
Archivum Mathematicum

M. Göteman; Ulf Lindström
Sigma models with non-commuting complex structures and extended
supersymmetry

Archivum Mathematicum, Vol. 46 (2010), No. 5, 323--331

Persistent URL: http://dml.cz/dmlcz/141386

Terms of use:
© Masaryk University, 2010

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/141386
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 46 (2010), 323–331

SIGMA MODELS WITH NON-COMMUTING

COMPLEX STRUCTURES

AND EXTENDED SUPERSYMMETRY

M. Göteman and U. Lindström

Abstract. We discuss additional supersymmetries for N = (2, 2) super-
symmetric non-linear sigma models described by left and right semichiral
superfields.

1. Introduction

In this short review we summarize some recent development in understanding
extended supersymmetry for two-dimensional supersymmetric sigma models descri-
bed entirely in terms of semichiral superfields. In the special case of one left and
one right semichiral field we find that off-shell supersymmetry is impossible, but
that the model gives an interesting description of neutral (pseudo) hyperkähler
geometry if we require pseudo supersymmetry instead. In the general case, we
encounter Magri-Morosi concomitants in the conditions for closure of the algebra
and find that the geometry has a nice description in terms of Yano f -structures on
the sum of two copies of the tangent space.

Part of this review is based on a paper written in collaboration with Martin
Roček and Itai Ryb.

2. Preliminaries

Most of this section is a review of results from [3].
Sigma models are collections of maps φi, i = 1, . . . , d, from a space Σ to a target

space T :

(2.1) φi : Σ→ T

subject to equations that derive from an action. We shall be concerned with the
case when Σ is a two-dimensional (1, 1) or (2, 2) superspace and the φis are real or
complex superfields. For (1, 1) supersymmetry with real superfields and D-algebra

(2.2) D2
± = i∂

++
=
,
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the action is

(2.3)
∫

Σ
d2ξd2θD+φ

i
(
Gij(φ) +Bij(φ)

)
D−φ

j .

Here D± are the covariant derivatives w.r.t. the anticommuting spinorial coordinates
θ± and ∂

++
=

are the derivatives w.r.t. the commuting coordinates ξ++
= . The field

equations that define the sigma model follow from the action (2.3) and read

(2.4) ∇(−)
+ D−φ

i = D+D−φ
i +D+φ

jΓ(−) i
jk D−φ

k = 0 ,
where the connection is defined to be the Levi-Civita connection w.r.t. the metric
Gij , plus torsion

(2.5) Γ(−) i
jk := Γ(0) i

jk − 1
2G

ilHljk ,

and H is the B-field field-strength. We see that a lot of geometry on T enter these
expressions. In particular we find that the target space has to carry a torsionful
geometry and that the defining equation (2.4) for the sigma model contains the
pullback of the Laplacian in this geometry. In fact, in [3], analyzing the sigma
model (2.3), the following possible geometries were found:

N=(1,1) N=(1,1) N=(2,2) N=(2,2) N=(4,4) N=(4,4)

G G,B G G,B G G,B

Rieman. Riem. w. Torsion Kähler Bi-Herm. Hyperkähler Bi-Hyperherm.

Tab. 1: The relation between the number of supersymmetries and
type of target-space geometry.

In this analysis the starting point is the (1, 1) action (2.3) with G or both G
and B non-zero. Additional supersymmetries are non-manifest and follow from the
ansatz
(2.6) δφi = ε+D+φ

kJ i(+)k(φ) + ε−D−φ
kJ i(−)k(φ) .

This ansatz is for one additional left and one additional right supersymmetry.
There may be more. For (2, 2) supersymmetry one finds the following set of
conditions from closure of the algebra :
(2.7) J2

(±) = −11 , N (J(±)) = 0 , [J(+), J(−)] · (FE) = 0 ,
where the first line says that J(±) are almost complex structures and N is the
Nijenhuis tensor whose vanishing signals their integrability. Finally, (FE) is an
expression that has the structure of a field equation. The upshot of these conditions
is that the algebra closes on the kernel of the commutator of the two complex
structures and/or on-shell.

Invariance of the action gives additional constraints:
(2.8) ∇(±)J(±) = 0 , J t(±)GJ(±) = G
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The first condition requires each complex structure to be covariantly constant
with respect to the corresponding torsionful connections. The second condition is
hermiticity of the metric with respect to both complex structures (bi-hermitean
geometry).

More than one extra left and one extra right supersymmetry introduces a set of
left and right complex structures J (A)

(±) that each obey (2.7), (2.8) as well as some
additional constraints both from the algebra and from invariance of the action.
The relevant case here is (4, 4) supersymmetry where A = 1, 2, 3 and the additional
constraint from the algebra is that they obey the algebra of quaternions. Together
with the first condition in (2.7), we write this as

(2.9) J
(A)
(±)J

(B)
(±) = −δAB + εABCJ

(C)
(±) .

In both the (2, 2) and the (4, 4) case, on-shell closure of the algebra signals that
a manifest (2, 2) formulation, if it exists, will have to contain auxiliary fields [7].
On ker

[
J

(A)
(+) , J

(B)
(−)
]
, however, a formulation in terms of (2, 2) geometry certainly

exists [3].
The (2, 2) D-algebra is

(2.10) {D±, D̄±} = i∂
++
=
,

and the constrained (2, 2) superfields that we shall need are chiral φ, twisted chiral
χ and left and right semichiral XL/R fields obeying

(2.11)

D̄±φ = 0 , D±φ̄ = 0 ;

D̄+χ = D−χ = 0 , D+χ̄ = D̄−χ̄ = 0 ;

D̄+XL = 0 , D+X̄L = 0 ;

D̄−XR = 0 , D−X̄R = 0 .

In terms of these fields, a sigma model on ker [J(+), J(−)] is described by the action

(2.12)
∫
d2ξ d2θ d2θ̄ K(φ, φ̄, χ, χ̄) ,

where the (2, 2) supersymmetry is now manifest. When K is independent of either
φ or χ, B = 0 and the geometry is Kähler, with K being the Kähler potential for
the metric G. In general, K will be a (linear) potential both for the metric and
the B-field. More precisely, since B is a gauge-field, it is better to think of K as a
potential for H.

The (4, 4) models on ker[J (A)
(+) , J

(B)
(−) ] are described by the same action (2.12), with

an equal number of chiral and twisted chiral fields, plus the following conditions
on K [3]:

(2.13) Kφiφ̄j +Kχiχ̄j = 0 , Kφiφ̄j −Kφj φ̄i = 0 .
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3. The complement of ker [J(+), J(−)]. A first look

As mentioned in the previous section, a (2, 2) formulation of the sigma models on
the complement (ker [J(+), J(−)])⊥ requires auxiliary fields. One type of (2, 2)-fields
whose (1, 1) components include (spinorial) auxiliary fields are the semichiral ones
[2]. We may thus consider

(3.14)
∫
d2ξ d2θ d2θ̄ K(φ, φ̄, χ, χ̄,XL, X̄L,XR, X̄R) ,

where, to get a sensible theory, we need to include an equal number of left and
right semichiral fields and the generalized Kähler potential K satisfies some regu-
larity conditions [10]. It is shown in [10] that (away from irregular points) (3.14)
indeed gives a complete description of bi-hermitean geometry, or, equivalently, of
Generalized Kähler geometry [6], [9], [11]. In what follows we shall be interested
in the complement (ker [J(+), J(−)])⊥ only, so we set the chiral and twisted chiral
fields to zero and study

(3.15)
∫
d2ξ d2θ d2θ̄ K(XL, X̄L,XR, X̄R) .

The question we pose is what the last entry in Table 1 looks like from this (2, 2)
perspective. More precisely, we make an ansatz for additional supersymmetries
among the semichiral fields and read off the consequences from closure of the
algebra and invariance of the action. Clearly we will find the bi-hypercomplex
geometry this way, but there may be additional structure involving the auxiliary
fields and we also expect to find conditions on K analogous to (2.13) in the kernel.
Previously the question of (4, 4) supersymmetry has been partly addressed, in
doubly projective superspace, for (4, 4) multiplets containing (2, 2) semichiral and
(2, 2) auxiliary fields in [8]. This corresponds to on-shell closure of the fields in the
action (3.15) and complements the present analysis.

In our first analysis [4], we restrict ourselves to one set of semichiral fields. The
corresponding target-space is thus four (real) dimensional. From a general ansatz for
the additional supersymmetries we deduce that off-shell closure of supersymmetry,
{Q, Q̄} = i∂, is impossible. However, interestingly, if we instead ask for pseudo
supersymmetry1 , {Q, Q̄} = −i∂, off-shell closure is possible and we elaborate the
consequences for the case of linear transformations:

(3.16)

δXL = iε̄+D̄+

(
X̄L + XR + 1

κ
X̄R
)

+ iκε̄−D̄−XL −
i

κ
ε−D−XL ,

δXR = iε̄−D̄−

(
X̄R − (κκ̄− 1)XL + κκ̄− 1

κ̄
X̄L
)

− iκ̄ε̄+D̄+XR + i

κ̄
ε+D+XR .

1This makes the full symmetry of the model a twisted supersymmetry [1].
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The only parameter here, modulo field redefinition and R-symmetry, is the complex
parameter κ. The asymmetry between left and right fields is irrelevant and is an
artefact of our choices of redefinitions. These transformations close off-shell to a
pseudo supersymmetry.

Invariance of the action (3.15) under the transformations (3.16) requires that
the following equations are fulfilled

(3.17) K11̄ −K12 − κ̄K1̄2 = 0 , (κκ̄− 1)K22̄ +K12 − κK12̄ = 0 ,

where the subscripts 1 and 2 denote derivatives w.r.t. the left and right semichiral
field, respectively. The system (3.17) may be solved by separating variables to give
a two-parameter family of solutions

K = F (y) + F̄ (ȳ) , y = αXL + βX̄L + γXR + δX̄R ,(3.18)

where

γ = αβ

α+ κ̄β
, δ = αβ

κα+ β
.(3.19)

Due to the linearity of the conditions (3.17), the solution integrated over the free
parameters is again a solution. The general K is thus

(3.20) K(XL, X̄L,XR, X̄R) =
∫
dα dβ K(α, β;αXL + βX̄L + γXR + δX̄R) ,

where K is a particular solution of the type (3.18).
It is an interesting fact that the complex structures that follow from the solution

(3.20) fulfill2

(3.21) {J(+), J(−)} = −6 · 11 .

This means that the H-field is trivial [10] and also that there are two local product
structures

(3.22) S := 1
2
√

2
(
J(+) − 3J(−)

)
, T := 1

4
√

2
[J(+), J(−)] ,

that preserve the metric G of signature (2, 2), and together with J(+) generate
SL(2,C). The corresponding geometry is called neutral (pseudo) hyperkähler. We
have thus reached an interesting conclusion; starting from a (2, 2) sigma-model
described by a generalized Kähler potential K, the requirement that it in addition
carries non-manifest pseudo supersymmetry leads to neutral hyperkähler geometry
on the target-space. Since K is a potential for all geometric objects in the (2, 2)
model, including metric and complex structures, (albeit entering in a non-linear
way), we see that it is also a potential for all the geometric objects in the neutral
hyperkähler geometry. Furthermore, our approach provides a recipe for constructing
such geometries.

2Here we have chosen κ =
√

2 for definiteness, the argument goes through for any κ and only
depends on the fact that |κκ̄+1

κκ̄−1 | > 1.
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4. The general case

In this section we give a brief summary of the results of [5]. When there are
more then one set of semichiral fields, there is no problem with off-shell (ordinary)
supersymmetry. The general ansatz is

δ̄(±)X = U (±)ε̄±D̄±X , δ(±)X = V (±)ε±D±X ,(4.23)

where

X :=


XL
X̄L
XR
X̄R

 =:
(
Xi
)
,(4.24)

and where we have assumed that there are an equal number d of left and right
fields but have suppressed the corresponding index, displaying only the general
index i = 1, . . . , 4d. The matrices U and V are related via complex conjugation
and rearrangement of the rows and columns. Note that the chirality constraints
(2.11) imply that not all the entries in U and V are determined, in particular they
may be degenerate.

Closure of the algebra gives the following equations:

(4.25)

[δ̄±, δ̄∓]Xi = 0⇐⇒M(U (±), U (∓))ijkD̄±XjD̄∓Xk

= [U (±), U (∓)]imD̄±D̄∓Xm ,

[δ̄±, δ∓]Xi = 0⇐⇒M(U (±), V (∓))ijkD̄±XjD∓Xk

= [U (±), V (∓)]imD̄±D∓Xm ,

[δ̄±, δ̄±]Xi = 0⇐⇒ N (U (±))ijkD̄±XjD̄±Xk = 0 ,
and

[δ±, δ̄±]Xi = iε̄±ε±∂
++
=

Xi ⇐⇒M(U (±), V (±))ijkD̄±XjD±Xk

=
[
(UV )(±)i

j + δij
]
D̄±D±Xj

+
[
(V U)(±)i

j + δij
]
D±D̄±Xj .(4.26)

Here N is the Nijenhuis tensor previously mentioned, and M is the Magri-Morosi
concomitant. Whereas the vanishing of N (J) for an almost complex structure
J implies that it is integrable, vanishing of M(J, L) for two commuting almost
complex structures is related to their simultaneous integrability. In fact, M(J, L)
is defined for two arbitrary endomorphisms J and L, but is only a tensor when
they commute.

Off-shell we have no relations between second derivatives and the product of two
derivatives. The relations (4.25)–(4.26) can thus only be satisfied if the left and
right sides vanish independently. This sets the Nijenhuis tensors, the concomitants
and the commutators to zero separately (in the non-vanishing directions). There
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are many interesting aspects of this off-shell geometry. Here we only mention one:
the existence of a Yano f -structure [12] on TM ⊕ TM .

Consider the following 4d× 4d matrix defined on the sum of two copies of the
tangent space:

(4.27) F(±) :=

 0 U (±)

V (±) 0

 .

The entries in U and V that are left undetermined in their definitions are now set
to zero. Due to some of the conditions in (4.26), F(±) satisfies the condition for a
Yano f -structure

(4.28) F3
(±) + F(±) = 0 ,

which is slightly weaker that the condition for an almost complex structure in that
it allows for degenerate matrices.

Further, the two distributions that correspond to −F2
(±) and 1 + F2

(±) are
integrable in the sense of Yano, due to the vanishing of the Nijenhuis-tensors in
(4.25).

Now, invariance of the action (3.15) gives the following set of differential equa-
tions

(4.29)
(
KiU

(+)i
[j

)
k] = 0 , j, k 6= a ,

where a represents the left chiral directions. Similar relations hold for U (−) and
V (±). These relations are the semichiral counterpart of (2.13) for commuting
complex structures and corresponds to (3.17) in the pseudo supersymmetric model.

It is interesting that (4.29) has a geometric formulation related to the f -structure,
at least when U and V are curl-free in the lower indices. It may then be written as
a suitable projection of

(4.30) F t(±)BF(±) = B ,

where we have combined the Hessian Kij of the generalized Kähler potential into
an antisymmetric tensor B on TM ⊕ TM as

(4.31) B =

 0 K

−Kt 0

 .

5. On-shell

We know from [3] that the underlying geometry for the (4, 4) theory is bi-hyper-
complex, also on (ker [J(+), J(−)])⊥. We may compare our results to this by imposing
the field equations. In a real basis for the covariant derivatives,

D± =: 1
2 (D± − iQ±) ,(5.32)
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going on-shell amounts to setting

D±Xi = (π̄(±)D±X)i ,(5.33)

where the projection operator is

π(±) : = 1
2
(
1 + iJ(±)

)
.(5.34)

Identifying J(±) with J
(3)
(±) of the quaternion worth of complex structures in the

bi-hypercomplex geometry, and identifying the transformations (4.23) with the
known transformations in terms of J (1)

(±) and J
(2)
(±) on shell, we identify

(5.35) 1
2

(
J

(1)
(±) − iJ

(2)
(±)

)
= U (±)π , 1

2

(
J

(1)
(±) + iJ

(2)
(±)

)
= V (±)π̄

on shell.
Since the on-shell conditions gives a relation between second derivatives and

the product of two derivatives, the relations in (4.25) have more solutions. Clearly
the off-shell transformations form a subset of the on-shell ones. In fact, with the
identification (5.35) all the relations in (4.25) should be satisfied, possibly up to
constraints from invariance of the action, since the bi-hypercomplex geometry gives
the full answer. We have checked that this is indeed the case.
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