−1
[j] (E + |fk|

)

logα
[ℓ](E + |fk|) dµ

= C
1

λk

∫

Ω

Φ1(|fk|) dµ ≤ C
1

λk

∫

Ω

Φ(|fk|) dµ.

This implies

−(s+ 1) log
(

E +
1

λk

)

≤ C + log
(

∫

Ω

Φ(|fk|) dµ
)

.
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Summing up this inequality and (4.2) we obtain

log
(

E +
1

λk

)

≤ log
(

E +
1

µ({fk 6= 0})

∫

Ω

Φ(|fk|) dµ
)

+ C.

Therefore, since λk → 0 we easily find k0 ∈ N large enough so that (4.8) is satisfied
for every k ≥ k0.

Now, we can start estimating S3. From the definition of ϕ1, the fact that ϕ1(t)
is increasing for large t and from (4.8) we obtain

ϕ1

( 1

λk

)

≤ C + Cϕ1

( 1

µ({fk 6= 0})

∫

Ω

Φ(|fk|) dµ
)

.

Hence
(4.9)

S3 =

∞
∑

k=k0+1

ϕ1

( 1

λk

)

∫

Ω

|fk|
s dµ

≤ C

∞
∑

k=k0+1

∫

Ω

|fk|
s dµ+ C

∞
∑

k=k0+1

ϕ1

( 1

µ({fk 6= 0})

∫

Ω

Φ(|fk|) dµ
)

∫

Ω

|fk|
s dµ.

Thus we need a suitable estimate of
∫

Ω
|fk|

s dµ.
Fix an increasing convex function Ψ : [0,∞) 7→ [0,∞) such that Ψ(t) ∼ tϕ1(t).

Therefore Ψ and Ψ−1 satisfy the ∆2-condition and Ψ−1 can be estimated by Ψ̃
from Lemma 3.4. Thus from Jensen’s inequality (2.3) for the function h = |fk|

s

and S = {fk 6= 0} we obtain

1

µ({fk 6= 0})

∫

{fk 6=0}

|fk|
s dµ ≤ Ψ−1

( 1

µ({fk 6= 0})

∫

{fk 6=0}

Ψ(|fk|
s) dµ

)

≤ Ψ−1
( 1

µ({fk 6= 0})

∫

{fk 6=0}

C|fk|
sϕ1(|fk|

s) dµ
)

.

Next we use the fact that ϕ1(t
s) ≤ Cϕ1(t) (see (3.2)), (2.1) and Lemma 3.4

1

µ({fk 6= 0})

∫

{fk 6=0}

|fk|
s dµ ≤ Ψ−1

( 1

µ({fk 6= 0})

∫

{fk 6=0}

C|fk|
sϕ1(|fk|) dµ

)

= Ψ−1
( 1

µ({fk 6= 0})

∫

{fk 6=0}

CΦ1(|fk|) dµ
)

≤ Ψ−1
( 1

µ({fk 6= 0})

∫

{fk 6=0}

CΦ(|fk|) dµ
)

≤ Ψ̃
( 1

µ({fk 6= 0})

∫

{fk 6=0}

CΦ(|fk|) dµ
)

.

Now, we can plainly suppose that the constant C on the last line satisfies C ≥ 1.
Therefore, as ϕ1(t) is non-decreasing for large t and bounded away from zero on
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[0,∞), we have 1
ϕ1(Ct) ≤ C

ϕ1(t)
and thus Ψ̃(Ct) ≤ CΨ̃(t) on [0,∞). Hence we

obtain

1

µ({fk 6= 0})

∫

{fk 6=0}

|fk|
s dµ ≤ CΨ̃

( 1

µ({fk 6= 0})

∫

{fk 6=0}

Φ(|fk|) dµ
)

.

Therefore we have
∫

{fk 6=0}

|fk|
s dµ ≤ C

∫

{fk 6=0}

Φ(|fk|) dµ
1

ϕ1(
1

µ({fk 6=0})

∫

{fk 6=0} Φ(|fk|) dµ)
.

This estimate, (2.1), (4.4), (4.5) and (4.9) imply

(4.10) S3 ≤ C.

Now (4.3), (4.6), (4.7) and (4.10) conclude the proof. �

Proof of Theorem 1.1: Let us choose d ∈ R such that

µ({u ≥ d}) ≥
µ(Ω)

2
and µ({u ≤ d}) ≥

µ(Ω)

2
.

Set v+ = max{u− d, 0} and v− = −min{u− d, 0}. In the sequel v stands for v+
and v−, respectively. Our aim is to prove

(4.11)

∫ ∞

0

ts−1

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥t})

)
dt <∞ for v = v+ , v = v− .

First, let us show how (4.11) concludes the proof. Since {|u − d| ≥ t} = {v+ ≥
t} ∪ {v− ≥ t}, we have

µ({|u− d| ≥ t}) ≤ 2 max{µ({v+ ≥ t}), µ({v− ≥ t})}.

Moreover we have for all s ∈ [1,∞)

1

log[ℓ]](Es)
≤ C

1

log[ℓ]](2Es)
.

From this estimate and (4.11) we obtain
(4.12)

inf
c∈R

∫ ∞

0

ts−1

logs−1−α
[ℓ] ( Eµ(Ω)

µ({x∈Ω:|u(x)−c|≥t}))
dt

≤

∫ ∞

0

ts−1

logs−1−α
[ℓ] ( Eµ(Ω)

µ({x∈Ω:|u(x)−d|≥t}))
dt

≤ C

(

∫ ∞

0

ts−1

logs−1−α
[ℓ] ( Eµ(Ω)

µ({v+≥t}))
dt+

∫ ∞

0

ts−1

logs−1−α
[ℓ] ( Eµ(Ω)

µ({v−≥t}) )
dt

)

<∞



590 R. Černý

which is the assertion of the theorem.
In the rest of the proof we establish (4.11). We distinguish two cases.
If v ∈ L∞(Ω), then inequality (4.11) is obviously satisfied (recall the convention

that we integrate over t ∈ (0,∞) such that µ({v ≥ t}) > 0 only) and thus we are
done.

Hence we can suppose that v /∈ L∞(Ω) in the rest of the proof.

STEP 1.
Fix 0 < t1 < t2 < ∞. From (1.9), the truncation property and Lemma 3.2 we
have

(4.13) inf
c∈R

(

∫

Ω

|vt2
t1
− c|

skℓ
s−1−α dµ

)
s−1−α

skℓ ≤ C
(

∏ℓ

i=1 ki!
∏ℓ−1

i=1 k
ki+1

i

)
s−1−α

skℓ ‖gt2
t1
‖LΦ(Ω)

whenever ki ∈ N, i = 1, . . . , ℓ. From Lemma 2.1 and the weak form of (4.13) we
obtain

t[µ({vt2
t1

≥ t})]
s−1−α

skℓ ≤ C inf
c∈R

t

2

[

µ
({

|vt2
t1

− c| ≥
t

2

})]
s−1−α

skℓ

≤ C
(

µ(Ω)
)

s−1−α
skℓ

(

∏ℓ
i=1 ki!

∏ℓ−1
i=1 k

ki+1

i

)

s−1−α
skℓ ‖gt2

t1
‖LΦ(Ω)

for ki ∈ N, i = 1, . . . , ℓ and every t > 0. Since (k!)
1
l ∼ k

k
l if k ≤ l, from above

and from Lemma 3.3 we see that

(4.14) t
(µ({vt2

t1
≥ t})

Eµ(Ω)

)

s−1−α
saℓ ≤ C

(

∏ℓ
i=1 a

ai
aℓ

i

∏ℓ−1
i=1 a

ai+1
aℓ

i

)

s−1−α
s

‖gt2
t1
‖LΦ(Ω)

for ai ∈ [1,∞), ai ≤ aℓ, i = 1, . . . , ℓ and t > 0.

STEP 2.
Our next step is to prove

(4.15)
2i

log
s−1−α

s

[ℓ]

(

Eµ(Ω)
µ({v≥2i+1})

) ≤ C‖g2i+1

2i ‖LΦ(Ω) whenever i ∈ N .

Let us define b = Eµ(Ω)
µ({v≥2i+1}) . We set

ai =
log(b)

log[i+1](b)
for i = 1, . . . , ℓ− 1 and aℓ = log(b).
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Hence as t
1

log(t) = e, (1
t
)

1
log(t) = e−1, b ≥ E and limt→∞(1

t
)

1
t = 1, we obtain

(4.16)

∏ℓ
i=1 a

ai
aℓ

i

∏ℓ−1
i=1 a

ai+1
aℓ

i

=

(

∏ℓ−1
i=1

( log(b)
log[i+1](b)

)

1
log[i+1](b)

)

log(b)
(

∏ℓ−2
i=1

( log(b)
log[i+1](b)

)

1
log[i+2](b)

)

log(b)
log[ℓ](b)

=
log[ℓ](b) log

1
log[2](b) (b)

(

∏ℓ−1
i=1

(

1
log[i+1](b)

)

1
log[i+1](b)

)

∏ℓ−2
i=1

(

1
log[i+1](b)

)

1
log[i+2](b)

∼ log[ℓ](b).

Next we observe that (1
b
)

s−1−α
s log(b) = e−

s−1−α
s = C and {v2i+1

2i ≥ 2i} = {v ≥ 2i+1}.

Hence from (4.14) with t = 2i, t1 = 2i, t2 = 2i+1 and (4.16) we obtain (4.15).

STEP 3.
Set Si = {v ≥ 2i},

G =
{

i ∈ N0 : log[ℓ]

( Eµ(Ω)

µ(Si+1)

)

< K4
s

s−1−α log[ℓ]

(Eµ(Ω)

µ(Si)

)}

and B = N0 \G, where K ≥ 1 is large enough so that 0 ∈ G. Notice that G and
B are well-defined, because v /∈ L∞(Ω).

Lemma 2.1 implies

µ({v ≥ 2i+1}) = µ({v2i+1

2i ≥ 2i}) ≤ 2 inf
c∈R

µ({|v2i+1

2i − c| ≥ 2i−1}).

Hence we can use (1.9) and the truncation property for t1 = 2i and t2 = 2i+1 to
obtain

µ({v ≥ 2i+1}) exp[ℓ]

(( 2i−1

C‖g2i+1

2i ‖LΦ(Ω)

)
s

s−1−α
)

≤ C2.

Further we observe that

{g2i+1

2i 6= 0} = {gχ2i<v≤2i+1 6= 0} ⊂ {2i < v} ⊂ {2i ≤ v} = Si.

Thus for i ∈ G we have

1

‖g2i+1

2i ‖LΦ(Ω)

≤ C log
s−1−α

s

[ℓ]

(

E +
C

µ(Si+1)

)

≤ C log
s−1−α

s

[ℓ]

(

E +
C

µ(Si)

)

≤ C log
s−1−α

s

[ℓ]

(

E +
C

µ({g2i+1

2i 6= 0})

)

.
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This verifies assumption (4.1) and therefore Lemma 4.1 and (4.15) give us

(4.17)
∑

i∈G

2si

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥2i+1})

)
≤ C

∑

i∈G

‖g2i+1

2i ‖s
LΦ(Ω) <∞ .

Next, let us suitably decompose B. For each i ∈ G we define

Bi =
{

j ∈ B : j > i and {i+ 1, i+ 2, . . . , j} ⊂ B
}

.

From the definition of B, simple induction and (4.17) we have
(4.18)
∑

j∈B

2sj

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥2j+1})

)
=
∑

i∈G

∑

j∈Bi

2sj

logs−1−α
[ℓ]

(

Eµ(Ω)
µ(Sj+1)

)

≤ C
∑

i∈G

∞
∑

j=i+1

2sj

4s(j−i) logs−1−α
[ℓ]

(

Eµ(Ω)
µ(Si+1)

)

≤ C
∑

i∈G

2si

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥2i+1})

)

∞
∑

j=i+1

1

2s(j−i)
<∞.

From (4.17) and (4.18) we obtain

(4.19)

∞
∑

i=0

2si

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥2i+1})

)
<∞ .

STEP 4.
We raise estimate (4.15) to the power s and sum over i ∈ N and we infer
from (4.19)

(4.20)

∫ ∞

2

ts−1

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥t})

)
dt ≤ C

∞
∑

i=0

2si

logs−1−α
[ℓ]

(

Eµ(Ω)
µ({v≥2i+1})

)
<∞ .

From (4.20) for v = v+ and v = v−, respectively, we obtain (4.11). Since (4.11)
implies (4.12), we are done. �
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