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CANONICAL BASES FOR sl(2,C)-MODULES

OF SPHERICAL MONOGENICS IN DIMENSION 3

Roman Lávička

Abstract. Spaces of homogeneous spherical monogenics in dimension 3 can
be considered naturally as sl(2,C)-modules. As finite-dimensional irreducible
sl(2,C)-modules, they have canonical bases which are, by construction, or-
thogonal. In this note, we show that these orthogonal bases form the Appell
system and coincide with those constructed recently by S. Bock and K. Gürle-
beck in [3]. Moreover, we obtain simple expressions of elements of these bases
in terms of the Legendre polynomials.

1. Introduction

The main aim of this paper is to present an easy way to construct explicitly
orthogonal bases for spaces of homogeneous spherical monogenics in dimension 3.
Such bases were recently obtained by I. Cação in [9] and by S. Bock and K.
Gürlebeck in [3]. In [9], orthogonal bases are constructed from systems of spherical
monogenics which are obtained by applying the adjoint Cauchy-Riemann operator
to elements of the standard bases of spherical harmonics. In [3], this idea is used for
producing another orthogonal bases of spherical monogenics forming, in addition,
the Appell system. In [4], it is observed that these bases forming the Appell system
can be seen as the so-called Gelfand-Tsetlin bases. Moreover, in [4], it is shown
that the Gelfand-Tsetlin bases could be obtained in quite a different way using
the Cauchy-Kovalevskaya method and a characterization of the bases is given
there. In [14, Theorem 2.2.3, p. 315], the Cauchy-Kovalevskaya method was already
explained. But this method is not used in [14] for a construction of orthogonal
bases of spherical monogenics although the construction is obvious not only in
dimension 3 but in an arbitrary dimension as well. Actually, in [14, pp. 254-264]
and [23, 25], another constructions even in all dimensions are given. By the way,
the Cauchy-Kovalevskaya method is applicable in other settings, see [7, 6] and
[13]. Finally, let us remark that Appell systems of monogenic polynomials were

2000 Mathematics Subject Classification: primary 30G35; secondary 33C50.
Key words and phrases: spherical monogenics, orthogonal basis, Legendre polynomials,

sl(2,C)-module.
The financial support from the grant GA 201/08/0397 is gratefully acknowledged. This work is

also a part of the research plan MSM 0021620839, which is financed by the Ministry of Education
of the Czech Republic.

http://www.emis.de/journals/AM/


340 R. LÁVIČKA

discussed before by H. R. Malonek et al. in [10, 11, 15, 16]. Similar questions were
also studied for the Riesz system, see [20, 21, 22, 12, 26].

For an account of Clifford analysis, we refer to [14]. Now we introduce some
notations. Let (e1, . . . , em) be the standard basis of the Euclidean space Rm and let
Cm be the complex Clifford algebra generated by the vectors e1, . . . , em such that
e2
j = −1 for j = 1, . . . ,m. Recall that the Spin group Spin(m) is defined as the set

of products of an even number of unit vectors of Rm endowed with the Clifford
multiplication. The Lie algebra so(m) of the group Spin(m) can be realized as the
space of bivectors of Clifford algebra Cm, that is,

so(m) =
〈
{eij : 1 ≤ i < j ≤ m}

〉
.

Here eij = eiej and 〈M〉 stands for the span of a set M .
Denote by Hk(R3) the space of complex valued harmonic polynomials P in R3

which are k-homogeneous. Then the space Hk(R3) of spherical harmonics is an
irreducible module under the h-action, defined by

[h(s)(P )](x) = P (s−1xs) , s ∈ Spin(3) and x = (x1, x2, x3) ∈ R3 .

Moreover, let S be a basic spinor representation of the group Spin(3). Then denote
by Mk(R3, S) the set of S-valued k-homogeneous polynomials P in R3 which
satisfy the equation ∂P = 0 where the Dirac operator ∂ is given by

∂ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
.

It is well-known that the spaceMk(R3, S) of spherical monogenics is an irreducible
module under the L-action, defined by

[L(s)(P )](x) = s P (s−1xs) , s ∈ Spin(3) and x = (x1, x2, x3) ∈ R3.

Both spaces Hk(R3) andMk(R3, S) can be seen naturally as irreducible finite-di-
mensional sl(2,C)-modules. As finite-dimensional irreducible sl(2,C)-modules, they
have canonical bases which are, by construction, orthogonal.

In this paper, we study properties of canonical bases of spaces Mk(R3, S). In
Theorem 1, we describe their close relation to canonical bases of spherical harmonics,
we show that they form the Appell system and we give recurrence formulas for
their elements. By the way, in [1, 2] analogous recurrence formulas generate easily
elements of the orthogonal bases described in [3]. Moreover, we express elements of
the canonical bases in terms of classical special functions (see Theorem 2). As in
[4], we can adapt these results easily to quaternion valued spherical monogenics.
It turns out that these bases coincide with those constructed recently by S. Bock
and K. Gürlebeck in [3]. In Theorem 3, we obtain simple expressions of elements
of these bases in terms of the Legendre polynomials. Let us remark that in [18, 19]
homogeneous solutions of the Riesz system in dimension 3 forming orthogonal
bases are expressed as finite sums of products of the Legendre and Chebyshev
polynomials.
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2. Spherical harmonics in dimension 3

In this section, we recall the construction of canonical bases for finite-dimensional
irreducible sl(2,C)-modules and, as an example, we describe well-known bases of
spherical harmonics in dimension 3 by means of classical special functions.

Obviously, the action of so(3) on the space Hk(R3) is given by

hij = dh(eij/2) = xj
∂

∂xi
− xi

∂

∂xj
(i 6= j) .

Moreover, it is easily seen that
[h12, h23] = h31 , [h23, h31] = h12 and [h31, h12] = h23

where [L,K] = LK −KL. We can naturally identify the Lie algebra sl(2,C) with
the complexification of so(3). Indeed, the operators

H = −ih12 , X+ = h31 + ih23 and X− = −h31 + ih23

satisfy the standard sl(2,C)-relations:
[X+, X−] = 2H and [H,X±] = ±X± .

Putting z = x1 + ix2 and z = x1 − ix2, we have that

(1) X+ = −2x3
∂

∂z
+ z

∂

∂x3
and X− = 2x3

∂

∂z
− z ∂

∂x3
.

Furthermore, it is well-known that, as an sl(2,C)-module, Hk(R3) is irreducible
and has the highest weight k. In each finite-dimensional irreducible sl(2,C)-module
there exists always a canonical basis consisting of weight vectors, see [8, p. 116].

Proposition 1. Let Vl be an irreducible sl(2,C)-module with the highest weight
l. Then
(i) There is a primitive element f0 of Vl, that is, there is a non-zero element f0 of
Vl such that

Hf0 = lf0 and X+f0 = 0 .

(ii) A basis of Vl is formed by the elements
fj = (X−)jf0 , j = 0, . . . , 2l .

In addition, for each j = 0, . . . , 2l, the element fj is a weight vector with the weight
l − j, that is, fj is a non-zero element of Vl such that

Hfj = (l − j)fj .
Moreover, X−f2l = 0 and each weight vector fj is uniquely determined up to
a non-zero multiple.
(iii) The basis {f0, . . . , f2l} is orthogonal with respect to any inner product (·, ·) on
Vl which is invariant, that is, for each L ∈ sl(2,C) and each f, g ∈ Vl, we have that

(Lf, Lg) = (f, g).

By Proposition 1, to construct the canonical basis of the module Hk(R3) it is
sufficient to find its primitive.
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Proposition 2. The irreducible sl(2,C)-module Hk(R3) has a basis consisting of
the polynomials

fk0 = 1
k! 2k z

k and fkj = (X−)jfk0 , 0 < j ≤ 2k .

In addition, for each j = 0, . . . , 2k, the polynomial fkj is a weight vector with the
weight k − j, that is, Hfkj = (k − j)fkj .

Proof. It is easy to see that fk0 is a primitive of Hk(R3). �

Following [8], we identify the functions fkj with classical special functions. To
do this we use spherical co-ordinates

(2) x1 = r sin θ sinϕ , x2 = r sin θ cosϕ , x3 = r cos θ

with 0 ≤ r, −π ≤ ϕ ≤ π and 0 ≤ θ ≤ π. Let us remark that, in spherical
co-ordinates (2), the operators H, X+ and X− have the form

(3)

H = −i ∂
∂ϕ

,

X+ = eiϕ
(
i
∂

∂θ
− cot θ ∂

∂ϕ

)
,

X− = e−iϕ
(
i
∂

∂θ
+ cot θ ∂

∂ϕ

)
.

In [8, pp. 120-121] (with the variables x1 and x2 interchanged), the next result is
shown.

Proposition 3. Let {fk0 , . . . , fk2k} be the basis of Hk(R3) defined in Proposition
2. Using spherical co-ordinates (2), we have then that, for each j = 0, . . . , 2k,

fkj (r, θ, ϕ) = ik−jrkei(k−j)ϕP j−kk (cos θ)

where

P lk(s) = 1
k! 2k (1− s2)l/2 d

l+k

dsl+k
(s2 − 1)k , s ∈ R .

Here P 0
k is the k-th Legendre polynomial and P lk are its associated Legendre

functions.

3. Spherical monogenics in dimension 3

In this section, we study properties of canonical bases of sl(2,C)-modules of
spherical monogenics and, in particular, we express elements of these bases by
means of classical special functions. We begin with spinor valued spherical monoge-
nics.
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Spinor valued polynomials. In what follows, S stands for a (unique up to
equivalence) basic spinor representation of Spin (3) and so(3) = 〈e12, e23, e31〉. As
an so(2)-module, the module S is reducible and decomposes into two inequivalent
irreducible submodules

S± = {u ∈ S : −ie12 u = ±u}

provided that so(2) = 〈e12〉. Moreover, the spaces S± are both one-dimensional.
Let S± = 〈v±〉. Then each s ∈ S is of the form s = s+v+ + s−v− for some complex
numbers s±. We write s = (s+, s−).

Furthermore, the action of so(3) on the space Mk(R3, S) is given by

Lij = dL(eij/2) = eij
2 + hij with hij = xj

∂

∂xi
− xi

∂

∂xj
(i 6= j) .

It is easily seen that

[L12, L23] = L31 , [L23, L31] = L12 and [L31, L12] = L23 .

Moreover, the operators

H̃ = −iL12 , X̃+ = L31 + iL23 and X̃− = −L31 + iL23

generate the Lie algebra sl(2,C). Indeed, we have that

[X̃+, X̃−] = 2H̃ and [H̃, X̃±] = ±X̃± .

Put again z = x1 + ix2 and z = x1 − ix2. Then it is easy to see that

X̃± = X± + ω± where ω+ = 1
2(e31 + ie23) , ω− = 1

2(−e31 + ie23)

and X± are defined as in (1). Furthermore, as an sl(2,C)-module, Mk(R3, S) is
irreducible and has the highest weight k + 1

2 . We can construct again a canonical
basis of this module using Proposition 1.

Proposition 4. The irreducible sl(2,C)-module Mk(R3, S) has a basis consisting
of the polynomials

F k0 = 1
k! 2k z

kv+ and F kj = (X̃−)jF k0 , 0 < j ≤ 2k + 1 .

In addition, for each j = 0, . . . , 2k + 1, the polynomial F kj is a weight vector with
the weight k + 1

2 − j, that is, H̃F kj = (k + 1
2 − j)F

k
j .

Proof. Obviously, the polynomial F k0 is a primitive of Mk(R3, S). �

By Proposition 1, the basis of Mk(R3, S) constructed in Proposition 4 is ortho-
gonal with respect to any invariant inner product on Mk(R3, S). As is well-known,
the Fischer inner product and the standard L2-inner product on the unit ball of
R3 are examples of invariant inner products on Mk(R3, S), see [14, pp. 206 and
209]. In the next theorem, we show further properties of the constructed bases.
Statement (a) of Theorem 1 shows the close relation of the canonical bases of
spherical harmonics to those of spherical monogenics. Moreover, by statement (b),
the polynomials F kj form the so-called Appell system, that is, they satisfy the
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property (4) below. Finally, statement (c) of Theorem 1 contains the recurrence
formula for elements F kj of the constructed bases.

Theorem 1. (a) We have that
(X̃−)j = (X−)j + j(X−)j−1ω− , j ∈ N .

In particular, for j = 0, . . . , 2k + 1, we get that F kj = fkj v
+ + jfkj−1ω

−v+. Here
fk−1 = fk2k+1 = 0 and {fk0 , . . . , fk2k} is the basis of Hk(R3) as in Proposition 2.
(b) Moreover, it holds that[ ∂

∂x3
, (X̃−)j

]
= 2j(X̃−)j−1 ∂

∂z
, j ∈ N .

In particular, for each k ∈ N,

(4)
∂F kj
∂x3

=
{
j F k−1
j−1 , j = 1, . . . , 2k ;

0 , j = 0, 2k + 1 .

(c) Finally, we have that
[x3, (X̃−)j ] = j(X̃−)j−1z , j ∈ N .

In particular, for each k ∈ N0 and j = 0, 1, . . . , 2k + 1,
F k+1
j+1 = x3F

k
j − jzF kj−1 + ω−F k+1

j where F k−1 = 0 .

Proof. The statements (a) and (b) follow, by induction, from the following facts:

(ω−)2 = 0 , [X−, ω−] = 0 ,
[ ∂

∂x3
, X−

]
= 2 ∂

∂z
and

[ ∂
∂z
,X−

]
= 0 .

We show statement (c). We have that [x3, X
−] = z and [z,X−] = 0 and hence, by

induction, we get easily
[x3, (X̃−)j ] = j(X̃−)j−1z .

In particular, for j = 1, . . . , 2k, we have that
x3F

k
j − (X̃−)j(x3F

k
0 ) = jzF kj−1 ,

which finishes the proof together with the obvious relation
F k+1

1 = x3F
k
0 + ω−F k+1

0 .

�

Remark 1. (a) We can realize the space S in the Clifford algebra C4. Indeed, we
can put

v+ = 1
4(1− ie12)(1− ie34) and v− = 1

4(e1 + ie2)(e3 + ie4) .

We denote this realization of the space S by S+
4 . In particular, we have that

ω−v+ = v− and ω−v− = 0.
(b) There is another realization S−4 of the space S inside C4 if we put

v+ = 1
4(1− ie12)(e3 + ie4) and v− = 1

4(e1 + ie2)(1− ie34) .
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In this case, we have that ω−v+ = −v− and ω−v− = 0. Let us remark that
although, as so(3)-modules, S+

4 and S−4 are of course equivalent to each other they
are different as so(4)-modules. See [14, pp. 114-118] for details.

(c) Let {F k,±0 , . . . , F k,±2k+1} be the basis ofMk(R3, S±4 ) defined in Proposition 4. By
statement (a) of Theorem 1, it is easy to see that, for j = 0, . . . , 2k + 1, we get

F k,±j = (fkj , ±jfkj−1) .

Here {fk0 , . . . , fk2k} is the basis of Hk(R3) defined in Proposition 2.

Using the observation (c) of Remark 1 and Proposition 3, we can easily express
the functions F k,±j in terms of classical special functions.

Theorem 2. Let {F k,±0 , . . . , F k,±2k+1} be the basis of Mk(R3, S±4 ) defined in Pro-
position 4. Using spherical co-ordinates (2), we then have that

F k,±j (r, θ, ϕ) = ik−jrkei(k−j)ϕ
(
P j−kk (cos θ), ±ijeiϕP j−k−1

k (cos θ)
)

for each j = 0, . . . , 2k + 1. Here P k+1
k = 0 = P−k−1

k .

Now we are going to deal with quaternion valued spherical monogenics.

Quaternion valued polynomials. In what follows, H stands for the skew field
of real quaternions q with the imaginary units i1, i2 and i3, that is,

i21 = i22 = i23 = i1i2i3 = −1 and q = q0 + q1i1 + q2i2 + q3i3, (q0, q1, q2, q3) ∈ R4 .

For a quaternion q, put q = q0 − q1i1 − q2i2 − q3i3. We realize H as the subalgebra
of complex 2× 2 matrices of the form

(5) q =
(
q0 + iq3 −q2 + iq1
q2 + iq1 q0 − iq3

)
.

In particular, we have that

i1 =
(

0 i
i 0

)
, i2 =

(
0 −1
1 0

)
and i3 =

(
i 0
0 −i

)
.

Furthermore, we identify so(3) with 〈i1, i2, i3〉 as follows: e12 ' i3, e23 ' i1 and
e31 ' i2. Then we can realize the basic spinor representation S of so(3) as the
space C2 of column vectors

s =
(
q0 + iq3
q2 + iq1

)
.

Here the action of so(3) on S is given by the matrix multiplication from the left.
Now we are interested in quaternion valued polynomials g = g(y) in the va-

riable y = (y0, y1, y2) of R3. Let us denote by Mk(R3,H) the space of H-valued
k-homogeneous polynomials g satisfying the Cauchy-Riemann equation Dg = 0
with

D = ∂

∂y0
+ i1

∂

∂y1
+ i2

∂

∂y2
.
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It is easy to see that both columns of an element g ∈ Mk(R3,H) belong to
the space M̃k(R3, S) of S-valued solutions h of the equation Dh = 0 which are
k-homogeneous.

Moreover, we can consider naturallyMk(R3,H) as a right H-linear Hilbert space
with the H-valued inner product

(Q,R)H =
∫
B3

QR dV

where B3 is the unit ball and dV is the Lebesgue measure in R3. In [3], orthogonal
bases of spacesMk(R3,H) forming, in addition, the Appell system are constructed.
In [4], the following characterization of these bases is given.

Proposition 5. For each k ∈ N0, there exists an orthogonal basis
(6) {gkj | j = 0, . . . , k}

of the right H-linear Hilbert space Mk(R3,H) such that:
(i) Let j = 0, . . . , k and let hkj and hk2k+1−j be the first and the second column of
the (matrix valued) polynomial gkj , respectively. Then we have that

Hhkj =
(
k + 1

2 − j
)
hkj and Hhk2k+1−j = −(k + 1

2 − j)h
k
2k+1−j

with
H = −i

( i3
2 + y2

∂

∂y1
− y1

∂

∂y2

)
.

(ii) We have that
∂gkj
∂y0

=
{
kgk−1
j−1 , j = 1, . . . , k ;

0 , j = 0 .

(iii) For each k ∈ N0, we have that gk0 = (y1 − i3y2)k.
Moreover, the polynomials gkj are determined uniquely by the conditions (i), (ii)
and (iii). Finally, for each k ∈ N0, the S-valued polynomials

hk0 , h
k
1 , . . . , h

k
2k+1

form the canonical basis of the sl(2,C)-module M̃k(R3, S).

In [3] and [4], quite explicit formulas for the polynomials gkj are given in the
cartesian coordinates y0, y1, y2. We now construct these polynomials in yet another
way using Theorem 2. Indeed, in Theorem 3 below, we express the polynomials gkj
in spherical co-ordinates
(7) y0 = r cos θ , y1 = r sin θ cosϕ , y2 = r sin θ sinϕ
with 0 ≤ r, −π ≤ ϕ ≤ π and 0 ≤ θ ≤ π.

Theorem 3. Let the set {gkj | j = 0, . . . , k} be the basis of Mk(R3,H) as in
Proposition 5. Using spherical co-ordinates (7), we have then that

gkj (r, θ, ϕ) = (k!/j!)(−2)k−jrk (gkj,0 + gkj,1 i1 + gkj,2 i2 + gkj,3 i3) where
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gkj,0 = P j−kk (cos θ) cos(j − k)ϕ , gkj,1 = −jP j−k−1
k (cos θ) cos(j − k − 1)ϕ ,

gkj,2 = jP j−k−1
k (cos θ) sin(j − k − 1)ϕ , gkj,3 = P j−kk (cos θ) sin(j − k)ϕ .

Here P 0
k is the k-th Legendre polynomial and P lk are its associated Legendre

functions (see Proposition 3 for the formulas of P lk).

Proof. (a) Let k ∈ N0 and j = 0, . . . , k. It is easy to see that the S-valued
polynomial

ĥkj (y0, y1, y2) = F k,−j (−y2, y1, y0)
solves the equation Dĥkj = 0. Here F k,−j are as in Remark 1 (c).

(b) We can find non-zero complex numbers ckj ∈ C such that the polynomials
hkj = ckj ĥ

k
j satisfy, in addition, that hk0 = ((y1 − iy2)k, 0) and

∂hkj
∂y0

=
{
khk−1
j−1 , j = 1, . . . , k ;

0 , j = 0 .

Indeed, by Theorem 1, it is sufficient to put ckj = (2i)k−jk!/j!.
(c) Using spherical co-ordinates (7), we obviously have that

hkj (r, θ, ϕ) = ckj F
k,−
j (r, θ,−ϕ)

where F k,−j are as in Theorem 2. In particular, putting dkj = (k!/j!)(−2)k−j , we
have that hkj = (hkj,0, hkj,1) with

hkj,0 = dkj r
kei(j−k)ϕP j−kk (cos θ) and hkj,1 = dkj r

k(−i)jei(j−k−1)ϕP j−k−1
k (cos θ) .

(d) Finally, we define an H-valued polynomial gkj corresponding to the S-valued
polynomial hkj = (hkj,0, hkj,1) by

gkj = Rehkj,0 + i1 Im hkj,1 + i2 Rehkj,1 + i3 Im hkj,0 .

Here, for a complex number z, we write Re z for its real part and Im z for its
imaginary part. Obviously, the polynomials gkj satisfy the conditions (i), (ii) and
(iii) of Proposition 5, which easily completes the proof. �
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